TWISTED MAHLER DISCRETE RESIDUES
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ABSTRACT. Recently we constructed Mahler discrete residues for rational functions and
showed they comprise a complete obstruction to the Mahler summability problem of deciding
whether a given rational function f(z) is of the form g(z?) — g(z) for some rational function
g(x) and an integer p > 1. Here we develop a notion of A-twisted Mahler discrete residues for
A € Z, and show that they similarly comprise a complete obstruction to the twisted Mahler
summability problem of deciding whether a given rational function f(x) is of the form
p*g(xP) — g(x) for some rational function g(z) and an integer p > 1. We provide some initial
applications of twisted Mahler discrete residues to differential creative telescoping problems
for Mahler functions and to the differential Galois theory of linear Mahler equations.
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1. INTRODUCTION

Continuous residues are fundamental and crucial tools in complex analysis, and have ex-
tensive and compelling applications in combinatorics [F'S09]. In the last decade, a theory of
discrete and g-discrete residues was proposed in [CS12] for the study of telescoping problems
for bivariate rational functions, and subsequently found applications in the computation
of differential Galois groups of second-order linear difference [Arr17] and g-difference equa-
tions [AZ22a] and other closely-related problems [Chel8 HW15]. More recently, the authors
of [Car21,CD23] developed a theory of residues for skew rational functions, which has impor-
tant applications in duals of linearized Reed-Solomon codes [CD23]. In [HS21] the authors
introduce a notion of elliptic orbit residues which, in analogy with [CS12], similarly serves
as a complete obstruction to summability in the context of elliptic shift difference operators.
In [AZ22Db] we initiated a theory of Mahler discrete residues aimed at helping bring to the
Mabhler case the successes of these earlier notions of residues.

Let K be an algebraically closed field of characteristic zero and K(x) be the field of rational
functions in an indeterminate x over K. Fix an integer p > 2. For a given f(z) € K(z),
we considered in [AZ22b] the Mahler summability problem of deciding effectively whether
f(z) = g(z?) — g(x) for some g(x) € K(x); if so, we say f(x) is Mahler summable. We
defined in [AZ22b] a collection of K-vectors, called Mahler discrete residues of f(x) and
defined purely in terms of its partial fraction decomposition, having the property that they
are all zero if and only if f(x) is Mahler summable.

More generally, a (linear) Mahler equation is any equation of the form

y(@") + a1 (@)y(@ ) + -+ ar(@)y(a?) + +ap(2)y(z) = 0, (1.1)

where the a;(x) € K(z) and y(z) is an unknown “function” (or possibly some more general
entity, e.g., the generating series of a combinatorial object, a Puisseux series, etc.). The
motivation to study Mahler equations in general comes from several directions. They first
arose in [Mah29] in connection with transcendence results on values of special functions at
algebraic numbers, and have since found other applications to automata theory and auto-
matic sequences since the work of [Cob68]. We refer to [AB17, DHR18, CDDM18, ADH21]
and the references therein for more details. We also mention that a different (and, for some
purposes, better) approach to the Mahler summability problem is contained in [CDDM18],
where the authors develop efficient algorithms to find, in particular, all the rational solu-
tions to a linear Mahler equation. Thus [CDDM18] decides efficiently whether any given
f(z) € K(x) is Mahler summable: namely, by either actually finding the corresponding cer-
tificate g(z) € K(x) such that f(x) = g(2?) — g(z) if it exists or else deciding that there is no
such g(z) € K(z). We emphasize that, in contrast, the approach undertaken in [AZ22b] is
obstruction-theoretic, with the upshot that it spells out (theoretically) exactly what it takes
for any f(z) € K(x) whatsoever to be Mahler summable or not, but with the drawback that
it is likely to be infeasible in practice for all but the simplest/smallest choices of f(z). All the
same, the approach initiated in [AZ22b], and continued in the present work, is a worthwhile
and useful complement to that of [CDDM18] — not only because of the theoretical questions
that it answers for the first time, but moreover also because of its practical implications.
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A particularly fruitful approach over the last few decades to study difference equations
in general, and Mahler equations such as (1.1) in particular, is through the Galois theory
for linear difference equations developed in [vdPS97], and the differential (also sometimes
called parameterized) Galois theory for difference equations developed in [HS08]. Both the-
ories associate a geometric object to a given difference equation such as (1.1), called the
Galoisnchar group, that encodes the sought (differential-)algebraic properties of the solu-
tions to the equation. There are now several algorithms and theoretical results (see in
particular [Roq17, DHR18, AS17, ADR16]) addressing qualitative questions about solutions
of Mahler equations (1.1), in particular whether they must be (differentially) transcendental,
which rely on procedures to compute “enough” information about the corresponding Galois
group (i.e., whether it is “sufficiently large”). These Galois-theoretic arguments very often
involve, as a sub-problem, deciding whether a certain auxiliary object (often but not always a
rational solution to some Riccati-type equation) is Mahler summable (possibly after applying
some linear differential operator to it, i.e., a telescoper). Rather than being able to answer
the Mahler summability question for any one individual rational function, the systematic
obstructions to the Mahler summability problems developed here serve as essential building
blocks for other results and algorithms that rely on determining Mahler summability as an
intermediate step. An immediate application of the technology of the technology developed
here is Proposition 6.2, which has the following concrete consequence (when paired with the
results of [ADH21, Theorem 1.3]): if y1(x),...,y:(x) € K((x)) are Laurent series solutions
to Mahler equations of the form

yi(2") = ai(z)yi(z)

for some non-zero a;(x) € K(x), then either the y;(z), ..., y;(z) are differentially independent
over K(x) or else they are multiplicatively dependent over K(x)*, i.e., there exist integers
ki, ...,k € Z, not all zero, such that []'_, yi(z)¥ € K(x). Let us explain in more detail the
technology that we develop.

For arbitrary A € Z and f(x) € K(z), we say that f(z) is A-Mahler summable if there
exists g(r) € K(z) such that f(z) = p*g(2F) — g(x). We shall construct certain K-vectors
from the partial fraction decomposition of f(z), which we call the (twisted) A\-Mahler discrete
residues of f(x), and prove our main result in Section 5.4:

Theorem 1.1. For A € Z, f(x) € K(z) is A\-Mahler summable if and only if every A\-Mahler
discrete residue of f is zero.

Our desire to develop an obstruction theory for such a “twisted” A\-Mahler summability
problem, beyond the “un-twisted” 0-Mahler summability problem considered in [AZ22b], is
motivated by our desire to apply this obstruction theory to the following kind of Mahler cre-
ative telescoping problem. Given fi, ..., f, € K(x) decide whether there exist linear differen-
tial operators Ly, ..., L, € K[d], for § some suitable derivation, such that £;(f1)+---+Ln(fn)
is suitably Mahler summable. The unfortunately vague (but deliberate) double-usage of
“suitable” above is due to the fact that there are in the Mahler case two traditional and
respectable ways to adjoin a “Mahler-compatible” derivation in order to study differential-
algebraic properties of solutions of Mahler equations, as we next explain and recall.
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A oo-field is a field equipped with an endomorphism ¢ and a derivation § such that
000 = doo. Such are the basefields considered in the §-Galois theory for linear o-equations
developed in [HS08]. Denoting by o : K(z) — K(z) : f(z) — f(aP) the Mahler endomor-
phism, one can show there is no non-trivial derivation § on K(x) that commutes with this
o. In the literature one finds the following two approaches (often used in combination; see
e.g. [DHR18, ADH21]): (1) take § = z-L, and find a systematic way to deal with the fact
that o and § do not quite commute (but almost do), 0 0d = pd o g; or (2) work over the
larger field K(z, log z), where o(log ) = plog z, and set § = zlogz-L, and find a systematic
way to deal with this new element logz as the cost of having 0 o § = § o ¢ on the nose.
There is, to be sure, a dictionary of sorts between these two approaches. We postpone a
more careful discussion of these issues until it becomes absolutely necessary in Section 6,
except to adopt the latter approach in this introduction to briefly motivate the centrality of
the A-Mahler summability problems for arbitrary A € Z in the differential study of Mahler
functions.

Let us consider the gd-field L := K(z,logx), and given F' € L, let us write the log-Laurent
series expansion

F =Y fl2)log"z € K(z)((logx)),

A>N
where fy(z) € K(x) for each A € Z, and log* x := [log2]*. Let us suppose that there exists
G € L :=K(z)((logz)) such that F' = o(G) — G (where o is applied term-by-term). Writing
such a putative G = ),y ga(7) log* x € L, for some gy(z) € K(x) for A\ € Z, we find that

F is Mahler summable within L if and only if each fy(z) = p*ga(a?) — g(z) for each \ € Z.

Our strategy expands upon that of [AZ22b], which in turn was inspired by that of [CS12]:
for X\ € Z, we utilize the coefficients occurring in the partial fraction decomposition of f(x)
to construct in Section 5.5 a A\-Mahler reduction fy(x) € K(z) such that

(@) = f(z) + (P ga(2?) — ga(2)) (1.2)
for some g)(z) € K(x) (whose explicit computation it is our purpose to avoid!), with the
structure of this f\(z) being such that it cannot possibly be A-Mahler summable unless
fa(x) = 0. The A-Mahler discrete residues of f(x) are (vectors whose components are) the
coefficients occurring in the partial fraction decomposition of fy(x). This fy(x) plays the
role of a “A-Mahler remainder” of f(x), analogous to the remainder of Hermite reduction in
the context of integration.

2. PRELIMINARIES

In this section we recall and expand upon some conventions, notions, and ancillary results
from [AZ22b] that we shall use systematically throughout this work.

2.1. Notation and conventions. We fix once and for all an algebraically closed field K
of characteristic zero and an integer p > 2 (not necessarily prime). We denote by K(z)
the field of rational functions in the indeterminate x with coefficients in K. We denote
by o : K(z) — K(x) the K-linear endomorphism defined by o(z) = 2P, called the Mahler
operator, so that o(f(x)) = f(aP) for f(x) € K(z). For A\ € Z, we write Ay := p*o — id, so
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that Ay(f(z)) = p*f(aP) — f(x) for f(z) € K(z). We often suppress the functional notation
and write simply f € K(z) instead of f(z) whenever no confusion is likely to arise. We say
that f € K(z) is A\-Mahler summable if there exists g € K(z) such that f = A,(g).

Let K* = K\{0} denote the multiplicative group of K. Let K; denote the torsion subgroup
of K%, i.e., the group of roots of unity in K*. For ( € K}, the order of { is the smallest
r € N such that (" = 1. We fix once and for all a compatible system of p-power roots of

unity (Cpn)n>o0 C K, that is, each (,» has order p" and Cgﬁ = (e for 0 <0 < n.
Each f € K(z) decomposes uniquely as
=T+ I1; (2.1)

where f. € K[z,27'] is a Laurent polynomial and fr = ¢ for polynomials a,b € K[z] such
that either a = 0 or else deg(a) < deg(b) and ged(a,b) = 1 = ged(x,b). The reasoning
behind our choice of subscripts oo and 7 for the Laurent polynomial component of f and
its complement will become apparent in the sequel.

Lemma 2.1. The K-linear decomposition K(x) ~ K[z, 27| ® K(z)1 given by f <> foo ® [T
asin (2.1) is o-stable. For f,g € K(x) and for X € Z, f = Ax(g) if and only if foo = Ax(goo)
and fr = Ax(gr).

