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Abstract. Recently we constructed Mahler discrete residues for rational functions and
showed they comprise a complete obstruction to the Mahler summability problem of deciding
whether a given rational function f(x) is of the form g(xp)−g(x) for some rational function
g(x) and an integer p > 1. Here we develop a notion of λ-twisted Mahler discrete residues for
λ ∈ Z, and show that they similarly comprise a complete obstruction to the twisted Mahler
summability problem of deciding whether a given rational function f(x) is of the form
pλg(xp)−g(x) for some rational function g(x) and an integer p > 1. We provide some initial
applications of twisted Mahler discrete residues to differential creative telescoping problems
for Mahler functions and to the differential Galois theory of linear Mahler equations.
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1. Introduction

Continuous residues are fundamental and crucial tools in complex analysis, and have ex-
tensive and compelling applications in combinatorics [FS09]. In the last decade, a theory of
discrete and q-discrete residues was proposed in [CS12] for the study of telescoping problems
for bivariate rational functions, and subsequently found applications in the computation
of differential Galois groups of second-order linear difference [Arr17] and q-difference equa-
tions [AZ22a] and other closely-related problems [Che18,HW15]. More recently, the authors
of [Car21,CD23] developed a theory of residues for skew rational functions, which has impor-
tant applications in duals of linearized Reed-Solomon codes [CD23]. In [HS21] the authors
introduce a notion of elliptic orbit residues which, in analogy with [CS12], similarly serves
as a complete obstruction to summability in the context of elliptic shift difference operators.
In [AZ22b] we initiated a theory of Mahler discrete residues aimed at helping bring to the
Mahler case the successes of these earlier notions of residues.

Let K be an algebraically closed field of characteristic zero and K(x) be the field of rational
functions in an indeterminate x over K. Fix an integer p ≥ 2. For a given f(x) ∈ K(x),
we considered in [AZ22b] the Mahler summability problem of deciding effectively whether
f(x) = g(xp) − g(x) for some g(x) ∈ K(x); if so, we say f(x) is Mahler summable. We
defined in [AZ22b] a collection of K-vectors, called Mahler discrete residues of f(x) and
defined purely in terms of its partial fraction decomposition, having the property that they
are all zero if and only if f(x) is Mahler summable.

More generally, a (linear) Mahler equation is any equation of the form

y(xpn) + an−1(x)y(x
pn−1

) + · · ·+ a1(x)y(x
p) + +a0(x)y(x) = 0, (1.1)

where the ai(x) ∈ K(x) and y(x) is an unknown “function” (or possibly some more general
entity, e.g., the generating series of a combinatorial object, a Puisseux series, etc.). The
motivation to study Mahler equations in general comes from several directions. They first
arose in [Mah29] in connection with transcendence results on values of special functions at
algebraic numbers, and have since found other applications to automata theory and auto-
matic sequences since the work of [Cob68]. We refer to [AB17,DHR18,CDDM18,ADH21]
and the references therein for more details. We also mention that a different (and, for some
purposes, better) approach to the Mahler summability problem is contained in [CDDM18],
where the authors develop efficient algorithms to find, in particular, all the rational solu-
tions to a linear Mahler equation. Thus [CDDM18] decides efficiently whether any given
f(x) ∈ K(x) is Mahler summable: namely, by either actually finding the corresponding cer-
tificate g(x) ∈ K(x) such that f(x) = g(xp)−g(x) if it exists or else deciding that there is no
such g(x) ∈ K(x). We emphasize that, in contrast, the approach undertaken in [AZ22b] is
obstruction-theoretic, with the upshot that it spells out (theoretically) exactly what it takes
for any f(x) ∈ K(x) whatsoever to be Mahler summable or not, but with the drawback that
it is likely to be infeasible in practice for all but the simplest/smallest choices of f(x). All the
same, the approach initiated in [AZ22b], and continued in the present work, is a worthwhile
and useful complement to that of [CDDM18] — not only because of the theoretical questions
that it answers for the first time, but moreover also because of its practical implications.
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A particularly fruitful approach over the last few decades to study difference equations
in general, and Mahler equations such as (1.1) in particular, is through the Galois theory
for linear difference equations developed in [vdPS97], and the differential (also sometimes
called parameterized) Galois theory for difference equations developed in [HS08]. Both the-
ories associate a geometric object to a given difference equation such as (1.1), called the
Galoisnchar group, that encodes the sought (differential-)algebraic properties of the solu-
tions to the equation. There are now several algorithms and theoretical results (see in
particular [Roq17,DHR18,AS17,ADR16]) addressing qualitative questions about solutions
of Mahler equations (1.1), in particular whether they must be (differentially) transcendental,
which rely on procedures to compute “enough” information about the corresponding Galois
group (i.e., whether it is “sufficiently large”). These Galois-theoretic arguments very often
involve, as a sub-problem, deciding whether a certain auxiliary object (often but not always a
rational solution to some Riccati-type equation) is Mahler summable (possibly after applying
some linear differential operator to it, i.e., a telescoper). Rather than being able to answer
the Mahler summability question for any one individual rational function, the systematic
obstructions to the Mahler summability problems developed here serve as essential building
blocks for other results and algorithms that rely on determining Mahler summability as an
intermediate step. An immediate application of the technology of the technology developed
here is Proposition 6.2, which has the following concrete consequence (when paired with the
results of [ADH21, Theorem 1.3]): if y1(x), . . . , yt(x) ∈ K((x)) are Laurent series solutions
to Mahler equations of the form

yi(x
p) = ai(x)yi(x)

for some non-zero ai(x) ∈ K(x), then either the y1(x), . . . , yt(x) are differentially independent
over K(x) or else they are multiplicatively dependent over K(x)×, i.e., there exist integers
k1, . . . , kt ∈ Z, not all zero, such that

∏t
i=1 yi(x)

ki ∈ K(x). Let us explain in more detail the
technology that we develop.

For arbitrary λ ∈ Z and f(x) ∈ K(x), we say that f(x) is λ-Mahler summable if there
exists g(x) ∈ K(x) such that f(x) = pλg(xp) − g(x). We shall construct certain K-vectors
from the partial fraction decomposition of f(x), which we call the (twisted) λ-Mahler discrete
residues of f(x), and prove our main result in Section 5.4:

Theorem 1.1. For λ ∈ Z, f(x) ∈ K(x) is λ-Mahler summable if and only if every λ-Mahler
discrete residue of f is zero.

Our desire to develop an obstruction theory for such a “twisted” λ-Mahler summability
problem, beyond the “un-twisted” 0-Mahler summability problem considered in [AZ22b], is
motivated by our desire to apply this obstruction theory to the following kind of Mahler cre-
ative telescoping problem. Given f1, . . . , fn ∈ K(x) decide whether there exist linear differen-
tial operators L1, . . . ,Ln ∈ K[δ], for δ some suitable derivation, such that L1(f1)+· · ·+Ln(fn)
is suitably Mahler summable. The unfortunately vague (but deliberate) double-usage of
“suitable” above is due to the fact that there are in the Mahler case two traditional and
respectable ways to adjoin a “Mahler-compatible” derivation in order to study differential-
algebraic properties of solutions of Mahler equations, as we next explain and recall.
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A σδ-field is a field equipped with an endomorphism σ and a derivation δ such that
σ ◦ δ = δ ◦σ. Such are the basefields considered in the δ-Galois theory for linear σ-equations
developed in [HS08]. Denoting by σ : K(x) → K(x) : f(x) 7→ f(xp) the Mahler endomor-
phism, one can show there is no non-trivial derivation δ on K(x) that commutes with this
σ. In the literature one finds the following two approaches (often used in combination; see
e.g. [DHR18,ADH21]): (1) take δ = x d

dx
, and find a systematic way to deal with the fact

that σ and δ do not quite commute (but almost do), σ ◦ δ = p δ ◦ σ; or (2) work over the
larger field K(x, log x), where σ(log x) = p log x, and set δ = x log x d

dx
, and find a systematic

way to deal with this new element log x as the cost of having σ ◦ δ = δ ◦ σ on the nose.
There is, to be sure, a dictionary of sorts between these two approaches. We postpone a
more careful discussion of these issues until it becomes absolutely necessary in Section 6,
except to adopt the latter approach in this introduction to briefly motivate the centrality of
the λ-Mahler summability problems for arbitrary λ ∈ Z in the differential study of Mahler
functions.