2.2. Mahler trajectories, Mahler trees, and Mahler cycles. We let
P ={p" | n€Z>o}

denote the multiplicative monoid of non-negative powers of p. Then P acts on Z by multi-
plication, and the set of maximal trajectories for this action is

Z)P = {{0}} U {{ip" | n € Zo} | i € Z such that p{i}.
Definition 2.2. For a maximal trajectory 6 € Z/P, we let
Kz, 27y := {ZJ cjrt € Kla, 27! ‘ c; =0 for all j ¢ 0}, (2.2)
and call it the 0-subspace. The O-component fp of f € K(x) is the projection of the component
foo of fin (2.1) to K[z, 27!y as in (2.2).
We obtain similarly as in [AZ22b, Lem. 2.3] the following result.

Lemma 2.3. For f,g € K(z) and for A € Z, fo = Ax(goo) if and only if fo = Ax(ge) for
every mazximal trajectory 0 € Z./P.

Definition 2.4. We denote by T the set of equivalence classes in K* for the equivalence
relation o ~ v & af = " for some r,s € Zsq. For a € K*, we denote by 7(a) € T the
equivalence class of o under ~. The elements 7 € T are called Mahler trees.

We refer to [AZ22b, Remark 2.7] for a brief discussion on our choice of nomenclature in
Definition 2.4.

Definition 2.5. For a Mahler tree 7 € T, the 7-subspace is
K(z), := {fr € K(z)7 | every pole of fr is contained in 7}. (2.3)

For f € K(x), the 7-component f. of f is the projection of the component f7 of f in (2.1)
to the 7-subspace K(z), in (2.3).
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The following result is proved similarly as in [AZ22b, Lem. 2.12].

Lemma 2.6. For f,g € K(z) and for A\ € Z, fr = Ax(g7) if and only if fr = Ax(g,) for
every Mahler tree 7 € T .

Definition 2.7. For a Mahler tree 7 € T, the (possibly empty) Mahler cycle of T is
C(1):={y € 7| vis aroot of unity of order coprime to p}.

The (possibly zero) cycle length of 7 is defined to be (1) := |C(7)|.
For e € Zs¢, we write T, := {17 € T | (1) = e}. We refer to T as the set of non-torsion
Mahler trees, and to T, :=T — Ty as the set of torsion Mahler trees.

Remark 2.8. Let us collect as in [AZ22b, Rem. 2.10] some immediate observations about
Mabhler cycles that we shall use, and refer to, throughout the sequel.

For 7 € T it follows from the Definition 2.4 that either 7 C K} or else 7 N K} = () (that
is, either 7 consists entirely of roots of unity or else 7 contains no roots of unity at all). In
particular, T VK =0 = C(7) =0 < &(7) = 0 < 7 € Ty (the non-torsion case).

On the other hand, K} consists of the pre-periodic points for the action of the monoid
P on K* given by a +— af" for n € Zsq. For 7 C K (the torsion case), the Mahler cycle
C(7) is a non-empty set endowed with a simply transitive action of the quotient monoid
P/P¢ ~ Z/eZ, where P¢ := {p" | n € Z}, and e := (7). We emphasize that in general
C(7) is only a set, and not a group. The Mahler tree 7(1) consists precisely of the roots of
unity ¢ € K/ whose order r is such that ged(r,p™) = r for some p™ € P, or equivalently
such that every prime factor of r divides p. When 7 C K} but 7 # 7(1), the cycle length
e(7) = e is the order of p in the group of units (Z/rZ)*, where r > 1 is the common order
of the roots of unity y € C(7), and C() = {7*" | 0 < £ < e — 1} for any given v € C(7). We
shall often abusively write C(7) = {v*' | £ € Z/eZ}.

2.3. Mahler supports and singular supports in Mahler trees. Mahler trees allow us
to define the following bespoke variants of the singular support sing(f) of a rational function
f (i.e., its set of poles) and the order ord,(f) of a pole of f at o € K, which are particularly
well-suited to the Mahler context.

Definition 2.9. For f € K(z), we define supp(f) C 7 U {oc}, called the Mahler support of
f, as follows:

e 0o € supp(f) if and only if f,, # 0; and
e for 7 € T, 7 € supp(f) if and only if 7 contains a pole of f.

For 7 € T, the singular support of f in 7, denoted by sing(f,7), is the (possibly empty)
set of poles of f contained in 7, and the order of f at 7 is

ord(f, 1) := max({()} U {ord,(f) | o € sing(f, T)})
For the sake of completeness, we include the straightforward proof of the following lemma,
which was omitted from [AZ22b, Section 2.2] for lack of space.
Lemma 2.10. For f,g e K(x), €T, A€ Z, and 0 # ¢ € K, we have the following:

(1) supp(f) =0 <= [ =0;
(2) supp(o(f)) = supp(f) = supp(c- f); and
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(3) supp(f + g) € supp(f) Usupp(g).

(4) T € supp(Ax(g)) <= T € supp(g);

(5) ord(o(f), ) = ord(f,7) = ord(c- f,7);

(6) ord(f +g,7) < max(ord(f, 7),ord(g, T)); and
(7) ord(Ax(g),T) = ord(g, 7).

Proof. (1). f =0<= fo =0 and fr =0, and fr = 0 <= f has no poles in K*.

(2) and (5). For 0 # ¢ € K, ¢fs # 0 if and only if f,, # 0, and f and cf have the
same poles and the orders of these poles are the same, and therefore supp(f) = supp(cf)
and ord(f,7) = ord(cf,T) for every 7 € T. Moreover, o(fs) # 0 if and only if fo # 0,
since ¢ is an injective endomorphism of K(z), and o € K* is a pole of o(f) if and only if
a? is a pole of f, whence 7 contains a pole of f if and only if 7 contains a pole of o(f).
In this case, it is clear that ord(o(f),7) < ord(f,7). Moreover, since f has only finitely
many poles in 7 of maximal order m := ord(f, 7), there exists a € sing(o(f),7) such that
ordar(f) =m > ord,(f), and it follows that ord,(c(f)) = m = ord(a(f), 7).

(3) and (6). If foo + goo # O then at least one of fo, # 0 or goo # 0. The set of poles
of f + g is contained in the union of the set of poles of f and the set of poles of g, and
therefore if 7 contains a pole of f + g then 7 must contain a pole of f or a pole of g. This
shows that supp(f + g) C supp(f) Usupp(g). For m the maximal order of a pole of f+ g in
7 we see that at least one of f or g must contain a pole of order m in 7. This shows that
ord(f + g,7) < max(ord(f, 7), ord(g, 7).

(4) and (7). By (2) and (3), supp(Ax(g)) € supp(g), and by (5) and (6), ord(Ax(g),T) <
ord(g, 7). Suppose T € supp(g), and let a, ..., a5 € sing(g, 7) be all the elements, pairwise
distinct, with ord,,(g) = ord(g,7) =: m > 1, and choose v; € 7 such that 7% = a;, we find
as in the proof of (5) that orde ., (c(g)) = m and the elements (v, are pairwise distinct
for 0 <7 <p-—1and 1 < j < s, whence at least one of the C;;yj is different from every
aj for 1 < j' < s, and therefore ord(Ay(g),7) = m, which implies in particular that
7 € supp(Ai(9)). O

2.4. Mahler dispersion. We now recall from [AZ22b] the following Mahler variant of the

notion of (polar) dispersion used in [CS12], following the original definitions in [Abr71,
Abr74].

Definition 2.11. For f € K(x) and 7 € supp(f), the Mahler dispersion of f at T, denoted
by disp(f,7), is defined as follows.

If 7 € T, disp(f,7) is the largest d € Z> (if it exists) for which there exists o € sing(f, 7)
such that o € sing(f, 7). If there is no such d € Zs, then we set disp(f, 1) = oc.

If 7 = oo, let us write foo = S0 ¢zt € K|z, 2] with ¢,ey # 0.

o If foo =y # 0 then we set disp(f, c0) = 0; otherwise
e disp(f,00) is the largest d € Zs( for which there exists an index i # 0 such that
c; 7 0 and ¢ # 0.

For f € K(z) and 7 € T U {oo} such that 7 ¢ supp(f), we do not define disp(f,7) at all
(cf. [Abr71, Abr74,CS12]).
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Similarly as in the shift and g-difference cases (cf. [HS08, Lemma 6.3] and [CS12, Lemma 2.4
and Lemma 2.9]), Mahler dispersions will play a crucial role in what follows. As we prove
in Theorem 4.2, they already provide a partial obstruction to summability: if f € K(x) is
A-Mahler summable then almost every Mahler dispersion of f is non-zero. Moreover, Mahler
dispersions also detect whether f has any “bad” poles (i.e., at roots of unity of order coprime
to p) according to the following result proved in [AZ22b, Lem. 2.16].

Lemma 2.12 ( [AZ22b, Lem. 2.16]). Let f € K(x) and 7 € supp(f). Then disp(f,T) = o0
if and only if sing(f,7)NC(T) # 0.

2.5. Mabhler coefficients. Here we extend our study of the effect of the Mahler operator o
on partial fraction decompositions initiated in [AZ22b, §2.4]. For a € K* and m,k,n € Z
with n > 0 and 1 < k < m, we define the Mahler coefficients V" () € K implicitly by

n 1 _ U an Czna
o) " T T L L 24

k=1 =0

These Mahler coefficients are computed explicitly with the following result, proved analo-
gously to the similar [AZ22b, Lem. 2.17] in case n = 1.

Lemma 2.13. For every a € K*, the Mahler coefficients
Vk%(a) = an ’ Oék—mp"’

where the universal coefficients Vi*, € Q are the first m Taylor coefficients at x =1 of
(@ a1 ZV (z — 1) F 0z —1)™). (2.5)

Although Lemma 2.13 serves to compute the V;7 (a) for a € K*, n € Zsp, and 1 <k <m

efficiently in practice', the following result provides an explicit symbolic expression for these
Mabhler coefficients as sums over certain integer partitions.

Definition 2.14. For k,n € Zx, let II,,(k) be the set of integer partitions p = (p1, ..., ie)
of k with greatest part p; < p", and denote by ¢(u) := ¢ the length of p and by ¢;(1) the
multiplicity of 7 in p for 1 <7 < p™ — 1. We adopt the conventions that II,,(0) = {0} for
every n > 0 and ITy(k) = 0 for every k > 1. The empty partition g = () has length ¢(()) =
and multiplicity ¢;(0)) = 0 for every 1 <i < p™ — 1 (vacuously so when n = 0).

Proposition 2.15. Forn>0and 1 <k <m,
-1 £;(1)
m __ ,—nm n\—4(u) m—1+ E(M) pn
pETl, (m—k) m ) 1(“)7 st *1(/L) el L+
Proof. By Lemma 2.13, V7 (a) = V" - aF=mP" wwhere the Vi, € Q are given by (2.5).
Writing f,,(z) = 2™ and gn(x) = 2" ' +- -+ 241, and letting W}, € Q be the coefficient

IThat is, by computing successive derivatives of the left-hand side and evaluating at x = 1.
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of (z — 1)* in the Taylor expansion of (f,, 0 ¢,)(x) at x = 1 as in Lemma 2.13, we have that
Vi, =wo,, for every 1 <k < m. By Faa di Bruno’s formula [Joh02], we have

m

- og)®1) 1 k! ()
Wy, = (f i;') ():y' S ),féf(“)’(gn(l))ﬂ<g 1( )>
. . : =1

o G il

for every k£ > 0, where II(k) denotes the set of all partitions of k, and ¢(u) and ¢;(u) are as
in Definition 2.14. For every ¢,i € Z>o, we compute

FO(ga(1)) = (~1)fpremto M =LEON g gy = a (.p" ) |

(m —1)! 141
where we adopt the usual convention that (;fl) = 0 whenever ¢ > p". Therefore the
partitions p € I1(k)\IL, (k) with greatest part p; > p"™ do not contribute to the sum. O

We isolate the following special case for ease of reference (cf. [AZ22b, Cor. 2.18]), since it
arises often.