Let us consider the σδ-field L := K(x, log x), and given F ∈ L, let us write the log-Laurent
series expansion

F =
∑
λ≥N

fλ(x) log
λ x ∈ K(x)((log x)),

where fλ(x) ∈ K(x) for each λ ∈ Z, and logλ x := [log x]λ. Let us suppose that there exists

G ∈ L̂ := K(x)((log x)) such that F = σ(G)−G (where σ is applied term-by-term). Writing

such a putative G =
∑

λ≥N gλ(x) log
λ x ∈ L̂, for some gλ(x) ∈ K(x) for λ ∈ Z, we find that

F is Mahler summable within L̂ if and only if each fλ(x) = pλgλ(x
p)− g(x) for each λ ∈ Z.

Our strategy expands upon that of [AZ22b], which in turn was inspired by that of [CS12]:
for λ ∈ Z, we utilize the coefficients occurring in the partial fraction decomposition of f(x)
to construct in Section 5.5 a λ-Mahler reduction f̄λ(x) ∈ K(x) such that

f̄λ(x) = f(x) +
(
pλgλ(x

p)− gλ(x)
)

(1.2)

for some gλ(x) ∈ K(x) (whose explicit computation it is our purpose to avoid!), with the
structure of this f̄λ(x) being such that it cannot possibly be λ-Mahler summable unless
f̄λ(x) = 0. The λ-Mahler discrete residues of f(x) are (vectors whose components are) the
coefficients occurring in the partial fraction decomposition of f̄λ(x). This f̄λ(x) plays the
role of a “λ-Mahler remainder” of f(x), analogous to the remainder of Hermite reduction in
the context of integration.

2. Preliminaries

In this section we recall and expand upon some conventions, notions, and ancillary results
from [AZ22b] that we shall use systematically throughout this work.

2.1. Notation and conventions. We fix once and for all an algebraically closed field K
of characteristic zero and an integer p ≥ 2 (not necessarily prime). We denote by K(x)
the field of rational functions in the indeterminate x with coefficients in K. We denote
by σ : K(x) → K(x) the K-linear endomorphism defined by σ(x) = xp, called the Mahler
operator, so that σ(f(x)) = f(xp) for f(x) ∈ K(x). For λ ∈ Z, we write ∆λ := pλσ − id, so
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that ∆λ(f(x)) = pλf(xp)− f(x) for f(x) ∈ K(x). We often suppress the functional notation
and write simply f ∈ K(x) instead of f(x) whenever no confusion is likely to arise. We say
that f ∈ K(x) is λ-Mahler summable if there exists g ∈ K(x) such that f = ∆λ(g).
LetK× = K\{0} denote the multiplicative group ofK. LetK×

t denote the torsion subgroup
of K×, i.e., the group of roots of unity in K×. For ζ ∈ K×

t , the order of ζ is the smallest
r ∈ N such that ζr = 1. We fix once and for all a compatible system of p-power roots of

unity (ζpn)n≥0 ⊂ K×
t , that is, each ζpn has order pn and ζp

ℓ

pn = ζpn−ℓ for 0 ≤ ℓ ≤ n.
Each f ∈ K(x) decomposes uniquely as

f = f∞ + fT , (2.1)

where f∞ ∈ K[x, x−1] is a Laurent polynomial and fT = a
b
for polynomials a, b ∈ K[x] such

that either a = 0 or else deg(a) < deg(b) and gcd(a, b) = 1 = gcd(x, b). The reasoning
behind our choice of subscripts ∞ and T for the Laurent polynomial component of f and
its complement will become apparent in the sequel.

Lemma 2.1. The K-linear decomposition K(x) ≃ K[x, x−1]⊕K(x)T given by f ↔ f∞ ⊕ fT
as in (2.1) is σ-stable. For f, g ∈ K(x) and for λ ∈ Z, f = ∆λ(g) if and only if f∞ = ∆λ(g∞)
and fT = ∆λ(gT ).

2.2. Mahler trajectories, Mahler trees, and Mahler cycles. We let

P := {pn | n ∈ Z≥0}
denote the multiplicative monoid of non-negative powers of p. Then P acts on Z by multi-
plication, and the set of maximal trajectories for this action is

Z/P :=
{
{0}
}
∪
{
{ipn | n ∈ Z≥0}

∣∣ i ∈ Z such that p ∤ i
}
.

Definition 2.2. For a maximal trajectory θ ∈ Z/P , we let

K[x, x−1]θ :=
{∑

j cjx
j ∈ K[x, x−1]

∣∣∣ cj = 0 for all j /∈ θ
}
, (2.2)

and call it the θ-subspace. The θ-component fθ of f ∈ K(x) is the projection of the component
f∞ of f in (2.1) to K[x, x−1]θ as in (2.2).

We obtain similarly as in [AZ22b, Lem. 2.3] the following result.

Lemma 2.3. For f, g ∈ K(x) and for λ ∈ Z, f∞ = ∆λ(g∞) if and only if fθ = ∆λ(gθ) for
every maximal trajectory θ ∈ Z/P.

Definition 2.4. We denote by T the set of equivalence classes in K× for the equivalence
relation α ∼ γ ⇔ αpr = γps for some r, s ∈ Z≥0. For α ∈ K×, we denote by τ(α) ∈ T the
equivalence class of α under ∼. The elements τ ∈ T are called Mahler trees.

We refer to [AZ22b, Remark 2.7] for a brief discussion on our choice of nomenclature in
Definition 2.4.

Definition 2.5. For a Mahler tree τ ∈ T , the τ -subspace is

K(x)τ :=
{
fT ∈ K(x)T

∣∣ every pole of fT is contained in τ}. (2.3)

For f ∈ K(x), the τ -component fτ of f is the projection of the component fT of f in (2.1)
to the τ -subspace K(x)τ in (2.3).
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The following result is proved similarly as in [AZ22b, Lem. 2.12].

Lemma 2.6. For f, g ∈ K(x) and for λ ∈ Z, fT = ∆λ(gT ) if and only if fτ = ∆λ(gτ) for
every Mahler tree τ ∈ T .

Definition 2.7. For a Mahler tree τ ∈ T , the (possibly empty) Mahler cycle of τ is

C(τ) := {γ ∈ τ | γ is a root of unity of order coprime to p}.
The (possibly zero) cycle length of τ is defined to be ε(τ) := |C(τ)|.

For e ∈ Z≥0, we write Te := {τ ∈ T | ε(τ) = e}. We refer to T0 as the set of non-torsion
Mahler trees, and to T+ := T − T0 as the set of torsion Mahler trees.

Remark 2.8. Let us collect as in [AZ22b, Rem. 2.10] some immediate observations about
Mahler cycles that we shall use, and refer to, throughout the sequel.

For τ ∈ T it follows from the Definition 2.4 that either τ ⊂ K×
t or else τ ∩K×

t = ∅ (that
is, either τ consists entirely of roots of unity or else τ contains no roots of unity at all). In
particular, τ ∩K×

t = ∅ ⇒ C(τ) = ∅ ⇔ ε(τ) = 0 ⇔ τ ∈ T0 (the non-torsion case).
On the other hand, K×

t consists of the pre-periodic points for the action of the monoid
P on K× given by α 7→ αpn for n ∈ Z≥0. For τ ⊂ K×

t (the torsion case), the Mahler cycle
C(τ) is a non-empty set endowed with a simply transitive action of the quotient monoid
P/Pe ≃ Z/eZ, where Pe := {pne | n ∈ Z}, and e := ε(τ). We emphasize that in general
C(τ) is only a set, and not a group. The Mahler tree τ(1) consists precisely of the roots of
unity ζ ∈ K×

t whose order r is such that gcd(r, pn) = r for some pn ∈ P , or equivalently
such that every prime factor of r divides p. When τ ⊂ K×

t but τ ̸= τ(1), the cycle length
ε(τ) = e is the order of p in the group of units (Z/rZ)×, where r > 1 is the common order

of the roots of unity γ ∈ C(τ), and C(τ) = {γpℓ | 0 ≤ ℓ ≤ e− 1} for any given γ ∈ C(τ). We

shall often abusively write C(τ) = {γpℓ | ℓ ∈ Z/eZ}.

2.3. Mahler supports and singular supports in Mahler trees. Mahler trees allow us
to define the following bespoke variants of the singular support sing(f) of a rational function
f (i.e., its set of poles) and the order ordα(f) of a pole of f at α ∈ K, which are particularly
well-suited to the Mahler context.

Definition 2.9. For f ∈ K(x), we define supp(f) ⊂ T ∪ {∞}, called the Mahler support of
f , as follows:

• ∞ ∈ supp(f) if and only if f∞ ̸= 0; and
• for τ ∈ T , τ ∈ supp(f) if and only if τ contains a pole of f .