Corollary 2.16. Let o« € K*, m € N, and n € Z>o. Then Vn’fjn(a) = pnmgmptm,

Proof. In the special case where k = m in Proposition 2.15, the sum is over p € II(0) = {@}
and £(9) = 0 = £;(0) for every i € N, whence V;", (a) = p~"™a™*"™ by Lemma 2.13.

The Mahler coefficients VI (o) defined above are the main ingredients in our definition
of twisted Mahler discrete residues. Our proofs that these residues comprise a complete
obstruction to A-Mahler summability will rely on the following elementary computations,
which we record here once and for all for future reference.

Lemma 2.17. Let n € Z>o, o« € K*, and dy, ..., d,, € K for some m € N. Then

o (N mp_lZs kvknczna)
g (Z(I_ap ) ZZ (. — Gna)*

k=1 k=1 i=0

For A € Z and g € K(x), the element Af\n)( ) = p*o™(g) — g is \-Mahler summable.

Proof. The claims are trivial if n = 0: ¢, =1, V() = 0, (Kronecker’s §) for k < s < m,
and Ag\o) (9) = 0 is A-Mahler summable. Suppose that n > 1. For 1 < s < m we have

s pt—1 V
(o) L v
(@~ k=1 i=0 ‘T_C
by definition (cf. (2.4)), and it follows that

n . LI S Vksn CZ o U Z:l:k Vks,n(g;?"a)ds
o (Z( ) ZZZ(:E—CZ _Z' (:L'—C;;noz)k

s=1 s=1 k=1 i=0

Finally, since

A (g) = p™o™(g) — g =po (ip”oj (g)> - (ipkjaj (9)) = A, (Z_:p”aj (9)) ,

§=0 j=0
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Al (g) is A-Mahler summable. O

3. CYCLE MAPS AND THEIR w-SECTIONS

The goal of this section is to define and study the properties of two auxiliary maps D, -

and I)(\‘UT) that will help us retain some control over the perverse periodic behavior of the roots
of unity v € C(7) under the p-power map v +— 7. The following definitions and results are
relevant only for torsion Mahler trees 7 € T,.

Definition 3.1. With notation as in Definition 2.7, let 7 € T, be a torsion Mahler tree, let
g € K(z), and let us write the 7-component ¢, of g from Definition 2.5 as

DM

keN aeT
We define the cyclic component of g, by

d(
=2 2 G S
keN ’yEC(T)

Definition 3.2. Let S := @keN K denote the K-vector space of finitely supported sequences
in K. For 7 € T, we let S¢) .= P vec(r S For A\ € Z, we define cycle map D, ; to be the
K-linear endomorphism

Dy, : 80 = 80 1 (d(7)) ke = (—dm) +pAZV;§1(7)-dS(7”)> ;o (31)

~eC(T) o~k
- vEC(T)
where the Mahler coefficients V7, () are defined as in (2.4).

We treat the K-vector space S¢() introduced in the preceding Definition 3.2 as an abstract
receptacle for the coefficients occurring in the partial fraction decomposition of C(g,) for
7 € T, and arbitrary elements ¢ € K(z). Note that the infinite summation in (3.1) is
harmless, since ds(7?) = 0 for every v € C(y) for large enough s € N. The cycle map D, ,
for A = 0 is the negative of the (truncated) linear map introduced in [AZ22b, Lemma 4.14].
The relevance of D) ; to our study of A-Mahler summability is captured by the following
immediate computational result.

Lemma 3.3. Let A\ € Z, g € K(z ), and 7 € T,. Let us write the cyclic components
dk
Clgr) =) Z and  C(Ax(g:) = Z
keN yeC( ) keN ~reC( )

as in Definition 5.1. Writing d := (dg(7))k~ and ¢ := (cx(7))r as vectors in ST as in
Definition 3.2, we have ¢ = D, ,(d).

Proof. 1t follows from Lemma 2.17 that

S Va7
=2 Z S

keN yeC(r
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and therefore, for every £ € N and v € C(7),

cr(y) = —de(v) +p kal : U

s>k

The following fundamental Lemma is essential to our study of A-Mahler summability at
torsion Mahler trees 7 € 7.

Lemma 3.4. Let A € Z, 7 € T, and set e := |C(7)| as in Definition 2.7. Let Dy, be as in
Definition 5.2.

(1) If A <0 then Dy, is an isomorphism.
(2) If X\ > 1 then im(Dy ;) has codimension 1 in ST and ker(Dy ;) = K- w™, where

the vector (w! =wW € 87 s recursively determined by the conditions
k7

0 for k> )\
(\) 7)\ for k= \;
wy, = |
,\ T _ (ke Z Z pP " JVS =7 N (47 1) for any remaining k < X;
7=0 s=k+1

(3.2)
for each ~ € C(1), where the universal Mahler coefficients Vi1 € Q are as in Propo-
sitton 2.15.

Proof. Let (di(v)) = d € S — {0}, let m € N be as large as possible such that d,,(7) # 0
for some v € C(7), and let us write (cx(77)) = ¢ := Dy -(d).

Let us first assume that d € ker(D, ;) < ¢ = 0. Then by the Definition 3.2 and our choice
of m, for each v € C(7),

0 =cm(7) = PV (M) dim(77) = di () = P P dy (V) — din (7)), (3.3)

where the second equality results from Corollary 2.16. Since (3.3) holds for every v € C(7)

simultaneously, it follows that d,,(v?"") =p" Ay =p)m (A7) for every j > 0 and for
each v € C(7y), whence none of the d,,,(y') can be zero. Since 4*° = v, we find that

e e—1 J+1 e—1
dm fyp d ( P ) m— i+1_piym m—A\)e € — m—
| = Dl H . T = plmNen i im e
j= m

J=0

which is only possible if m = A. Therefore diy(y) = 0 for every k& > X, whence D, ,
is injective in case A < 0. In case A > 1, it also follows from (3.3) with m = X that
v Prd\(v?) = v Adx(7) = w must be a constant that does not depend on v € C(vy). We
claim that if we further impose that this w = 1, then the remaining componenets of our
vector d are uniquely determined by the recursion (3.2). Indeed, if A = 1 then there are no
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more components to determine, whereas if A > 2 then we must have, for 1 <k <\ —1,

0=—dp(7y) +p kal —
di(7) — P PRAL(VP) = di(7) — P VE(7)d Z Vi (7)ds(77),
s=k+1

where the first equality is obtained from Corollary 2.16 and the second is just a rearrange-
ment. Replacing the arbitrary v in the above equation with v*’ for j = 0,...,e — 1, we find
that the telescoping sum

e—1
T =pOIY () = 3o pO I (d () = p R ()
=0
e—1 A e—1 A
- p( —kp? p/\ Z Vk1 s 7pj“) :pAZ Z p(A_k)jVZ,l’y_sleds (,Ypﬂ”rl)7
Jj=0 s=k+1 =0 s=k+1

which is clearly equivalent to the expression defining the components w(A)( ) for £ < Ain
(3.2), and where we have once again used Lemma 2.13 to obtain the last equality, since
Vi (P ') = Vi kp'=sP""" This concludes the proof of the statements concerning ker(D) ;).

Let us now prove the statements concerning im(D, ). We see from Definition 3.2 that
D, preserves the increasing filtration of S¢) by the finite-dimensional subspaces

S = {(dy(v)) € 87 | di(v) =0 for k > m and every v € C(1)} . (3.4)

In case A < 0, since D, . is injective, it must restrict to an automorphism of Sig;) for each
m € N, concluding the proof of (1). In case A > 1, since ker(D, ;) is one dimensional, it

follows that im(Dj ;) N Si(r,:) has codimension 1 in Sg%) for every m > A + 1, and therefore
im (D, ,) has codimension 1 in all of S¢"). This concludes the proof. 0J

Remark 3.5. This is a placeholder for a helpful remark on why the facts established in
Lemma 3.4 are the main cause for why the definition of twisted residues at torsion trees is
so much more complicated than in the case of non-torsion trees.

Definition 3.6. Let A € Z, 7 € T, and set e := |C(7)| as in Definition 2.7. We define the
0-section I( ~ (of the map D, of Definition 3.2) as follows. For (c,(7)) = ¢ € S, let us

write (dg(y )) =d = I ( ) € S, We set each di(7) = 0 whenever k& € N is such that
ck(y) = 0 for every v € C (7). For any remaining k € N, we define recursively

() = ZP“ Wiy e (1) =0 D0 V() (7T | for k£

s>k+1

(3.5)
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and, if A > 1, we set

) e—1
v N . . . -
SE I ARE I PNCOERUD DICHCA LG PR
7=0 s>A+1
More generally, for any w € K the w-section I( (of Dy +) is defined by setting
79 (c) if A < 0;
() AT
I, (c) = (3.7)

I/(\?Z(c) +wwW if A > 1
for every ¢ € S¢) where w is the vector defined in (3.2) for A > 1.

Remark 3.7. This is a placeholder for a helpful remark regarding why we are introducing
affine, and not just linear, sections in the above definition.

Proposition 3.8. Let A € Z, 7 € T,, and set e := |C(7)| as in Definition 2.7. Let w € K
and consider the w-section I( of Definition 5.6. Let ¢ € ST and let us write d := Iﬁ\wT)(c)
and € := D, .(d) as in Deﬁmtzon 3.2. Then

ce(y) = () whenever k # X\, for every v € C(7); (3.8)
and, in case A > 1,
N e
() = B(0) = =3y ( () =r* 32 v (7). (vpj“)> - B9)
j=1 s>A+1
Moreover, ¢ € im(D, ) if and only if c = c.
Proof. The expression (3.5) arises from a similar computation as in the proof of Lemma 3.4.