For τ ∈ T , the singular support of f in τ , denoted by sing(f, τ), is the (possibly empty)
set of poles of f contained in τ , and the order of f at τ is

ord(f, τ) := max
(
{0} ∪ {ordα(f) | α ∈ sing(f, τ)}

)
.

For the sake of completeness, we include the straightforward proof of the following lemma,
which was omitted from [AZ22b, Section 2.2] for lack of space.

Lemma 2.10. For f, g ∈ K(x), τ ∈ T , λ ∈ Z, and 0 ̸= c ∈ K, we have the following:

(1) supp(f) = ∅ ⇐⇒ f = 0;
(2) supp(σ(f)) = supp(f) = supp(c · f); and
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(3) supp(f + g) ⊆ supp(f) ∪ supp(g).
(4) τ ∈ supp(∆λ(g)) ⇐⇒ τ ∈ supp(g);
(5) ord(σ(f), τ) = ord(f, τ) = ord(c · f, τ);
(6) ord(f + g, τ) ≤ max

(
ord(f, τ), ord(g, τ)

)
; and

(7) ord(∆λ(g), τ) = ord(g, τ).

Proof. (1). f = 0 ⇐⇒ f∞ = 0 and fT = 0, and fT = 0 ⇐⇒ f has no poles in K×.
(2) and (5). For 0 ̸= c ∈ K, cf∞ ̸= 0 if and only if f∞ ̸= 0, and f and cf have the

same poles and the orders of these poles are the same, and therefore supp(f) = supp(cf)
and ord(f, τ) = ord(cf, τ) for every τ ∈ T . Moreover, σ(f∞) ̸= 0 if and only if f∞ ̸= 0,
since σ is an injective endomorphism of K(x), and α ∈ K× is a pole of σ(f) if and only if
αp is a pole of f , whence τ contains a pole of f if and only if τ contains a pole of σ(f).
In this case, it is clear that ord(σ(f), τ) ≤ ord(f, τ). Moreover, since f has only finitely
many poles in τ of maximal order m := ord(f, τ), there exists α ∈ sing(σ(f), τ) such that
ordαp(f) = m > ordα(f), and it follows that ordα(σ(f)) = m = ord(σ(f), τ).

(3) and (6). If f∞ + g∞ ̸= 0 then at least one of f∞ ̸= 0 or g∞ ̸= 0. The set of poles
of f + g is contained in the union of the set of poles of f and the set of poles of g, and
therefore if τ contains a pole of f + g then τ must contain a pole of f or a pole of g. This
shows that supp(f + g) ⊆ supp(f)∪ supp(g). For m the maximal order of a pole of f + g in
τ we see that at least one of f or g must contain a pole of order m in τ . This shows that
ord(f + g, τ) ≤ max(ord(f, τ), ord(g, τ)).

(4) and (7). By (2) and (3), supp(∆λ(g)) ⊆ supp(g), and by (5) and (6), ord(∆λ(g), τ) ≤
ord(g, τ). Suppose τ ∈ supp(g), and let α1, . . . , αs ∈ sing(g, τ) be all the elements, pairwise
distinct, with ordαj

(g) = ord(g, τ) =: m ≥ 1, and choose γj ∈ τ such that γp
j = αj, we find

as in the proof of (5) that ordζipγj
(σ(g)) = m and the elements ζ ipγj are pairwise distinct

for 0 ≤ i ≤ p − 1 and 1 ≤ j ≤ s, whence at least one of the ζ ipγj is different from every
αj′ for 1 ≤ j′ ≤ s, and therefore ord(∆λ(g), τ) = m, which implies in particular that
τ ∈ supp(∆λ(g)). □

2.4. Mahler dispersion. We now recall from [AZ22b] the following Mahler variant of the
notion of (polar) dispersion used in [CS12], following the original definitions in [Abr71,
Abr74].

Definition 2.11. For f ∈ K(x) and τ ∈ supp(f), the Mahler dispersion of f at τ , denoted
by disp(f, τ), is defined as follows.

If τ ∈ T , disp(f, τ) is the largest d ∈ Z≥0 (if it exists) for which there exists α ∈ sing(f, τ)

such that αpd ∈ sing(f, τ). If there is no such d ∈ Z≥0, then we set disp(f, τ) = ∞.

If τ = ∞, let us write f∞ =
∑N

i=n cix
i ∈ K[x, x−1] with cncN ̸= 0.

• If f∞ = c0 ̸= 0 then we set disp(f,∞) = 0; otherwise
• disp(f,∞) is the largest d ∈ Z≥0 for which there exists an index i ̸= 0 such that
ci ̸= 0 and cipd ̸= 0.

For f ∈ K(x) and τ ∈ T ∪ {∞} such that τ /∈ supp(f), we do not define disp(f, τ) at all
(cf. [Abr71,Abr74,CS12]).
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Similarly as in the shift and q-difference cases (cf. [HS08, Lemma 6.3] and [CS12, Lemma 2.4
and Lemma 2.9]), Mahler dispersions will play a crucial role in what follows. As we prove
in Theorem 4.2, they already provide a partial obstruction to summability: if f ∈ K(x) is
λ-Mahler summable then almost every Mahler dispersion of f is non-zero. Moreover, Mahler
dispersions also detect whether f has any “bad” poles (i.e., at roots of unity of order coprime
to p) according to the following result proved in [AZ22b, Lem. 2.16].

Lemma 2.12 ( [AZ22b, Lem. 2.16]). Let f ∈ K(x) and τ ∈ supp(f). Then disp(f, τ) = ∞
if and only if sing(f, τ) ∩ C(τ) ̸= ∅.

2.5. Mahler coefficients. Here we extend our study of the effect of the Mahler operator σ
on partial fraction decompositions initiated in [AZ22b, §2.4]. For α ∈ K× and m, k, n ∈ Z
with n ≥ 0 and 1 ≤ k ≤ m, we define the Mahler coefficients V m

k,n(α) ∈ K implicitly by

σn

(
1

(x− αpn)m

)
=

1

(xpn − αpn)m
=

m∑
k=1

pn−1∑
i=0

V m
k,n(ζ

i
pnα)

(x− ζ ipnα)
k
. (2.4)

These Mahler coefficients are computed explicitly with the following result, proved analo-
gously to the similar [AZ22b, Lem. 2.17] in case n = 1.

Lemma 2.13. For every α ∈ K×, the Mahler coefficients

V m
k,n(α) = Vm

k,n · αk−mpn ,

where the universal coefficients Vm
k,n ∈ Q are the first m Taylor coefficients at x = 1 of

(xpn−1 + · · ·+ x+ 1)−m =
m∑
k=1

Vm
k,n · (x− 1)m−k +O((x− 1)m). (2.5)

Although Lemma 2.13 serves to compute the V m
k,n(α) for α ∈ K×, n ∈ Z≥0, and 1 ≤ k ≤ m

efficiently in practice1, the following result provides an explicit symbolic expression for these
Mahler coefficients as sums over certain integer partitions.

Definition 2.14. For k, n ∈ Z≥0, let Πn(k) be the set of integer partitions µ = (µ1, . . . , µℓ)
of k with greatest part µ1 < pn, and denote by ℓ(µ) := ℓ the length of µ and by ℓi(µ) the
multiplicity of i in µ for 1 ≤ i ≤ pn − 1. We adopt the conventions that Πn(0) = {∅} for
every n ≥ 0 and Π0(k) = ∅ for every k ≥ 1. The empty partition µ = ∅ has length ℓ(∅) = 0
and multiplicity ℓi(∅) = 0 for every 1 ≤ i ≤ pn − 1 (vacuously so when n = 0).

Proposition 2.15. For n ≥ 0 and 1 ≤ k ≤ m,

Vm
k,n = p−nm ·

∑
µ∈Πn(m−k)

(−pn)−ℓ(µ)

(
m− 1 + ℓ(µ)

m− 1, ℓ1(µ), . . . , ℓpn−1(µ)

) pn−1∏
i=1

(
pn

i+ 1

)ℓi(µ)

.

Proof. By Lemma 2.13, V m
k,n(α) = Vm

k,n · αk−mpn , where the Vm
k,n ∈ Q are given by (2.5).

Writing fm(x) = x−m and gn(x) = xpn−1+ · · ·+x+1, and letting Wm
k,n ∈ Q be the coefficient

1That is, by computing successive derivatives of the left-hand side and evaluating at x = 1.
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of (x− 1)k in the Taylor expansion of (fm ◦ gn)(x) at x = 1 as in Lemma 2.13, we have that
Vm

k,n = Wm
m−k,n for every 1 ≤ k ≤ m. By Faà di Bruno’s formula [Joh02], we have

Wm
k,n =

(fm ◦ gn)(k)(1)
k!