Let ¢ € S be arbitrary, and let us try (and maybe fail), to construct d € S such that
D, ,(d) = c, that is, with

() = —du(7) +P* > Via () = (3.10)
s>k
PMFARA(P) = di(v) = er(v) =P Y VE()d(7). (3.11)

Then we again have the telescoping sum

(P = 1)y iy Zzﬂ iy (PR () - i (77))

. ( ()= 3 Via (), ”p)) |

s>k+1

MH

=0
which is equivalent to (3.5) provided precisely that k& # A. Thus we see that (3.5) is a
necessary condition on the di(y) in order to satisty (3.8). In case A < 0, we know that D, ,
is an isomorphism by Lemma 3.4, in which case this condition must also be sufficient and
we have nothing more to show.
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Let us assume from now on that A > 1. Since by Lemma 3.4 the restriction of D) ; to
SC(T = {dESCT) ‘ di(v) =0 for every k < X and v € C(v)}

is injective, and since it preserves the induced filtration (3.4), it follows that pr,oD, , restricts

to an automorphism of S> \ > where pr} : S SC)\(T) denotes the obvious projection map.
Therefore the necessary condition (3.5) must also be sufficient in order to satisfy (3.8) for

k > X. Since D, ; also restricts to an automorphism of Si(;) (trivially so in case A = 1, since

C(T = {0}), it similarly follows that the necessary condition (3.7) must also be sufficient
in order to satisfy (3.8) for any k& < A also, regardless of how the d,(7) are chosen.
Now for the prescribed choice of dy(7) in (3.6), we compute

= Y V() = PV AP — da(y) = P A() — da(v),  (3.12)

where the first equality follows from the definition of ¢ = D, -(d), and the second equality
from Corollary 2.16. On the other hand, after re-indexing the sum in (3.6), evaluated at +?
instead of ~, we find that

’Y/\fpkd)\(wp) = % Z(j — e)fy*)\pj [C)\ (,ypj) _p)\ Z V)il (’ij)ds (Pypjvtl)] 7

j=1 s>A+1

and after subtracting dy(v) exactly as given in (3.6) we find that

) e—1 , , ‘ -
P () = dp(7) = =L S0 [CAW) =0t Y V() d(" )]

s>A+1

A
g s
20— b -2 vA,lws(vp)]
s>A+1
’_)/)\ e—1
—\pJ j+1
D e LRI SRS EL ERB RV SR7 RO
7=0 s> +1 s>A+1

(3.13)

with the convention that the sum Zj: is empty in case e = 1. Putting (3.12) and (3.13)
together establishes (3.9). Since ¢ = ¢ is a non-trivial sufficient for ¢ € im(D, ), by
Lemma 3.4 it must also be necessary, since im(D, ;) has codimension 1 in SC(). This
concludes the proof. O

4. MAHLER DISPERSION AND A-MAHLER SUMMABILITY

Our goal in this section is to prove Theorem 4.2: if f € K(z) is A-Mahler summable for
some A\ € Z, then it has non-zero dispersion almost everywhere, generalizing to arbitrary
A € Z the analogous result for A = 0 obtained in [AZ22b, Corollary 3.2]. In spite of the
exceptions that occur for A > 1, this will be an essential tool in our proofs that twisted
Mabhler discrete residues comprise a complete obstruction to A-Mahler summability.
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In the following preliminary result, which generalizes [AZ22h, Proposition 3.1] from the
special case A = 0 to arbitrary A € Z, we relate the Mahler dispersions of a A-Mahler
summable f € K(z) to those of a certificate g € K(x) such that f = Ay(g).

Proposition 4.1. Let f,g € K(z) and A € Z such that f = Ax(g).

(1) If oo € supp(f), then disp(f,o0) = disp(g,00) + 1, except in case X\ # 0 and
the Laurent polynomial component fo = co € K*, in which case we must have
Joo = CU/<p)\ —1).

(2) If oo # 7 € supp(f), then disp(f,7) = disp(g,7) + 1, with the convention that
oo + 1 = 00, except possibly in case that: C(T) is non-empty; and X > 1; and the
order of every pole of g in C(7) is exactly \.

Proof. (1). First suppose that {0} # 6 € Z/P is such that gy # 0, and let us write
d
9o = Z Cipjxipja
=0

where we assume that c¢;c;e # 0, i.e., that disp(gg, c0) = d. Then
d
Ax(ge) = p/\Cz‘deide — oz’ + Z(p)\cipj*1 — Cz-pj)xip],
j=1

from which it follows that 0 # fo = Ax(ge) and disp(fy, 00) = disp(Ax(gs), 0) = d + 1.
Since in this case Definition 2.11 gives that

disp(f, 00) = max {disp (fp, 00) | {0} # 6 € Z/P, fp # 0},
and similarly for disp(g,o0), we find that disp(f,oc0) = disp(g,o0) + 1 provided that the
Laurent component g, € K[z, 2] is not constant.

In any case, by Lemma 2.10, if co € supp(f) then oo € supp(g). In this case, we have
0 # foo = Ax(goo), since co € supp(f), and if A = 0 it follows in particular g, ¢ K. In case
A # 0and f, = ¢p € K*, the computation above shows that g9 = 0 for every {0} # 0 € Z/P,
and we see that g, = g0y = co/(p* — 1).

(2). Suppose 7 € supp(f), and therefore 7 € supp(g) by Lemma 2.10. We consider two
cases, depending on whether disp(g, 7) is finite or not.

If disp(g,7) =: d < o0, let a € 7 be such that a and o' are poles of g. Choose v € 7
such that 77 = «. Then 7 is a pole of o(g) but not of g (by the maximality of d), and
therefore v is a pole of f. On the other hand, 7pd+l — o' is a pole of g but not of o(g), for
if a?" were a pole of o(g) then o™ would be a pole of g, contradicting the maximality of
d. Therefore 47" is a pole of f. It follows that disp(f,7) > d+ 1. One can show equality
by contradiction: if o € 7 is a pole of f such that o’ is also a pole of f for some s > d + 1,
then each of o and a?" is either a pole of g or a pole of o(g). If a?” is a pole of g, then «
cannot also be a pole of g, for this would contradict the maximality of d, whence o must be
a pole of o(g), but then a? would have to be a pole of g, still contradicting the maximality of
d. Hence a”” must be a pole of o(g). But then o s a pole of g, which again contradicts
the maximality of d whether a is a pole of o(g) or of g. This concludes the proof that
disp(f,7) = disp(g, 7) 4+ 1 in this case where disp(g, ) < 0.
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If disp(g, 7) = oo then g has a pole in C(7) by Lemma 2.12. If f also has a pole in C(7)
then disp(f,7) = oo = disp(g, 7) + 1 and we are done. So let us suppose disp(f,7) < oo and
conclude that g has a pole of order exaetly A at every v € C(7). In this case, writing

0£C(g) = ZZ dk and ZZ

keN yeC(r keN yeC(r

as in Definition 3.1, it follows from Lemma 3.3 that D, .(d) = ¢, where d := (di(y)) and
¢ := (cx(7)). By Lemma 3.4, d = ww® for some 0 # w € K, where w») = (w,(j) () is the
unique vector specified in Lemma 3.4, which has every component w,(;\) (7) =0 for k£ > X and
each component wf\)‘) (v) = # 0 for v € C(7). O

In the next result we deduce from Proposition 4.1 that if f € K(z) is A-Mahler summable
then f has non-zero dispersion almost everywhere. For the applications in the sequel, it will
be essential for us to have these restrictions be defined intrinsically in terms of f, with no
regard to any particular choice of certificate g € K(x) such that f = A,(g).

Theorem 4.2. Let A € Z and and suppose that f € K(z) is \-Mahler summable.

(1) If oo € supp(f) and either A =0 or f, ¢ K then disp(f,c0) > 0.

(2) If X <0 then disp(f,7) > 0 for every oo # T € supp(f).

(3) If X\ > 1 and oo # 7 € supp(f) is such that either 7 € Ty or ord(f,7) # A then
disp(f,7) > 0.

Proof. Suppose f € K(z) is A-Mahler summable and let g € K(x) such that f = Ay(g).

(1) and (2). If oo € supp(f) then by Proposition 4.1 disp(f,oc) = disp(g,00) +1 > 0
provided that either A = 0 or fo ¢ K. If A <0 then disp(f,7) = disp(g,7) + 1 > 0 for all
oo # 1 € supp(f) by Proposition 4.1.

(3). Assuming that A > 1, we know by Proposition 4.1 that disp(f, ) = disp(g,7)+1 >0
for every oo # 7 € supp(f), except possibly in case 7 € T, and every pole of g in C(7) has
order exactly A\. Thus our claim is already proved for 7 € 7y5. So from now on we suppose
7 € Ty. By Lemma 2.10(7), ord(f,7) = ord(g, 7), and therefore if ord(f,7) < A, there are
no poles of g of order A anywhere in 7, let alone in C(7), so disp(f,7) = disp(g,7) +1 >0
by Proposition 4.1 in this case also. Moreover, if f has a pole of any order in C(7), then
disp(f,7) = oo > 0 by Lemma 2.12. It remains to show that if m := ord(f,7) > A then
disp(f,7) > 0. In this case, even though ord(g,7) = m > A by Lemma 2.10 it may still
happen that g has a pole of order exactly A at every v € C(7) and yet the higher-order poles
of g lie in the complement 7 — C(7), in which case Proposition 4.1 remains silent. So let

aq,...,a5 € sing(g,7) be all the pairwise-distinct elements at which g has a pole of order
m > A. Choose 3; € 7 such that Bf = o for each j =1,..., s, and let us write
gr = i: _ 4 + (lower-order terms), so that
o ) ’

u )\ m ( . . . i
= ; (Z ‘;_fggj;md] _ - _di)éj)m) + (lower-order-terms)

=0
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by Lemma 2.17. If any «; € C(7), then we already have disp(f,7) = disp(g,7) +1 > 0 by
Proposition 4.1. So we can assume without loss of generality that no «; belongs to C(7),
which implies that the (p 4+ 1) - s apparent poles C;ﬁj and o of f. of order m are pairwise
distinct, and in particular no cancellations occur and these are all true poles of f of order
m. Hence disp(f,7) > 1 also in this last case where ord(f,7) =m > A. O

Remark 4.3. The exceptions in Theorem 4.2 cannot be omitted. If A # 0 then every
Ax(357) = ¢ € K is A-Mahler summable and has disp(c,00) = 0 whenever ¢ # 0. If
A > 1 then for any v € C(7) with ¢(7) =: e > 1 one can construct (cf. Section 5.3)
g= 2221 S e (2 — A?") =k such that disp(Ax(g),7) = 0. The simplest such example is
with A, v,e =1 (and p € Z>, still arbitrary):

1 _ p—1 1 i p—1 i
fi=A ( 1 ) p 1 _ pVLl(l) 1 +val,1(9y) _ Z Cp

—1 w—1 z-—1 r—1 = = i

which is 1-Mahler summable but has disp(f,7(1)) = 0. More generally, all other such
examples for arbitrary A > 1 and 7 € T, of f € K(z) such that f, is A-Mahler summable
but disp(f, 7) = 0, arise essentially from the basic construction f, := A,(g,) with

Zwa’“

k=1 veC(T)

for an arbitrary constant 0 # w € K and the vector w») = (w,(j) (7)) defined in Lemma 3.4.

5. TWISTED MAHLER DISCRETE RESIDUES

Our goal in this section is to define the A-Mahler discrete residues of f(z) € K(z) for
A € Z and prove our Main Theorem in Section 5.4, that these A-Mahler discrete residues
comprise a complete obstruction to A-Mahler summability. We begin with the relatively
simple construction of A-Mahler discrete residues at oo (for Laurent polynomials), followed
by the construction of \-Mahler discrete residues at Mahler trees 7 € T = To U T, (see Def-
inition 2.7), first for non-torsion 7 € Ty, and finally for torsion 7 € T, in increasing order of
complexity, and prove separately in each case that these A-Mahler discrete residues comprise
a complete obstruction to the A-Mahler summability of the corresponding components of f.

5.1. Twisted Mahler discrete residues at infinity. We now define the A-Mahler discrete
residue of f € K(z) at oo in terms of the Laurent polynomial component f., € K[z, z™!] of
fin (2.1), and show that it forms a complete obstruction to the A-Mahler summability of
foo- The definition and proof in this case are both straightforward, but they provide helpful
moral guidance for the analogous definitions and proofs in the case of A-Mahler discrete
residues at Mahler trees 7 € T.

Definition 5.1. For f € K(z) and X € Z, the \-Mahler discrete residue of f at oo is the

vector
dres)(f, 00) = <dres,\(f, )962/7) @ K

0ez/P
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defined as follows. Write foo = > 4.5 /P fo as in Definition 2.2, and write each component

fo = Z?io @™ with p i whenever i # 0 (that is, with each i initial in its maximal

P-trajectory 6), and where hy = 0 if f, = 0 and otherwise hy € Zs( is as large as possible
such that c;n, # 0. Then we set

ho :

) fA=0;

d =0 p ey, for 64 {0 d d =0 !

o =P Dy ey R0 0w dfo =0

Proposition 5.2. For f € K(x) and A € Z, the component f., € Klx,z7'| in (2.1) is
A-Mahler summable if and only if dresy(f,00) = 0.

Proof. By Lemma 2.3, f, is A-Mahler summable if and only if fy is A-Mahler summable for
all € Z/P. We shall show that fp is A-Mahler summable if and only if dresy(f, 00)g = 0.
If A # 0 then fry = A,\(pfo_l) is always A-Mahler summable, whilst we have defined
dresy(f,00)(o = 0 in this case. On the other hand, for A = 0, fry = dresy(f,00)0},
and disp(f{o},00) = 0 if froy # 0, whilst if froy = 0 then it is clearly A-Mahler summable.
By Theorem 4.2 in case A = 0, and trivially in case A # 0, we conclude that fro, is A-Mahler
summable if and only if dresy(f,00)s0y = 0.

Now let us assume {0} # 0 € Z/P and let us write fy = Y-, cipa® € Kz, 27y, for
the unique minimal ¢ € 0 such that p ti. If fy = 0 then we have nothing to show, so suppose
fo # 0 and let hy € Z>o be maximal such that ¢, n, # 0. Letting A&") = pMo™ —id as in
Lemma 2.17, we find that

he he
f_)\ﬂ = f9 + Z Ag\hefj) (Cipj xip3> _ Zp)\(hgfj)cipjxiphe 10= dI‘eS)\(f, OO)@ . xiphg .
Jj=0 7=0

By Lemma 2.17, we see that fy is A-Mahler summable if and only if f)\ﬂ is A-Mahler sum-
mable. Clearly, fyy = 0 if and only if dres(f,00)s = 0. We also see that disp(fyg,c0) = 0 if
dres)(f,00)s # 0, in which case ﬁ\ﬂ cannot be A-Mahler summable by Theorem 4.2, and so
fo cannot be A-Mahler summable either. On the other hand, if fyy = 0 then fj is A-Mahler
summable by Lemma 2.17. O

Remark 5.3. The factor of p*¢ in the Definition 5.1 of dresy(f, c0)y for {0} # 6 € Z/P plays
no role in deciding whether f., is A-Mahler summable, but this normalization allows us to
define uniformly the fy 4 = dresy(f, o) - 2" as the f-component of the fy € K(z) in the
A-Mahler reduction (1.2). For every {0} # 6 € Z/P, we set hy(f) to be the hy defined in the
course of the proof of Proposition 5.2 in case fy # 0, and in all other cases we set hg(f) := 0.

5.2. Twisted Mahler discrete residues at Mahler trees: the non-torsion case. We
now define the A-Mahler discrete residues of f € K(z) at non-torsion Mahler trees 7 € 7 in
terms of the partial fraction decomposition of the component f, € K(z), in Definition 2.5,
and show that it forms a complete obstruction to the A-Mahler summability of f,.

We begin by introducing some auxiliary notion, which already appeared in [AZ22b], but
with an unfortunately different choice of notation.
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Definition 5.4. Let 7 € 7y, v € 7, and h € Z>¢. The bouquet of height h rooted at  is
Br(v) :=={a €T |a” =~ for some 0 <n <h}.

Lemma 5.5 (cf. [AZ22b, Lem. 4.4)). Let 7 € Ty and S C 7 be a finite non-empty subset.
Then there exists a unique v € T such that S C By (y) with h as small as possible.

Proof. This is an immediate consequence of the proof of [AZ22b, Lem. 4.4], whose focus and
notation was rather different from the one adopted here, so let us complement it here with
an alternative and more conceptual argument. As explained in [AZ22b, Remark 2.7 and
Example 2.9], we can introduce a digraph structure on 7 in which we have a directed edge
a — & whenever of = ¢, resulting in an infinite (directed) tree. The “meet” of the elements
of S is the unique v € 7 such that S C (,() with h as small as possible. O

Definition 5.6 (cf. [AZ22b, Def. 4.6]). For f € K(z) and 7 € supp(f) N Ty, the height of
f at 7, denoted by ht(f,7), is the smallest h € Z>( such that sing(f,7) C Bn(7y) for the
unique 7 € 7 identified in Lemma 5.5 with S = sing(f,7) C 7. We write 5(f,7) := Bn(7),
the bouquet of f in 7. For a € B(f, T), the height of a in f, denoted by n(«|f), is the unique
0 < n < h such that o®" = 7.

In [AZ22Db, Def. 4.10] we gave a recursive definition in the A = 0 case of Mahler discrete
residues for non-torsion 7 € 7,. Here we provide a non-recursive definition for A € Z
arbitrary, which can be shown to agree with the one from [AZ22b] in the special case A = 0.

Definition 5.7. For f € K(z), A € Z, and 7 € Ty, the A-Mahler discrete residue of f at T
of degree k € N is the vector
c Pk

dres\(f, 7, k) = (dres)\(f 7, k) >

aET

defined as follows.
We set dresy(f, 7, k) = 0 if either 7 ¢ supp(f) or k > ord(f,7) as in Definition 2.9. For

7 € supp(f), let us write
Ck
5.1
=2 2 G (5.1)

keN aeT

We set dresy(f, 7, k)o = 0 for every k € N whenever a € 7 is such that either o ¢ B(f,7) or
for a € B(f, ), such that n(«a|f) # h, where h := ht(f, 7) and B(f, 7) are as in Definition 5.6.

Finally, for the remaining o € B(f,7) with n(«|f) = h and 1 < k < ord(f,7) =: m, we
define

dres)(f, 7, k)a ZZp’\”V,m a)cs(af"), (5.2)

s=k n=0

where the Mahler coefficients V}’, () are as in Proposition 2.15.

Proposition 5.8. For f € K(z), A € Z, and T € Ty, the component f, is \-Mahler summable
if and only if dres)(f,7,k) = 0 for every k € N.
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Proof. The statement is trivial for 7 ¢ supp(f) < f- = 0. So let us suppose 7 € supp(f),
and let h := ht(f,7), m := ord(f, 7), and n(«a) := n(«a|f) for each a € B(f, 7). Writing f, as
n (5.1), let us also write, for 0 < n < h,

h
Fim Z Z sothat  fr=> f".
n=0

k=1 aef(f,1)
n(a)=n

By Lemma 2.17, for each 0 < n < h we have

hn Zs kan a)c (ap)
S

k=1 acB(f,r)T
n(e)=h

and therefore

m An m s i
n —n _n p o— VnOZCS lo%d
AE\)(fT(h )):_fT(h )+Z Z > k Vk, (a)es( ).

(= a)F

It follows from the Definition 5 7 that

n dres f T, k:
_fT-|- A() (=) A : 5.3
By Lemma 2.17, fr, — f, is A-Mahler summable, and therefore f, is A-Mahler summable if
and only if f) , is A-Mahler summable. If dresy(f, 7, k) = O forevery 1 < k < m, then f,, =0
and therefore f, is A-Mahler summable. On the other hand, if some dres,(f, 7, k) # 0, then
0 # fr- has disp(fr,,7) = 0 (see Definition 2.11), whence by Theorem 4.2 f, could not
possibly be A-Mahler summable, and therefore neither could f,. This concludes the proof
that f. is A-Mahler summable if and only if dres,(f, 7, k) = 0 for every [ € N. O

Remark 5.9. For f € K(x) and 7 € supp(f)N 7o, the element fy ; in (5.3) is the 7-component
of the fy € K(x) in the A\-Mahler reduction (1.2).

5.3. Twisted Mahler discrete residues at Mahler trees: the torsion case. We now
define the A-Mahler discrete residues of f € K(z) at torsion trees 7 € T, (see Definition 2.7)
in terms of the partial fraction decomposition of the component f. € K(x), in Definition 2.5,
and show that it forms a complete obstruction to the A\-Mahler summability of f.. The
definitions and proofs in this case are more technical than in the non-torsion case, involving
the cycle map D, ; of Definition 3.2 and its w-section I ) from Definition 3.6, for a particular
choice of constant w € K associated to f, which we Construct in Definition 5.11.

We begin by recalling the following definition from [AZ22b], which is the torsion analogue
of Definition 5.6.

Definition 5.10 (cf. [AZ22b, Def. 4.6]). For 7 € T} and « € 7, the height of «, denoted by
n(a), is the smallest n € Zsq such that a?” € C(7) (cf. Definition 2.7). For f € K(z) and
7 € supp(f) N Ty, the height of f at T is

ht(f, 7) := max{n(a) | a € sing(f,7)},
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or equivalently, the smallest h € Zsg such that o?" € C(7) for every pole a of f in 7.

The following definition will allow us to use the correct w-section I/\ from Definition 3.6
in our construction of A-Mahler discrete residues in the torsion case.

Definition 5.11. For f € K(z) and 7 € supp(f) NT;, let us write

-y

keN aeT

For A\ € Z, we define the residual average wy (f) € K of f (relative to A and 7) as follows.

If A <O0orif h:=ht(f,7) =0 (cf. Definition 5.10), we simply set wy,(f) = 0. In case
both A\,h > 1, let 7, := {a € 7 | n(a) = h} be the set of elements of 7 of height h. Let
us write ¢ = (cg(7)), for v ranging over C(7) only, and let (d,(vo) (7)) = d© = I)(\?l(c) as in
Definition 3.6 and (¢,(7)) = € = Dy ,(d®), as in Definition 3.6. Then we define

wrnelf) = e _ph y ZZZp*”Vin “ey(a)

OzETh s>\ n=0
)\(h 1)

DD Vi @) +dP(), (54)

YeC(r) s>\

where the universal Mahler coefficients V3 , € Q are defined as in Section 2.5.

The significance of this definition of the residual average wy -(f) and our choice of nomen-
clature is explained in the proof of Proposition 5.17 below (with the aid of Lemma 5.16). We
are now ready to define the A-Mahler discrete residues at torsion Mahler trees. In [AZ22b,
Def. 4.16] we gave a recursive definition of Mahler discrete residues for torsion 7 € 7, in
the A = 0 case. Here we provide a less recursive definition for A € Z arbitrary, which can
be shown to agree with the one from [AZ22b] in the special case A = 0. This new definition

is only less recursive than that of [AZ22b] because of the intervention of the map Ii“}i), for
which we have not found a closed form and whose definition is still essentially recursive.