=
1

k!
·
∑

µ∈Π(k)

k!

ℓ1(µ)! · · · ℓk(µ)!
f (ℓ(µ))
m (gn(1))

k∏
i=1

(
g
(i)
n (1)

i!

)ℓi(µ)

for every k ≥ 0, where Π(k) denotes the set of all partitions of k, and ℓ(µ) and ℓi(µ) are as
in Definition 2.14. For every ℓ, i ∈ Z≥0, we compute

f (ℓ)
m (gn(1)) = (−1)ℓp−n(m+ℓ) (m− 1 + ℓ)!

(m− 1)!
and g(i)n (1) = i!

(
pn

i+ 1

)
,

where we adopt the usual convention that
(

pn

i+1

)
= 0 whenever i ≥ pn. Therefore the

partitions µ ∈ Π(k)\Πn(k) with greatest part µ1 ≥ pn do not contribute to the sum. □

We isolate the following special case for ease of reference (cf. [AZ22b, Cor. 2.18]), since it
arises often.

Corollary 2.16. Let α ∈ K×, m ∈ N, and n ∈ Z≥0. Then V m
m,n(α) = p−nmαm−pnm.

Proof. In the special case where k = m in Proposition 2.15, the sum is over µ ∈ Π(0) = {∅},
and ℓ(∅) = 0 = ℓi(∅) for every i ∈ N, whence V m

m,n(α) = p−nmαm−pnm by Lemma 2.13. □

The Mahler coefficients V m
k,n(α) defined above are the main ingredients in our definition

of twisted Mahler discrete residues. Our proofs that these residues comprise a complete
obstruction to λ-Mahler summability will rely on the following elementary computations,
which we record here once and for all for future reference.

Lemma 2.17. Let n ∈ Z≥0, α ∈ K×, and d1, . . . , dm ∈ K for some m ∈ N. Then

σn

(
m∑
k=1

dk
(x− αpn)k

)
=

m∑
k=1

pn−1∑
i=0

∑m
s=k V

s
k,n(ζ

i
pnα)ds

(x− ζ ipnα)
k

.

For λ ∈ Z and g ∈ K(x), the element ∆
(n)
λ (g) := pλnσn(g)− g is λ-Mahler summable.

Proof. The claims are trivial if n = 0: ζ1 = 1, V s
k,0(α) = δs,k (Kronecker’s δ) for k ≤ s ≤ m,

and ∆
(0)
λ (g) = 0 is λ-Mahler summable. Suppose that n ≥ 1. For 1 ≤ s ≤ m we have

σn

(
ds

(x− αpn)s

)
=

s∑
k=1

pn−1∑
i=0

V s
k,n(ζ

i
pnα)ds

(x− ζ ipnα)
k

by definition (cf. (2.4)), and it follows that

σn

(
m∑
s=1

ds
(x− αpn)s

)
=

m∑
s=1

s∑
k=1

pn−1∑
i=0

V s
k,n(ζ

i
pnα)ds

(x− ζ ipnα)
k
=

m∑
k=1

pn−1∑
i=0

∑m
s=k V

s
k,n(ζ

i
pnα)ds

(x− ζ ipnα)
k

.

Finally, since

∆
(n)
λ (g) = pλnσn(g)− g = pλσ

(
n−1∑
j=0

pλjσj(g)

)
−

(
n−1∑
j=0

pλjσj(g)

)
= ∆λ

(
n−1∑
j=0

pλjσj(g)

)
,
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∆
(n)
λ (g) is λ-Mahler summable. □

3. Cycle maps and their ω-sections

The goal of this section is to define and study the properties of two auxiliary maps Dλ,τ

and I(ω)
λ,τ that will help us retain some control over the perverse periodic behavior of the roots

of unity γ ∈ C(τ) under the p-power map γ 7→ γp. The following definitions and results are
relevant only for torsion Mahler trees τ ∈ T+.

Definition 3.1. With notation as in Definition 2.7, let τ ∈ T+ be a torsion Mahler tree, let
g ∈ K(x), and let us write the τ -component gτ of g from Definition 2.5 as

gτ =
∑
k∈N

∑
α∈τ

dk(α)

(x− α)k
.

We define the cyclic component of gτ by

C(gτ ) :=
∑
k∈N

∑
γ∈C(τ)

dk(γ)

(x− γ)k
.

Definition 3.2. Let S :=
⊕

k∈NK denote the K-vector space of finitely supported sequences

in K. For τ ∈ T+, we let SC(τ) :=
⊕

γ∈C(τ) S. For λ ∈ Z, we define cycle map Dλ,τ to be the
K-linear endomorphism

Dλ,τ : SC(τ) → SC(τ) : (dk(γ)) k∈N
γ∈C(τ)

7→

(
−dk(γ) + pλ

∑
s≥k

V s
k,1(γ) · ds(γp)

)
k∈N

γ∈C(τ)

, (3.1)

where the Mahler coefficients V s
k,1(γ) are defined as in (2.4).

We treat the K-vector space SC(τ) introduced in the preceding Definition 3.2 as an abstract
receptacle for the coefficients occurring in the partial fraction decomposition of C(gτ ) for
τ ∈ T+ and arbitrary elements g ∈ K(x). Note that the infinite summation in (3.1) is
harmless, since ds(γ

p) = 0 for every γ ∈ C(γ) for large enough s ∈ N. The cycle map Dλ,τ

for λ = 0 is the negative of the (truncated) linear map introduced in [AZ22b, Lemma 4.14].
The relevance of Dλ,τ to our study of λ-Mahler summability is captured by the following
immediate computational result.

Lemma 3.3. Let λ ∈ Z, g ∈ K(x), and τ ∈ T+. Let us write the cyclic components

C(gτ ) =
∑
k∈N

∑
γ∈C(τ)

dk(γ)

(x− γ)k
and C (∆λ(gτ )) =

∑
k∈N

∑
γ∈C(τ)

ck(γ)

(x− γ)k

as in Definition 3.1. Writing d := (dk(γ))k,γ and c := (ck(γ))k,γ as vectors in SC(τ) as in
Definition 3.2, we have c = Dλ,τ (d).

Proof. It follows from Lemma 2.17 that

C(σ(gτ )) =
∑
k∈N

∑
γ∈C(τ)

∑
s≥k V

s
k,1(γ)ds(γ

p)

(x− γ)k
,
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and therefore, for every k ∈ N and γ ∈ C(τ),

ck(γ) = −dk(γ) + pλ
∑
s≥k

V s
k,1(γ)ds(γ

p). □

The following fundamental Lemma is essential to our study of λ-Mahler summability at
torsion Mahler trees τ ∈ T+.

Lemma 3.4. Let λ ∈ Z, τ ∈ T+, and set e := |C(τ)| as in Definition 2.7. Let Dλ,τ be as in
Definition 3.2.

(1) If λ ≤ 0 then Dλ,τ is an isomorphism.
(2) If λ ≥ 1 then im(Dλ,τ ) has codimension 1 in SC(τ) and ker(Dλ,τ ) = K · w(λ), where

the vector (w
(λ)
k (γ)) = w(λ) ∈ SC(τ) is recursively determined by the conditions

w
(λ)
k (γ) :=


0 for k > λ;

γλ for k = λ;

pλγk

1− p(λ−k)e

e−1∑
j=0

λ∑
s=k+1

p(λ−k)jVs
k,1γ

−spj+1

w(λ)
s

(
γpj+1)

for any remaining k < λ;

(3.2)
for each γ ∈ C(τ), where the universal Mahler coefficients Vs

k,1 ∈ Q are as in Propo-
sition 2.15.

Proof. Let (dk(γ)) = d ∈ SC(τ) −{0}, let m ∈ N be as large as possible such that dm(γ) ̸= 0
for some γ ∈ C(τ), and let us write (ck(γ)) = c := Dλ,τ (d).
Let us first assume that d ∈ ker(Dλ,τ ) ⇔ c = 0. Then by the Definition 3.2 and our choice

of m, for each γ ∈ C(τ),

0 = cm(γ) = pλV m
m,1(γ)dm(γ

p)− dm(γ) = pλ−mγm−pmdm(γ
p)− dm(γ), (3.3)

where the second equality results from Corollary 2.16. Since (3.3) holds for every γ ∈ C(τ)
simultaneously, it follows that dm(γ

pj+1
) = pm−λγ(pj+1−pj)mdm(γ

pj) for every j ≥ 0 and for

each γ ∈ C(γ), whence none of the dm(γ
pj) can be zero. Since γpe = γ, we find that

1 =
dm(γ

pe)

dm(γ)
=

e−1∏
j=0

dm(γ
pj+1

)

dm(γpj)
=

e−1∏
j=0

pm−λγ(pj+1−pj)m = p(m−λ)eγ(pe−1)m = p(m−λ)e,

which is only possible if m = λ. Therefore dk(γ) = 0 for every k > λ, whence Dλ,τ

is injective in case λ ≤ 0. In case λ ≥ 1, it also follows from (3.3) with m = λ that
γ−pλdλ(γ

p) = γ−λdλ(γ) = ω must be a constant that does not depend on γ ∈ C(γ). We
claim that if we further impose that this ω = 1, then the remaining componenets of our
vector d are uniquely determined by the recursion (3.2). Indeed, if λ = 1 then there are no
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more components to determine, whereas if λ ≥ 2 then we must have, for 1 ≤ k ≤ λ− 1,

0 = −dk(γ) + pλ
λ∑

s=k

V s
k,1(γ)ds(γ

p) ⇐⇒

dk(γ)− pλ−kγk−pkdk(γ
p) = dk(γ)− pλV k

k,1(γ)dk(γ
p) = pλ

λ∑
s=k+1

V s
k,1(γ)ds(γ

p),

where the first equality is obtained from Corollary 2.16 and the second is just a rearrange-
ment. Replacing the arbitrary γ in the above equation with γpj for j = 0, . . . , e− 1, we find
that the telescoping sum

γ−k
(
1− p(λ−k)e

)
dk(γ) =

e−1∑
j=0

p(λ−k)jγ−kpj ·
(
dk
(
γpj
)
− pλ−kγkpj−kpj+1

dk
(
γpj+1))

=
e−1∑
j=0

p(λ−k)jγ−kpj · pλ
λ∑

s=k+1

V s
k,1

(
γpj
)
ds
(
γpj+1)

= pλ
e−1∑
j=0

λ∑
s=k+1

p(λ−k)jVs
k,1γ

−spj+1

ds
(
γpj+1)

,

which is clearly equivalent to the expression defining the components w
(λ)
k (γ) for k < λ in

(3.2), and where we have once again used Lemma 2.13 to obtain the last equality, since

V s
k,1(γ

pj) = Vs
k,1γ

kpj−spj+1
. This concludes the proof of the statements concerning ker(Dλ,τ ).

Let us now prove the statements concerning im(Dλ,τ ). We see from Definition 3.2 that
Dλ,τ preserves the increasing filtration of SC(τ) by the finite-dimensional subspaces

SC(τ)
<m :=

{
(dk(γ)) ∈ SC(τ) ∣∣ dk(γ) = 0 for k ≥ m and every γ ∈ C(τ)

}
. (3.4)

In case λ ≤ 0, since Dλ,τ is injective, it must restrict to an automorphism of SC(τ)
<m for each

m ∈ N, concluding the proof of (1). In case λ ≥ 1, since ker(Dλ,τ ) is one dimensional, it

follows that im(Dλ,τ ) ∩ SC(τ)
<m has codimension 1 in SC(τ)

<m for every m ≥ λ+ 1, and therefore
im(Dλ,τ ) has codimension 1 in all of SC(τ). This concludes the proof. □

Remark 3.5. This is a placeholder for a helpful remark on why the facts established in
Lemma 3.4 are the main cause for why the definition of twisted residues at torsion trees is
so much more complicated than in the case of non-torsion trees.

Definition 3.6. Let λ ∈ Z, τ ∈ T+, and set e := |C(τ)| as in Definition 2.7. We define the

0-section I(0)
λ,τ (of the map Dλ,τ of Definition 3.2) as follows. For (ck(γ)) = c ∈ SC(τ), let us

write (dk(γ)) = d = I(0)
λ,τ (c) ∈ SC(τ). We set each dk(γ) = 0 whenever k ∈ N is such that

ck(γ) = 0 for every γ ∈ C(τ). For any remaining k ∈ N, we define recursively

dk(γ) :=
γk

p(λ−k)e − 1

e−1∑
j=0

p(λ−k)jγ−kpj

[
ck
(
γpj
)
− pλ

∑
s≥k+1

V s
k,1

(
γpj
)
ds
(
γpj+1)]

for k ̸= λ;

(3.5)
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and, if λ ≥ 1, we set

dλ(γ) :=
γλ

e

e−1∑
j=0

(j + 1− e)γ−λpj

[
cλ
(
γpj
)
− pλ

∑
s≥λ+1

V s
λ,1

(
γpj
)
ds
(
γpj+1)]

. (3.6)

More generally, for any ω ∈ K the ω-section I(ω)
λ,τ (of Dλ,τ ) is defined by setting

I(ω)
λ,τ (c) :=

I(0)
λ,τ (c) if λ ≤ 0;

I(0)
λ,τ (c) + ωw(λ) if λ ≥ 1;

(3.7)

for every c ∈ SC(τ), where w(λ) is the vector defined in (3.2) for λ ≥ 1.

Remark 3.7. This is a placeholder for a helpful remark regarding why we are introducing
affine, and not just linear, sections in the above definition.

Proposition 3.8. Let λ ∈ Z, τ ∈ T+, and set e := |C(τ)| as in Definition 2.7. Let ω ∈ K
and consider the ω-section I(ω)

λ,τ of Definition 3.6. Let c ∈ SC(τ), and let us write d := I(ω)
λ,τ (c)

and c̃ := Dλ,τ (d) as in Definition 3.2. Then

ck(γ) = c̃k(γ) whenever k ̸= λ, for every γ ∈ C(γ); (3.8)

and, in case λ ≥ 1,

cλ(γ)− c̃λ(γ) =
γλ

e

e∑
j=1

γ−λpj

(
cλ

(
γpj
)
− pλ

∑
s≥λ+1

V s
λ,1

(
γpj
)
ds

(
γpj+1

))
. (3.9)

Moreover, c ∈ im(Dλ,τ ) if and only if c = c̃.

Proof. The expression (3.5) arises from a similar computation as in the proof of Lemma 3.4.
Let c ∈ SC(τ) be arbitrary, and let us try (and maybe fail), to construct d ∈ SC(τ) such that
Dλ,τ (d) = c, that is, with

ck(γ) = −dk(γ) + pλ
∑
s≥k

V s
k,1(γ)ds(γ) ⇐⇒ (3.10)

pλ−kγk−pkdk(γ
p)− dk(γ) = ck(γ)− pλ

∑
s≥k+1

V s(γ)ds(γ
p). (3.11)

Then we again have the telescoping sum(
p(λ−k)e − 1

)
γ−kdk(γ) =

e−1∑
j=0

p(λ−k)jγ−kpj ·
(
pλ−kγkpj−kpj+1

dk
(
γpj+1)− dk

(
γpj
))

=
e−1∑
j=0

p(λ−k)jγ−kpj ·

(
ck
(
γpj
)
− pλ

∑
s≥k+1

V s
k,1

(
γpj
)
ds
(
γp
))

,

which is equivalent to (3.5) provided precisely that k ̸= λ. Thus we see that (3.5) is a
necessary condition on the dk(γ) in order to satisfy (3.8). In case λ ≤ 0, we know that Dλ,τ

is an isomorphism by Lemma 3.4, in which case this condition must also be sufficient and
we have nothing more to show.
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Let us assume from now on that λ ≥ 1. Since by Lemma 3.4 the restriction of Dλ,τ to

SC(τ)
>λ :=

{
d ∈ SC(τ) ∣∣ dk(γ) = 0 for every k ≤ λ and γ ∈ C(γ)

}
is injective, and since it preserves the induced filtration (3.4), it follows that prλ◦Dλ,τ restricts

to an automorphism of SC(τ)
>λ , where prλ : SC(τ) ↠ SC(τ)

λ denotes the obvious projection map.
Therefore the necessary condition (3.5) must also be sufficient in order to satisfy (3.8) for

k > λ. Since Dλ,τ also restricts to an automorphism of SC(τ)
<λ (trivially so in case λ = 1, since