Definition 5.12. For f € K(z), A € Z, and 7 € T with 7 C K}, the A-Mahler discrete
residue of f at 7 of degree k € N is the vector
dres\(f, 7, k) = (dresx(f 7, k) > € @K
aET

aET

defined as follows.
We set dresy(f, 7, k) = 0 if either 7 ¢ supp(f) or k > ord(f,7) as in Definition 2.9. For

7 € supp(f), let us write
Ck
9.9
=20 Gy (5.5)

keN aeT
We set dresy(f, 7, k) = 0 for every k € N—{A} whenever a € 7 is such that n(«) # h, where
h :=ht(f,7) and n(a) are as in Definition 5.10. In case A > 1, we set dresy(f,7,A\)o = 0
also whenever n(a) ¢ {0, h}.
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In case h = 0, so that sing(f,7) C C(7), we simply set

dres\(f, 7, k), == cx(7)
for every 1 < k < ord(f,7) and v € C(7). In case h > 1, let us write ¢ = (cx(7y)) for v
ranging over C(7) only, and let (dx(7)) =d :=Z w)(c) as in Definition 3.6, where w := wy (f)

AT

(cf. Definition 5.11), and (¢x(7)) = € := D,\ﬁT(d) as in Definition 3.2. For o € 7 such that
n(a) = h and for 1 < k < ord(f,7) =: m, we define

h—1

dresy(f Zm: ZP’\nd ala)es( Oép )

s=k n=0
Ath=1) kah Lokt (68 (aph+e_1> + d <o/’h+€_1>> . (5.6)

In case A > 1, for v € C(7) we set

J=1 s>A+1
(5.7)

Remark 5.13. The Definition 5.12 can be expressed equivalently in ways that are easier to
compute, but which require a lot of hedging. We cannot improve on the definition in case
h = 0; so let us address the case h > 1. The different ingredients used in Definition 5.12
are best computed in the following order. In every case, one should first compute the vector
d©® .= Z/(\?l(c) of Proposition 3.8. Every instance of ¢ in (5.4) and in (5.6) can (and should)
be replaced with ¢,, with the single exception of ¢, (if it happens to occur), which should
be rewritten in terms of the ¢, and d\” using (3.6). There is no need to find € by applying
D, . to anything. Having made these replacements, and only then, one should then compute
the residual average w from Definition 5.11. If this w happens to be 0 then we already have
all the required ingredients to compute our discrete residues. Only in case w # 0, we then
proceed to compute the vector w of Lemma 3.4, and by Definition 3.6 we can replace the
ds in (5.6) with d” 4+ w - w, all of which have already been computed, and now we are
once again in possession of all the required ingredients.

We next present several preparatory Lemmas that will aid us in streamlining our proof of
Proposition 5.17 below that the A-Mahler discrete residues just defined comprise a complete
obstruction to the A-Mahler summability of f, for 7 € T,. We hope that the reader who,
like us, finds the above Definition 5.12 painfully complicated, especially in comparison with
the relatively simpler Definition 5.7 in the non-torsion case, can begin to glimpse in the
statements of the following preliminary results the reasons for the emergence of the additional
ingredients in Definition 5.12 that are absent from Definition 5.7. This is why we have chosen
to present them first, and postpone their proofs until after their usefulness has become
apparent in the proof of Proposition 5.17.

Lemma 5.14. Let f € K(x), A € Z, and 7 € supp(f,7) N T¢. If ht(f,7) =0 then f. is not
A-Mahler summable.
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Lemma 5.15. Let A € Z and T € T, and set e :== |C(7)| as in Definition 2.7. Let f € K(x),
and let us write the cyclic component

keN yeC( )

as in Definition 3.1, and let us write ¢ = (cx(7y)) € 8. Let w € K be arbitrary, and let us
write d = (dg(7)) = Iin)(c) as in Definition 5.6 and € = Dy (d) as in Definition 3.2. Set

dk Cm Ck +-dk( )
Z Z and Z Z Z GF (5.8)

keN 'yEC(T keN yeC(r) =1

Then
G if A<0;
~eC(T)
Moreover, for any h > 1, writing 7, == {a € 7 | n(« ) = h}, we have

—ephte—1 ~ h+e—1 h+e—1
Zs>k VZ h—lak e (CS <ap ‘ > + ds <ap ‘ >>

CEL (5.10)

-2

keN aeTy,

Lemma 5.16. Let A\ > 1, h > 1, f. € K(x),, and 7 € supp(f) N T, such that ord(f,7) =
and sing(f,7) Cm, ={a et | nla)= h} so that we can write

-y —

k=1 aETh

If f, is \-Mahler summable then all the elements a~*¢x() are equal to the constant

o= e
| h’ aET)

which is their arithmetic average. Letting e := |C(7)|, we have || = (p" — p")e.

Proposition 5.17. For f € K(x), A € Z, and 7 € T,, the component f, is \-Mahler
summable if and only if dres\(f,7,k) = 0 for every k € N.

Proof. The statement is trivial for 7 ¢ supp(f) < f» = 0. If ht(f,7) = 0 then 0 # f, cannot
be A-Mahler summable by Lemma 5.14, whereas in this case we defined dres(f, 7, k), = cx(7)
in Definition 5.12, and we obtain our conclus10n vacuously in this case.

From now on we assume 7 € supp(f), and let h := ht(f,7) > 1, m = ord(f,7), and
w = wy(f). Writing f; asin (5.5), let 7,, :== {o € 7 | (@) = n} for n € Z>( and let us also

write X
=Y S ot =20

k=1 aETn
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The same computation as in the proof of Proposition 5.8 yields

h—1 h—1 )\n m
r n s Z Vi n( CS ap
fA,TIZfTJFnZ:OA(A)( ZZ - :zc—ozk) +Z

k=1 acmy k=1 ’YEC(T)

(5.11)
Let us now write, as in Definition 5.12, ¢ = (cx(7)) for v ranging over C(7) = 7y only,
(dr(y)) =d = I(w)(c) and (¢x(y)) = € := Dy ,(d). Writing gy and g; as in (5.8), it follows
from Lemma 5.15 and Definition 5.12 that

For = Far = Aa(g0) + AL V(1) = Z Z W. (5.12)

k=1 aeT

By a twofold application of Lemma 2.17, to (5.11) and to (5.12), we find that
fr is A-Mahler summable <= j?,\,T is A-Mahler summable <—- f,\,T is A-Mahler summable.

On the other hand, we see from (5.12) that f\, = 0 if and only if dresy(f, 7, k) = 0 for every
k € N. Therefore we immediately conclude that if dresy(f, 7, k) = 0 for every k € N then
fr is A-Mahler summable. Moreover, in case A < 0, if f, is A-Mahler summable, so that
f)\’T is also \-Mahler summable, then we must have f; A+ = 0, for otherwise we would have
disp(fi+, 7) = 0, contradicting Theorem 4.2(2). This concludes the proof of the Propostion
in case A < 0.

It remains to prove the converse in the case where A > 1: assuming f, is A-Mahler
summable, we must have dresy(f,7,k) = 0 for every k € N. By Proposition 3.8, we must
have ¢ = ¢, and therefore dresy(f, 7, k), = cx(y) — éx(y) = 0 for every v € C(7), whence
sing(for,7) C 7, by the Definition 5.12 of dresy(f, 7, k). Moreover, if we had f\, # 0,
contrary to our contention, then we would have disp(fy,,7) = 0, and by Theorem 4.2(3)
this can only happen in case ord(f),,7) = A. So we already conclude that dresy(f,7,k) =0
for every k > X if f, is A-Mahler summable. If we can further show that dres,(f,7,A\) =0
also, then this will force ord(fy,,7) # X and we will be able to conclude that actually
dresy(f, 7, k) = 0 for every k € N, as we contend, by another application of Theorem 4.2.

Thus it remains to show that if f, is A-Mahler summable then dresy(f, 7, A) = 0, which
task will occupy us for the rest of the proof. We already know that dres,(f, 7, k) = 0 for every
k > X and dresy(f, 7, \), = 0 for every v € C(7), and therefore fy , satisfies the hypotheses
of Lemma 5.16 by (o 12) and the Definition 5.12. So let us write ¢x(a) := dres\(f, 7, k), as
in Lemma 5.16, so that

f)xT ZZ Ck_a

k=1 OéE’Th

and compute the arithmetic average @ of the elements a=*¢,(«) for « ranging over 73, which
must be equal to a=*é,(a) for each o € 73, by Lemma 5.16. Firstly, we see that

B (&) - gy E L 5wt

aETH s>\ n=0 aGTh s>\ n=0
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since Vy (o) = Vg, - a*~*P" by Lemma 2.13. Secondly, we find that in the remaining portion
of the average of a=*¢\(a) = a~*dresy(f, 7, \)o for a ranging over 7,,

1 _ _ _ emhte—1 ~ h+e—1 h+4e—1
m Z o™ <_p/\(h Y ZVi,h—IO‘)\ o (Cs (Oép ) + d, <ap >>>

o 22 (()7) ()7 e (())).
(5.13)

the summands depend only on o" = v € C(7). For each v € C(7), the set {a € 7, | a®" =~}
has p" — p"~! elements: there are (p — 1) distinct p'"-roots of v that do not belong to C(7),
and then there are p"~! distinct (p"~1)'™ roots of each of those elements. Therefore the
expression in (5.13) is equal to the simpler

(C(y) +ds(v)),

~veC(T) s2>A
whence the average

v \m!za_k _p—p’” ZZZPMV “ele”)

aETH aETh n=0 s>\

(V) + ds(7)))- (5.14)

'yEC ) s>\

Note that this is not necessarily the same as the similar expression for the residual average
wx.-(f) from Definition 5.11, which was defined with respect to (d,(go) (7)) =d® = I/(\?Z(c) as

w)\,’r(f) = p _ph 1 Z Z Zp)\nv sp"cs(apn>

aETh s>\ n=0
Z ZVM 170 @)+ dP ().

~vEC(T) 82X

Ah—1)

And yet, dy(v) = d”(v) for every s > A and v € C(r) by Proposition 3.8 and

dr(7) = wr-(f) - +d0 ()
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for each 7y € C(7) by the Definition 3.6 of Ii?l and of I)(\wT) with w = wy ,(f). By Corollary 2.16,
Vﬁ’h_l = p~ "= "and therefore we find from (5.14) that

W= o 0 ZZZPMV‘R” - Cs(@p)

p —p OzGTh n=0 s>\
A=) . A=) .
- > Vi @)+ () - . D Ve @0+ +d (7))
vyeC(T) s>A+1 ’YGC(T)
= Ath— 1 =w—w=0.
vEC(T)
Since we must have ¢y () = dresy(f, 7, \)a = @@ in (5.14) for each o € 75, by Lemma 5.16,
it follows that dresy(f, 7, A) = 0, concluding the proof of Proposition 5.17. D

Remark 5.18. For f € K(z) and 7 € supp(f) N T, the element fy. in (5.12) is the 7-
component of the f\ € K(z) in the A-Mahler reduction (1.2).

We conclude this section by providing the proofs of the preliminary Lemmas that we used
in the proof of Proposition 5.17.

Proof of Lemma 5.1/. Tt suffices to show that for any g € K(z) such that g, # 0 we have
ht(Ax(g),7) > 1. So let us write m := ord(g,7), h := ht(g,7), 7, := {a@ € 7 | n(a) = n} for
n e Z207 and

040 =33 % —

k=1 n= OOéETn

Then
PV (@)dm(a?)

(z —a)m

Ax(g) = Z

QETH 1

and since p*V;? (a) = p* ™™ P™ by Corollary 2.16 and at least one d,,(a”) # 0 for some
a € Tp41 by assumption, we conclude that Ay(g) has at least one pole in 75,41 and therefore
ht(Ax(g9),7) = h+ 1> 1, as claimed. O

Proof of Lemma 5.15. Tt follows from (2.4) and Lemma 3.3 that

pZmeCv) s(77)
YN Uy y SR ),

keN vyeC(r) keN ~eC(r) =1

+ (lower-order or lower-height terms),

To see that

PP VG A(P) = G (E(7) + di(7)),

s>k
note that by Lemma 2.13

Vks,l(C;’Y) = (C; )k P Vm = Ckivkﬂ(’Y)
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for every s > k simultaneously, and
P V(7)) = (7) + di(y)
s>k

by the definition of ¢ = D, ,(d) and that of the map D, , in Definition 3.2. For v € C(7)
and 1 <i<p—1,1let S(v,i):={aerT| o't = ¢iv}. Then 7, is the disjoint union of the
sets S(7,1), and it follows from Lemma 2.17 that, for each vy € C(7) and 1 <i <p—1,

oh1 (Z gak(ik(_); di(y ) Z Z s>/€ Vkihlix)EZZ)CS( v) + ds(V)). (5.15)

keN keN aeS(v,i)

For each a € S(7,1) < o' = CZ’;% we compute

aph+c—1 _ (aph_1>:l?e _ (C;’y)pe . and C;S _ (Oéph_l’}/il)s _ OgSph_l(lipe),
and therefore we can rewrite each summand

Vi (@G @ (3) + do(1) = Vipal@)a™ ™07 (& (o) 4 d, (7))
By Lemma 2.13, V2, (o) =V}, - a*=" " and therefore

h—1

h—1 e h—1 e h+e—1
s sp (1-p®) _ wrs . k—sp . 8P 1-p°) _ s k—sp
‘/k,h71<a>a = Vk,hq « «Q = Vk,hqa .

Hence (5.15) is equal to

> 2

keN aeS(v,i)

k— h+e—1 ~ h+e—1 h+e—1
Zszk Vz,h—la ° <CS (ap + ds a?

(z —a)* ’

and our result follows by summing over v € C(y) and 1 <i <p— 1. O

Proof of Lemma 5.16. First of all, |7,| = (p" — p"~!)e because there are e elements in C(7),
each of which has (p — 1) distinct p*™ roots (of height 1) that do not belong to C(7), and
each of these latter elements has p"~! distinct (p"~1)™ distinct roots — it follows from the
Definition 5.10 that o € 7 has height n(a) = h if and only if « is a (p"~1)™ root of an
element of height 1. Moreover, the elements a~*¢y(a) are all equal to one another if and
only if they are all equal to their arithmetic average. So it remains to show that a=*¢,(a)
is independent of «.

Now let g, € K(x), such that f. = Ax(g,). By Lemma 2.10(7), ord(g, 7) = ord(f,7) = A,

SO we can write
h—1

3 3 PR

k=1 n= OaETn

because if g had a pole in 7, for some n > h then Ay(g.) = f. would have a pole in
Tni1, contradicting our assumptions. Let d = (dg(7y)) for v ranging over C(7) only. Since
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Ax(g-) = fr has no poles in C(7), we must have d € ker(D, ;) by Lemma 3.3. In particular,
for each v € C(7) we must have

0=cx(7) = (Drr(d)ry = —dr(7) + > PMV31(7) =7 da(v7) — da(v),
s>A
since ds(y) = 0 for every s > X and v € C(7) and V) (v) = p~*4*#* by Corollary 2.16,
and therefore v *dy(vy) = @ is a constant that does not depend on v € C(7). This is the
base case n = 0 of an induction argument showing that a~*d)(a) = @ is independent of
a €1, for 0 < n < h—1. Indeed, it follows from Lemma 2.17 and our assumption that

sing(f,7) NC(7) = () that

— A AV —dy(«
(Z Z d_a ) Z Z ilaes x—a))A ( )—I— (lower-order terms)

n=0 aGTn n=0 a€Tn41

Z Z (@) d\(?)) = dife) + (lower-order terms)

—
o (x — )
= Z ala + (lower-order terms), (5.16)
(x — )
aETh
where the second equality follows from the computation V/\’\J( ) = p~*a*P* in Corollary 2.16.

In case h = 1 we have already concluded our induction argument. In case h > 2, we proceed
with our induction argument and find from (5.16) that we must have

o - ()" dy(a?)) — dy(a) = 0 — a My (o) = (o) dy(a?) = @

for each o € 7,,,1 whenever n +1 < h — 1, since o € 7, for such an «a, concluding our
induction argument. Finally, since dy(«) = 0 for a € 73,, we find again that

ax(a) = ot - ((a?)dy(a?)) = '@
for o € 7, since dy(a) = 0 and o € 73,_; for such «, whence each dy(a®) = o @. O

5.4. Proof of the Main Theorem. Let us now gather our earlier results into a formal
proof of the Main Theorem stated in the introduction, that the A-Mahler discrete residue at
oo constructed in Definition 5.1 for the Laurent polynomial component f.,, together with
the \-Mahler discrete residues at Mahler trees 7 € T constructed in Definition 5.7 for non-
torsion 7 € Ty and in Definition 5.12 for torsion 7 € 7T, , comprise a complete obstruction to
the A-Mahler summability problem.

Theorem 1.1. For A\ € Z, f € K(x) is A-Mahler summable if and only if dresy(f,00) =0
and dresy(f,7,k) = 0 for every 7 € T and every k € N.

Proof. Let f € K(x). By Lemma 2.1, f is A-Mahler summable if and only if both f,, and
fr are Mahler summable. By Proposition 5.2, f, is A-Mahler summable if and only if
dres(f,00) = 0. By Lemma 2.6, fr is A-Mahler summable if and only if f. is A-Mahler
summable for each 7 € T = 7y U T,.. By Proposition 5.8 in the non-torsion case 7 € Ty,
and by Proposition 5.17 in the torsion case 7 € T, f, is A-Mahler summable if and only if

dresy(f, 7, k) = 0 for every k € N. O
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5.5. Mahler reduction. We can now define the »-Mahler reduction fy of f € K(z) in (1.2),
in terms of the local reductions constructed in the proofs of Proposition 5.2, Proposition 5.8,
and Proposition 5.17:

Rom Y Pt Y= 3 dre(fecly- a4 333 S (s

0cZ/P T€T 0cZ/P keN 7€T aeT

We refer to Remark 5.3, Remark 5.9, and Remark 5.18 for more details.

In the un-twisted case where A\ = 0, we had already defined 0-Mahler discrete residues
in [AZ22b], where we proved that they comprise a complete obstruction to what we call here
the 0-Mahler summability problem. That the dres(f,co) of [AZ22b, Def. 4.1] agrees with
the dresg(f, 00) of Definition 5.1 is immediately clear from the formulas. In contrast, the
Mahler discrete residues dres(f, 7, k) at non-torsion Mahler trees 7 € T in [AZ22h, Def. 4.10]
were defined recursively, using the Mahler coefficients V}?, () only, whereas here we provide
closed formulas using the full set of Mahler coefficients V;?, with n > 1 for dreso(f, 7, k)
in Definition 5.7. Similarly, the Mahler discrete residues at torsion Mahler trees 7 € T,
in [AZ22b, Def. 4.16] are defined recursively and in terms of an auxiliary K-linear map
(see [AZ22b, Def. 4.15]), whereas here we provide a closed formulas in terms of a different”
auxiliary K-linear map IO(?T) in Definition 5.12. It is not clear at all (to us) from their
respective definitions that the dres(f, 7, k) of [AZ22b] should agree with the dresy(f, T, k)
defined here. And yet, they do.

Proposition 5.19. The Mahler discrete residues dres(f,T,k) of [AZ22b] coincide with the
0-Mahler discrete residues dresy(f, 7, k) in Definitions 5.7 and 5.12.

Proof. 1t is clear from [AZ22b, Defs. 4.10 and 4.16] and Definitions 5.7 and 5.12 that the
support of both vectors dres(f, 7, k) and dresy(f, 7, k) is contained in the set of a € 7 such
that n(a|f) = ht(f,7) in the non-torsion case (see Definition 5.6) and such that n(a) =
ht(f,7) in the torsion case (see Definition 5.10). In the torsion case 7 € T, such that
ht(f,7) = 0, it is immediately clear from the definitions that dres(f, 7, k) = dreso(f, 7, k),
so we can assume without loss of generality that either 7 € 7 or ht(f,7) > 1. In [AZ22b,
Equation (4.16)] we constructed a Mahler reduction

szrei]:;k

keN aeT

such that f, — f is Mahler summable (see [AZ22b, §4.4]), whereas here we have constructed
an analogous fo, in (5.17) with the same property that f,, — f; is 0-Mahler summable.
Therefore

Fow = f2) = (Fr = f2) = Jor — [ = ZZ dresy(f, T, k:m - O(éi)res(f, 7, K)o
keN aeT

is 0-Mahler summable. If we had fo, # f, then disp(fo, — fr,7) = 0 would contradict
Theorem 4.2, so we conclude that dresy(f, 7, k) = dres(f, 7, k) forevery 7 € T and k € N. O

0 of

e

>The auxiliary K-linear map in [AZ22b, Def. 4.15] is essentially a truncated version of the map Ié
Definition 3.6, in terms of the latter of which we defined IS?T) (cf. Corollary ?7).
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6. DIFFERENTIAL RELATIONS AMONG SOLUTIONS OF FIRST-ORDER MAHLER EQUATIONS

Let us now consider the differential structures that we shall consider for the most imme-
diate applications of our A-Mahler discrete residues. We denote by

d
0:=xr—
xdaj

the unique K-linear derivation on K(z) such that d(x) = x. We immediately compute that
pood = 0od as derivations on K(z). In order to remedy this, one can proceed as proposed
by Michael Singer (see [DHR18]), to work in the overfield K(z,logz) and introduce the
derivation

d
0 =xlogr— =logz - 0.
dx

We insist that the notation logx is meant to be suggestive only: here logx is a new tran-
scendental element satisfying o(logz) = p-logz and d(logx) = 1. Using these properties
alone, one can verify that o 0 = 0 0§ as derivations on all of K(z,logx).

The following computational result is a Mahler analogue of [AZ22a, Lem. 3.4], and of
an analogous and more immediate computation in the shift case, which occurs in the proof
of [Arr17, Cor. 2.1]. We wish to emphasize that the computation is actually quite straight-
forward in the case of \-Mahler discrete residues at non-torsion Mahler trees 7 € 7y, and in
contrast, rather involved for torsion Mahler trees 7 € T, to to the additional ingredients
involved in that case.

Lemma 6.1. Let 0 #a € K(z). For A\>1, 7€ T, and a € T,

dresy (aH (%> T, A)a = (=DM (A = Dl - dres, (@ T, 1>a €Q-a

a

Proof. Let a = b][,cx( — @)™, where 0 # b € K and m(«) € Z, almost all zero, and let

S URPUND DR SR phL)

a r—«
acKX ack acKX

Then we compute, using a similar induction argument as in [AZ22a, Lem. 3.4], that for
7€ T and \ > 1:

)\_1 \ A A
P, = Z (=177 (A = Dietm(a) + (lower-order terms) = Z Z M (6.1)

(z —a)?

aEeT

where the notation cgj‘] («) is meant to let us directly apply the definitions of A-Mahler discrete

residues of degree A of 9*71(f) and more easily compare them with one another. In fact, as

we shall see, we will only need to know that c[ll](oz) = a - m(a), and more generally

M) = (=11 (A = Dlatm(a) = (=) A = Dl (). (6.2)
We shall also repeatedly use the results from Lemma 2.13 and Corollary 2.16, that
V() = V0 = et

without further comment.