SC(τ)
<1 = {0}), it similarly follows that the necessary condition (3.7) must also be sufficient

in order to satisfy (3.8) for any k < λ also, regardless of how the dλ(γ) are chosen.
Now for the prescribed choice of dλ(γ) in (3.6), we compute

c̃λ(γ)− pλ
∑

s≥λ+1

V s
λ,1(γ)ds(γ

p) = pλV λ
λ,1(γ)dλ(γ

p)− dλ(γ) = γλ−pλdλ(γ
p)− dλ(γ), (3.12)

where the first equality follows from the definition of c̃ = Dλ,τ (d), and the second equality
from Corollary 2.16. On the other hand, after re-indexing the sum in (3.6), evaluated at γp

instead of γ, we find that

γλ−pλdλ(ω
p) =

γλ

e

e∑
j=1

(j − e)γ−λpj

[
cλ
(
γpj
)
− pλ

∑
s≥λ+1

V s
λ,1

(
γpj
)
ds
(
γpj+1)]

,

and after subtracting dλ(γ) exactly as given in (3.6) we find that

γλ−pλdλ(γ
p)− dλ(γ) = −γλ

e

e−1∑
j=1

γ−λpj

[
cλ
(
γpj
)
− pλ

∑
s≥λ+1

V s
λ,1

(
γpj
)
ds
(
γpj+1)]

− γλ

e
(1− e)γ−λ

[
cλ
(
γ
)
− pλ

∑
s≥λ+1

V s
λ,1(γ)ds

(
γp
)]

= −γλ

e

e−1∑
j=0

γ−λpj

[
cλ
(
γpj
)
− pλ

∑
s≥λ+1

V s
λ,1

(
γpj
)
ds
(
γpj+1)]

+ cλ(γ)− pλ
∑

s≥λ+1

V s
λ,1(γ)ds(γ

p),

(3.13)

with the convention that the sum
∑e−1

j=1 is empty in case e = 1. Putting (3.12) and (3.13)

together establishes (3.9). Since c = c̃ is a non-trivial sufficient for c ∈ im(Dλ,τ ), by
Lemma 3.4 it must also be necessary, since im(Dλ,τ ) has codimension 1 in SC(τ). This
concludes the proof. □

4. Mahler dispersion and λ-Mahler summability

Our goal in this section is to prove Theorem 4.2: if f ∈ K(x) is λ-Mahler summable for
some λ ∈ Z, then it has non-zero dispersion almost everywhere, generalizing to arbitrary
λ ∈ Z the analogous result for λ = 0 obtained in [AZ22b, Corollary 3.2]. In spite of the
exceptions that occur for λ ≥ 1, this will be an essential tool in our proofs that twisted
Mahler discrete residues comprise a complete obstruction to λ-Mahler summability.
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In the following preliminary result, which generalizes [AZ22b, Proposition 3.1] from the
special case λ = 0 to arbitrary λ ∈ Z, we relate the Mahler dispersions of a λ-Mahler
summable f ∈ K(x) to those of a certificate g ∈ K(x) such that f = ∆λ(g).

Proposition 4.1. Let f, g ∈ K(x) and λ ∈ Z such that f = ∆λ(g).

(1) If ∞ ∈ supp(f), then disp(f,∞) = disp(g,∞) + 1, except in case λ ̸= 0 and
the Laurent polynomial component f∞ = c0 ∈ K×, in which case we must have
g∞ = c0/(p

λ − 1).
(2) If ∞ ̸= τ ∈ supp(f), then disp(f, τ) = disp(g, τ) + 1, with the convention that

∞ + 1 = ∞, except possibly in case that: C(τ) is non-empty; and λ ≥ 1; and the
order of every pole of g in C(τ) is exactly λ.

Proof. (1). First suppose that {0} ≠ θ ∈ Z/P is such that gθ ̸= 0, and let us write

gθ =
d∑

j=0

cipjx
ipj ,

where we assume that cicipd ̸= 0, i.e., that disp(gθ,∞) = d. Then

∆λ(gθ) = pλcipdx
ipd+1 − cix

i +
d∑

j=1

(pλcipj−1 − cipj)x
ipj ,

from which it follows that 0 ̸= fθ = ∆λ(gθ) and disp(fθ,∞) = disp(∆λ(gθ),∞) = d + 1.
Since in this case Definition 2.11 gives that

disp(f,∞) = max {disp (fθ,∞) | {0} ≠ θ ∈ Z/P , fθ ̸= 0} ,
and similarly for disp(g,∞), we find that disp(f,∞) = disp(g,∞) + 1 provided that the
Laurent component g∞ ∈ K[x, x−1] is not constant.

In any case, by Lemma 2.10, if ∞ ∈ supp(f) then ∞ ∈ supp(g). In this case, we have
0 ̸= f∞ = ∆λ(g∞), since ∞ ∈ supp(f), and if λ = 0 it follows in particular g∞ /∈ K. In case
λ ̸= 0 and f∞ = c0 ∈ K×, the computation above shows that gθ = 0 for every {0} ≠ θ ∈ Z/P ,
and we see that g∞ = g{0} = c0/(p

λ − 1).
(2). Suppose τ ∈ supp(f), and therefore τ ∈ supp(g) by Lemma 2.10. We consider two

cases, depending on whether disp(g, τ) is finite or not.

If disp(g, τ) =: d < ∞, let α ∈ τ be such that α and αpd are poles of g. Choose γ ∈ τ
such that γp = α. Then γ is a pole of σ(g) but not of g (by the maximality of d), and

therefore γ is a pole of f . On the other hand, γpd+1
= αpd is a pole of g but not of σ(g), for

if αpd were a pole of σ(g) then αpd+1
would be a pole of g, contradicting the maximality of

d. Therefore γpd+1
is a pole of f . It follows that disp(f, τ) ≥ d + 1. One can show equality

by contradiction: if α ∈ τ is a pole of f such that αps is also a pole of f for some s > d+ 1,
then each of α and αps is either a pole of g or a pole of σ(g). If αps is a pole of g, then α
cannot also be a pole of g, for this would contradict the maximality of d, whence α must be
a pole of σ(g), but then αp would have to be a pole of g, still contradicting the maximality of

d. Hence αps must be a pole of σ(g). But then αps+1
is a pole of g, which again contradicts

the maximality of d whether α is a pole of σ(g) or of g. This concludes the proof that
disp(f, τ) = disp(g, τ) + 1 in this case where disp(g, τ) < ∞.
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If disp(g, τ) = ∞ then g has a pole in C(τ) by Lemma 2.12. If f also has a pole in C(τ)
then disp(f, τ) = ∞ = disp(g, τ)+ 1 and we are done. So let us suppose disp(f, τ) < ∞ and
conclude that g has a pole of order exactly λ at every γ ∈ C(τ). In this case, writing

0 ̸= C(gτ ) =
∑
k∈N

∑
γ∈C(τ)

dk(γ)

(x− γ)k
and 0 = C(fτ ) =

∑
k∈N

∑
γ∈C(τ)

ck(γ)

(x− γ)k

as in Definition 3.1, it follows from Lemma 3.3 that Dλ,τ (d) = c, where d := (dk(γ)) and

c := (ck(γ)). By Lemma 3.4, d = ωw(λ) for some 0 ̸= ω ∈ K, where w(λ) = (w
(λ)
k (γ) is the

unique vector specified in Lemma 3.4, which has every component w
(λ)
k (γ) = 0 for k > λ and

each component w
(λ)
λ (γ) = γλ ̸= 0 for γ ∈ C(τ). □

In the next result we deduce from Proposition 4.1 that if f ∈ K(x) is λ-Mahler summable
then f has non-zero dispersion almost everywhere. For the applications in the sequel, it will
be essential for us to have these restrictions be defined intrinsically in terms of f , with no
regard to any particular choice of certificate g ∈ K(x) such that f = ∆λ(g).

Theorem 4.2. Let λ ∈ Z and and suppose that f ∈ K(x) is λ-Mahler summable.

(1) If ∞ ∈ supp(f) and either λ = 0 or f∞ /∈ K then disp(f,∞) > 0.
(2) If λ ≤ 0 then disp(f, τ) > 0 for every ∞ ≠ τ ∈ supp(f).
(3) If λ ≥ 1 and ∞ ̸= τ ∈ supp(f) is such that either τ ∈ T0 or ord(f, τ) ̸= λ then

disp(f, τ) > 0.

Proof. Suppose f ∈ K(x) is λ-Mahler summable and let g ∈ K(x) such that f = ∆λ(g).
(1) and (2). If ∞ ∈ supp(f) then by Proposition 4.1 disp(f,∞) = disp(g,∞) + 1 > 0

provided that either λ = 0 or f∞ /∈ K. If λ ≤ 0 then disp(f, τ) = disp(g, τ) + 1 > 0 for all
∞ ≠ τ ∈ supp(f) by Proposition 4.1.