TWISTED MAHLER DISCRETE RESIDUES 31

For 7 € supp(f) N 7o, let h := ht(f,7), and let a € B(f,7) such that n(a|f) =
(cf. Definition 5.6). Then by Definition 5.7

h h
dresy (1 (£), 7, Na = Yo"V (@) (@) = Y pMp a0
n=0 n=0
h
= (DM =1)lk? Zm(apn) = (=DM = Dl tdresy (f,7,1)q € Q- .
n=0

For 7 € supp(f) NT,, let us first suppose ht(f,7) = 0 as in Definition 5.10, and compute
immediately for v € C(7),

dresy (0 (f), T, A)y = c/\)‘] () = (=D A =Dy 'm(y) = (=) A=1) Iy dres, (f, 7, 1),,

which clearly belongs to @ - 4*. On the other hand, if A := ht(f,7) > 1, we compute for
~v € C(7) using (5.7)

A€ . ) A€ ) . )
dresy (971 (f), 7, N)y = = Zwﬂc&” () = L3 A ) A= ) m”)

= (—1)* v” Zm 1M A = 1) Mdresy (f, 7, 1), € Q-4 (6.3)

Before computing the a-component of dresy(0*~1(f),7,A) for a € 7 such that n(a) = h,
we must first compute a few preliminary objects (cf. Remark 5.13). Consider the vector

dW = I/(\?Z(c[’\]) as in Definition 3.6, and let us compute in particular as in (3.6):

,_|

N\ €~ )\ e—1

BI0) =5 2 +1=epy ") = L F =™ () A=) )
/\efl ‘
= (- (- > G+ 1=em(y”) = (=)= D d (). (6.4)

The A-components of ¢ := D, ,(d™) are simply given by

() = y) = dresy (3 1(f), 7, A,

by Proposition 3.8 and (5.7). Therefore, for each v € C(7),

D\]( )+d[>\}( ) ( 1)>\ ! 'P)/)\ 2‘5: ] —6 (6.5)

With this, we next compute the residual average (cf. Definition 5.11), for which we compute
separately the two long sums appearing in (5.4). First, the sum over elements of positive
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height

AR O = _phl Zzpmw Q")
_1\\—1 B h—1
S ED S S ) = (1 - 0. 6

(ph—p

Second, the sum over the elements of zero height

(@) M (y) +dY ()

y€eC(r)

) Z;—e — (1 =D WOf). (6.7)

yeC(r) J
Now putting together (6.6) and (6.7) we obtain
A (D)) = i@ TH)) = W@ ) = (DT = D wi(f), (6.8)

where

() =0 =) = e 2 mle) = S Y m) €@ (69

(p" —p pv
e ~ec(r)
Since the vector wV) of Lemma 3.4 satisfies wE\’\) (v) == 7’\’110%1)(7), we finally compute
h—1
dresy (9 (£), 7 Na = V(@) (@)
n=0
MDY@ TTEN @) P e (@ () (@)
h—1 e
n ]. Jj—1
= (=D =DM D Sme?) = 2> (G = eym(e” ) + wi(f)
e
n=0 j=1
= (=DM'(\ = Dl tdresy (f,7,1)a € Q- . (6.10)
This concludes the proof of the Lemma. [

With this preliminary computation now out of the way, we can prove our first application
of A-Mabhler discrete residues in the following result, which is a Mahler analogue of [Arr17,
Cor. 2.1] in the shift case and [AZ22a, Prop. 3.5] in the ¢-dilation case.

Proposition 6.2. Let U be a 00-K(z,logz)-algebra such that U = K. Let ay,...,a; €
K(z) — {0}, and suppose y, ...,y € U satisfy

o(y;) = a;y; for 1 =1,...,t.
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Then y1, ...,y are O-dependent over K(z) if and only if there exist ki, ...,k € Z, not all
zero, and g € K(x), such that

'L da;
> ki — =palg) g (6.11)
i=1 v

Proof. First, suppose there exist kq,...,k; € Z and g € K(z) satisfying (6.11). Consider
t

. (Z% —glog:c> - (Z‘S—%—glogx> ~loga (Z %~ (poly) —g>) ~o,

i=1 < i=1

and therefore .

0y
Zl—gloger“:K,

i=1 7

and therefore yy, ...,y are J-dependent over K(z,logz), which is equivalent to them being
0-dependent over K(z), since logz is d-algebraic over K(x).
Now suppose y1,. ..,y are 0-dependent over K(x). Then there exist linear differential

operators L; € K[0], not all zero, such that

gﬁi (5?) =0(G) -G

for some G' € K(z,logz). Let A > 1 be as small as possible such that ord(£;) < A —1 for
every 1 <14 <t. Then we must have

A
G:Zgglogex with g1, .-, 9x € K(z).
=1

" A1 j
Moreover, writing each £; = > o kij07, we must also have

t
da;
D ki ( aa ) = p*a(gx) — ga. (6.12)

i=1 '

()

Without loss of generality we can reduce to the situation where, for each 7 € 7Ty and for
each 1 < i < tsuchthat 7 € supp(%) we have the same bouquet 5(2%, 7) (cf. Definition 5.6,

a;
da;

a;

ht(%, 7) the same constant for each i = 1,...,¢t. Under these conditions, (6.12) implies that

d Oa;
Zki7/\—1dres)\ (ak_l (&—z) T, )\) =0
i=1 (

for every 7 € T. But by Lemma 6.1, this is equivalent to

d da;

E k:m_ldresl (—Z,T, 1) = 0,
a/,

1=1

7

and similarly that for each 7 € T, and for each 1 < <t such that 7 € supp(“*) we have

and since each dresl(ia_i , T, 1)o € Q-avuniformly in 1 < ¢ < tand a € 7 (again by Lemma 6.1),

we may further take the k; \_; € Z. O
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7. EXAMPLES

In [AZ22b, Section 5], the authors provide two small examples for the \-Mahler discrete
residues for A = 0. Here, we illustrate A-Mahler discrete residues for A = 41 in several
examples. Example 7.1 gives a 1-Mahler summable f in the non-torsion case 7 C 7.
Example 7.2 gives a 1-Mahler non-summable f in the torsion case 7 C 7T,.. Moreover,
Example 7.3 gives a (—1)-Mahler summable f in the non-torsion case 7 C 7Ty. Example 7.4
gives a (—1)-Mahler non-summable f in the torsion case 7 C T,.

Example 7.1. Let p = 3, = 1, and 7 = 7(2). Consider the following f = f. with

sing(f,7) = {2, V2, V2, Cg\/_}

—x8 4423 + 322 — 122 + 8

(fv—2)2( 3—2)2

f=

_ . 3
3 2 3\3/4_1 ;x_gé\ﬁ

where B(f,7) = {2,7, (37, 3y} with v := /2. By Definition 5.6, we have ht(f,7) = 1. It
follows from Definition 5.7 that for i € {0, 1, 2}:

dres; (f, T, 1)4@'7 = Vf,o(Cé’Y)ﬁ(Cé'Y) + 3‘/11,1(@7)01(2) + V12,0<C§’Y)01(C§7> + 3‘/12,1(C§’Y)C2(2>

1+ o9 ()
— 0,

and

dresi (f,7,2)¢i, = ‘/Q%O(C§7)C2(C§7) + 3‘/22,1(@’7)02(2)

it ()

Thus, we see from Proposition 5.8 that f is 1-Mahler summable. And indeed,
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Example 7.2. Let p = 3, = 1, and 7 = 7({4y). Consider the following f = f. with
L L
sing(f,7) = {C (2 s
—22% 4+ 222 + 1
(24 1) (x* — 22+ 1)
1(_ G G n (i n 12 n G2 n (T )
T — G4

f=

:2 11

x—(ff T — (2 $_C152 x_<172 ST

_ Z ok (@) '

acsing(f,7)

By Definition 5.10, we see that ht(f,7) = 1. Furthermore, by Definition 3.6, 5.11, and 3.2,
we find that

wi=w (f) =—-1/4,
7 (e) = (h(), dr(cD) = (G + ) (1L 1),
DI,T(d> - (61(C4>761(<513)) = (0’0)
Thus, it follows from Definition 5.12 that
dresi (f, 7, 1)cis = Vip(Ciz2) - €1(Giz) = Vig - (Gi2) ™% - da(Gra)
= C1(C12) -G dl(@f)
=G () (G- )
1 3 - 0
= ZCH + ZClQ # 0.
Similarly, a direct calculation shows that

3 1
ZClQ + ZCIQ # 0,

1 3
dres; (f,7,1)¢s, = —sz + —CH # 0,

dresy (f,7,1)c7, =

dres (f 7 1)¢, = 412+ C 7#0,
and
dress (£, 1), = 1(G3) = 4(G) = ea(Ga) = 5 #0,
dresi(f,7, 1)y = a(63) — 1(ch) = () = 361 #0,

Thus, it follows from Proposition 5.17 that f is not 1-Mahler summable.
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Example 7.3. Let p = 3\ = —1, and 7 = 7(5). Consider the following f = f. with

Sing(f7 T) = {57 \3/57 C3\?/57 Cg%} :

_ —32°% 4+ 302° + 2% — 10z — 50
3(z —5)2 (23 — 5)°

f

2 5 2
T I e o D B
(x—5)> 135756 = (z—(iV5)?  135v25 o — (V5
(x —a)t’
where B(f,7) = {2,7, (7, (37} with v := /5. By Definition 5.6, we have ht(f,7) = 1. Tt
follows from Definition 5.7 that for i € {0, 1,2}:

dresy (f, 7, )iy = Vio(GY)er(Cay) + 37 Vi (Gy)en(2) + Vi3 (G7)ea(G3y) + 37V (G)ea(2)

2 L (26
1) () ( 32_52)
—0,

and

dresy(f, 7,2)¢y = Vaio(Gy)ea(Gs) + 37 V34 (Gy)ea(2)

135v/2 3 32.5.-v5
= 0.

Thus, we see from Proposition 5.8 that f is (—1)-Mahler summable. And indeed,

1
=A 4 |(—].
1=84(5=5)
Example 7.4. Let p = 2,A = —1, and 7 = 7((3). Consider the following f = f, with
sing(f,7) = {G G b

1
T 20 22+ 1)
:_%( G3 n G n Go n G )

=G -G r—( r—(!

- X

acsing(f,7)

f
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By Definition 5.10, we see that ht(f,7) = 1. Furthermore, by Definition 3.6, 5.11, and 3.2,
we find that

w:=wi.(f) =0,
() = (G (M) = 5 (6o
Di-(d) = (61(¢s),a(¢Y) = —% (¢, 651

Thus, it follows from Definition 5.12 that

dres; (f,7,1)¢, = Vio(Go) - e1(C6) = Vig - (G6) 2+ (a1(¢5 ) + di(GGH))
= c1(Ge) +a(Gh) +d(GH)

1 1 2
:—§C6—§C31+§C31

1 1
:§C3_1—§C67é0-

Similarly, a direct computation shows that

1 1
dres; (f, T, 1)<g1 = §C3 _ §<6_1 £ 0.

Therefore, it follows from Proposition 5.17 that f is not (—1)-Mahler summable.
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