(3). Assuming that λ ≥ 1, we know by Proposition 4.1 that disp(f, τ) = disp(g, τ)+1 > 0
for every ∞ ≠ τ ∈ supp(f), except possibly in case τ ∈ T+ and every pole of g in C(τ) has
order exactly λ. Thus our claim is already proved for τ ∈ T0. So from now on we suppose
τ ∈ T+. By Lemma 2.10(7), ord(f, τ) = ord(g, τ), and therefore if ord(f, τ) < λ, there are
no poles of g of order λ anywhere in τ , let alone in C(τ), so disp(f, τ) = disp(g, τ) + 1 > 0
by Proposition 4.1 in this case also. Moreover, if f has a pole of any order in C(τ), then
disp(f, τ) = ∞ > 0 by Lemma 2.12. It remains to show that if m := ord(f, τ) > λ then
disp(f, τ) > 0. In this case, even though ord(g, τ) = m > λ by Lemma 2.10 it may still
happen that g has a pole of order exactly λ at every γ ∈ C(τ) and yet the higher-order poles
of g lie in the complement τ − C(τ), in which case Proposition 4.1 remains silent. So let
α1, . . . , αs ∈ sing(g, τ) be all the pairwise-distinct elements at which g has a pole of order
m > λ. Choose βj ∈ τ such that βp

j = αj for each j = 1, . . . , s, and let us write

gτ =
s∑

j=1

dj
(x− αj)m

+ (lower-order terms), so that

fτ =
s∑

j=1

(
p−1∑
i=0

pλV m
m,1(ζ

i
pβj) · dj

(x− ζ ipβj)m
− dj

(x− αj)m

)
+ (lower-order-terms)
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by Lemma 2.17. If any αj ∈ C(τ), then we already have disp(f, τ) = disp(g, τ) + 1 > 0 by
Proposition 4.1. So we can assume without loss of generality that no αj belongs to C(τ),
which implies that the (p + 1) · s apparent poles ζ ipβj and αj of fτ of order m are pairwise
distinct, and in particular no cancellations occur and these are all true poles of f of order
m. Hence disp(f, τ) ≥ 1 also in this last case where ord(f, τ) = m > λ. □

Remark 4.3. The exceptions in Theorem 4.2 cannot be omitted. If λ ̸= 0 then every
∆λ(

c
pλ−1

) = c ∈ K is λ-Mahler summable and has disp(c,∞) = 0 whenever c ̸= 0. If

λ ≥ 1 then for any γ ∈ C(τ) with ε(τ) =: e ≥ 1 one can construct (cf. Section 5.3)

g =
∑λ

k=1

∑e−1
ℓ=0 ck,ℓ · (x− γpℓ)−k such that disp(∆λ(g), τ) = 0. The simplest such example is

with λ, γ, e = 1 (and p ∈ Z≥2 still arbitrary):

f := ∆1

(
1

x− 1

)
=

p

xp − 1
− 1

x− 1
=

pV 1
1,1(1)− 1

x− 1
+

p−1∑
i=1

pV 1
1,1(ζ

i
p)

x− ζ ip
=

p−1∑
i=1

ζ ip
x− ζ ip

,

which is 1-Mahler summable but has disp(f, τ(1)) = 0. More generally, all other such
examples for arbitrary λ ≥ 1 and τ ∈ T+, of f ∈ K(x) such that fτ is λ-Mahler summable
but disp(f, τ) = 0, arise essentially from the basic construction fτ := ∆λ(gτ ) with

gτ =
λ∑

k=1

∑
γ∈C(τ)

ω · w(λ)
k (γ)

(x− γ)k

for an arbitrary constant 0 ̸= ω ∈ K and the vector w(λ) = (w
(λ)
k (γ)) defined in Lemma 3.4.

5. Twisted Mahler discrete residues

Our goal in this section is to define the λ-Mahler discrete residues of f(x) ∈ K(x) for
λ ∈ Z and prove our Main Theorem in Section 5.4, that these λ-Mahler discrete residues
comprise a complete obstruction to λ-Mahler summability. We begin with the relatively
simple construction of λ-Mahler discrete residues at ∞ (for Laurent polynomials), followed
by the construction of λ-Mahler discrete residues at Mahler trees τ ∈ T = T0 ∪ T+ (see Def-
inition 2.7), first for non-torsion τ ∈ T0, and finally for torsion τ ∈ T+, in increasing order of
complexity, and prove separately in each case that these λ-Mahler discrete residues comprise
a complete obstruction to the λ-Mahler summability of the corresponding components of f .

5.1. Twisted Mahler discrete residues at infinity. We now define the λ-Mahler discrete
residue of f ∈ K(x) at ∞ in terms of the Laurent polynomial component f∞ ∈ K[x, x−1] of
f in (2.1), and show that it forms a complete obstruction to the λ-Mahler summability of
f∞. The definition and proof in this case are both straightforward, but they provide helpful
moral guidance for the analogous definitions and proofs in the case of λ-Mahler discrete
residues at Mahler trees τ ∈ T .

Definition 5.1. For f ∈ K(x) and λ ∈ Z, the λ-Mahler discrete residue of f at ∞ is the
vector

dresλ(f,∞) =
(
dresλ(f,∞)θ

)
θ∈Z/P

∈
⊕

θ∈Z/P

K
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defined as follows. Write f∞ =
∑

θ∈Z/P fθ as in Definition 2.2, and write each component

fθ =
∑hθ

j=0 cipjx
ipj with p ∤ i whenever i ̸= 0 (that is, with each i initial in its maximal

P-trajectory θ), and where hθ = 0 if fθ = 0 and otherwise hθ ∈ Z≥0 is as large as possible
such that ciphθ ̸= 0. Then we set

dresλ(f,∞)θ := pλhθ

hθ∑
j=0

p−λjcipj for θ ̸= {0}; and dresλ(f,∞){0} :=

{
c0 if λ = 0;

0 if λ ̸= 0.

Proposition 5.2. For f ∈ K(x) and λ ∈ Z, the component f∞ ∈ K[x, x−1] in (2.1) is
λ-Mahler summable if and only if dresλ(f,∞) = 0.

Proof. By Lemma 2.3, f∞ is λ-Mahler summable if and only if fθ is λ-Mahler summable for
all θ ∈ Z/P . We shall show that fθ is λ-Mahler summable if and only if dresλ(f,∞)θ = 0.
If λ ̸= 0 then f{0} = ∆λ(

c0
pλ−1

) is always λ-Mahler summable, whilst we have defined

dresλ(f,∞){0} = 0 in this case. On the other hand, for λ = 0, f{0} = dres0(f,∞){0},
and disp(f{0},∞) = 0 if f{0} ̸= 0, whilst if f{0} = 0 then it is clearly λ-Mahler summable.
By Theorem 4.2 in case λ = 0, and trivially in case λ ̸= 0, we conclude that f{0} is λ-Mahler
summable if and only if dresλ(f,∞){0} = 0.

Now let us assume {0} ̸= θ ∈ Z/P and let us write fθ =
∑

j≥0 cipjx
ipj ∈ K[x, x−1]θ, for

the unique minimal i ∈ θ such that p ∤ i. If fθ = 0 then we have nothing to show, so suppose

fθ ̸= 0 and let hθ ∈ Z≥0 be maximal such that ciphθ ̸= 0. Letting ∆
(n)
λ := pλnσn − id as in

Lemma 2.17, we find that

f̄λ,θ := fθ +

hθ∑
j=0

∆
(hθ−j)
λ (cipjx

ipj) =

hθ∑
j=0

pλ(hθ−j)cipjx
iphθ + 0 = dresλ(f,∞)θ · xiphθ .

By Lemma 2.17, we see that fθ is λ-Mahler summable if and only if f̄λ,θ is λ-Mahler sum-
mable. Clearly, f̄λ,θ = 0 if and only if dres(f,∞)θ = 0. We also see that disp(f̄λ,θ,∞) = 0 if
dresλ(f,∞)θ ̸= 0, in which case f̄λ,θ cannot be λ-Mahler summable by Theorem 4.2, and so
fθ cannot be λ-Mahler summable either. On the other hand, if f̄λ,θ = 0 then fθ is λ-Mahler
summable by Lemma 2.17. □

Remark 5.3. The factor of pλhθ in the Definition 5.1 of dresλ(f,∞)θ for {0} ≠ θ ∈ Z/P plays
no role in deciding whether f∞ is λ-Mahler summable, but this normalization allows us to
define uniformly the f̄λ,θ = dresλ(f,∞)θ · xiphθ as the θ-component of the f̄λ ∈ K(x) in the
λ-Mahler reduction (1.2). For every {0} ≠ θ ∈ Z/P , we set hθ(f) to be the hθ defined in the
course of the proof of Proposition 5.2 in case fθ ̸= 0, and in all other cases we set hθ(f) := 0.

5.2. Twisted Mahler discrete residues at Mahler trees: the non-torsion case. We
now define the λ-Mahler discrete residues of f ∈ K(x) at non-torsion Mahler trees τ ∈ T0 in
terms of the partial fraction decomposition of the component fτ ∈ K(x)τ in Definition 2.5,
and show that it forms a complete obstruction to the λ-Mahler summability of fτ .

We begin by introducing some auxiliary notion, which already appeared in [AZ22b], but
with an unfortunately different choice of notation.
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Definition 5.4. Let τ ∈ T0, γ ∈ τ , and h ∈ Z≥0. The bouquet of height h rooted at γ is

βh(γ) :=
{
α ∈ τ | αpn = γ for some 0 ≤ n ≤ h

}
.

Lemma 5.5 (cf. [AZ22b, Lem. 4.4]). Let τ ∈ T0 and S ⊂ τ be a finite non-empty subset.
Then there exists a unique γ ∈ τ such that S ⊆ βh(γ) with h as small as possible.

Proof. This is an immediate consequence of the proof of [AZ22b, Lem. 4.4], whose focus and
notation was rather different from the one adopted here, so let us complement it here with
an alternative and more conceptual argument. As explained in [AZ22b, Remark 2.7 and
Example 2.9], we can introduce a digraph structure on τ in which we have a directed edge
α → ξ whenever αp = ξ, resulting in an infinite (directed) tree. The “meet” of the elements
of S is the unique γ ∈ τ such that S ⊆ βh(γ) with h as small as possible. □

Definition 5.6 (cf. [AZ22b, Def. 4.6]). For f ∈ K(x) and τ ∈ supp(f) ∩ T0, the height of
f at τ , denoted by ht(f, τ), is the smallest h ∈ Z≥0 such that sing(f, τ) ⊆ βh(γ) for the
unique γ ∈ τ identified in Lemma 5.5 with S = sing(f, τ) ⊂ τ . We write β(f, τ) := βh(γ),
the bouquet of f in τ . For α ∈ β(f, τ), the height of α in f , denoted by η(α|f), is the unique
0 ≤ n ≤ h such that αpn = γ.

In [AZ22b, Def. 4.10] we gave a recursive definition in the λ = 0 case of Mahler discrete
residues for non-torsion τ ∈ T0. Here we provide a non-recursive definition for λ ∈ Z
arbitrary, which can be shown to agree with the one from [AZ22b] in the special case λ = 0.

Definition 5.7. For f ∈ K(x), λ ∈ Z, and τ ∈ T0, the λ-Mahler discrete residue of f at τ
of degree k ∈ N is the vector

dresλ(f, τ, k) =
(
dresλ(f, τ, k)α

)
α∈τ

∈
⊕
α∈τ

K

defined as follows.
We set dresλ(f, τ, k) = 0 if either τ /∈ supp(f) or k > ord(f, τ) as in Definition 2.9. For

τ ∈ supp(f), let us write

fτ =
∑
k∈N

∑
α∈τ

ck(α)

(x− α)k
. (5.1)

We set dresλ(f, τ, k)α = 0 for every k ∈ N whenever α ∈ τ is such that either α /∈ β(f, τ) or,
for α ∈ β(f, τ), such that η(α|f) ̸= h, where h := ht(f, τ) and β(f, τ) are as in Definition 5.6.
Finally, for the remaining α ∈ β(f, τ) with η(α|f) = h and 1 ≤ k ≤ ord(f, τ) =: m, we

define

dresλ(f, τ, k)α :=
m∑
s=k

h∑
n=0

pλnV s
k,n(α)cs(α

pn), (5.2)

where the Mahler coefficients V s
k,n(α) are as in Proposition 2.15.

Proposition 5.8. For f ∈ K(x), λ ∈ Z, and τ ∈ T0, the component fτ is λ-Mahler summable
if and only if dresλ(f, τ, k) = 0 for every k ∈ N.
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Proof. The statement is trivial for τ /∈ supp(f) ⇔ fτ = 0. So let us suppose τ ∈ supp(f),
and let h := ht(f, τ), m := ord(f, τ), and η(α) := η(α|f) for each α ∈ β(f, τ). Writing fτ as
in (5.1), let us also write, for 0 ≤ n ≤ h,

f (n)
τ :=

m∑
k=1

∑
α∈β(f,τ)
η(α)=n

ck(α)

(x− α)k
so that fτ =

h∑
n=0

f (n)
τ .

By Lemma 2.17, for each 0 ≤ n ≤ h we have

σn
(
f (h−n)
τ

)
=

m∑
k=1

∑
α∈β(f,τ)τ
η(α)=h

∑m
s=k V

s
k,n(α)cs(α

pn)

(x− α)k
,

and therefore

∆
(n)
λ

(
f (h−n)
τ

)
= −f (h−n)

τ +
m∑
k=1

∑
α∈β(f,τ)
η(α)=h

pλn
∑m

s=k V
s
k,n(α)cs(α

pn)

(x− α)k
.

It follows from the Definition 5.7 that

f̄τ := fτ +
n∑

n=0

∆
(n)
λ

(
f (h−n)
τ

)
=

m∑
k=1

∑
α∈τ

dresλ(f, τ, k)α
(x− α)k

. (5.3)

By Lemma 2.17, f̄λ,τ −fτ is λ-Mahler summable, and therefore fτ is λ-Mahler summable if
and only if f̄λ,τ is λ-Mahler summable. If dresλ(f, τ, k) = 0 for every 1 ≤ k ≤ m, then f̄λ,τ = 0
and therefore fτ is λ-Mahler summable. On the other hand, if some dresλ(f, τ, k) ̸= 0, then
0 ̸= f̄λ,τ has disp(f̄λ,τ , τ) = 0 (see Definition 2.11), whence by Theorem 4.2 f̄λ,τ could not
possibly be λ-Mahler summable, and therefore neither could fτ . This concludes the proof
that fτ is λ-Mahler summable if and only if dresλ(f, τ, k) = 0 for every l ∈ N. □

Remark 5.9. For f ∈ K(x) and τ ∈ supp(f)∩T0, the element f̄λ,τ in (5.3) is the τ -component
of the f̄λ ∈ K(x) in the λ-Mahler reduction (1.2).

5.3. Twisted Mahler discrete residues at Mahler trees: the torsion case. We now
define the λ-Mahler discrete residues of f ∈ K(x) at torsion trees τ ∈ T+ (see Definition 2.7)
in terms of the partial fraction decomposition of the component fτ ∈ K(x)τ in Definition 2.5,
and show that it forms a complete obstruction to the λ-Mahler summability of fτ . The
definitions and proofs in this case are more technical than in the non-torsion case, involving

the cycle map Dλ,τ of Definition 3.2 and its ω-section I(ω)
λ,τ from Definition 3.6, for a particular

choice of constant ω ∈ K associated to f , which we construct in Definition 5.11.
We begin by recalling the following definition from [AZ22b], which is the torsion analogue

of Definition 5.6.

Definition 5.10 (cf. [AZ22b, Def. 4.6]). For τ ∈ T+ and α ∈ τ , the height of α, denoted by
η(α), is the smallest n ∈ Z≥0 such that αpn ∈ C(τ) (cf. Definition 2.7). For f ∈ K(x) and
τ ∈ supp(f) ∩ T+, the height of f at τ is

ht(f, τ) := max{η(α) | α ∈ sing(f, τ)},
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or equivalently, the smallest h ∈ Z≥0 such that αph ∈ C(τ) for every pole α of f in τ .

The following definition will allow us to use the correct ω-section I(ω)
λ,τ from Definition 3.6

in our construction of λ-Mahler discrete residues in the torsion case.

Definition 5.11. For f ∈ K(x) and τ ∈ supp(f) ∩ T+, let us write

fτ =
∑
k∈N

∑
α∈τ

ck(α)

(x− α)k
.

For λ ∈ Z, we define the residual average ωλ,τ (f) ∈ K of f (relative to λ and τ) as follows.
If λ ≤ 0 or if h := ht(f, τ) = 0 (cf. Definition 5.10), we simply set ωλ,τ (f) = 0. In case

both λ, h ≥ 1, let τh := {α ∈ τ | η(α) = h} be the set of elements of τ of height h. Let

us write c = (ck(γ)), for γ ranging over C(τ) only, and let (d
(0)
k (γ)) = d(0) := I(0)

λ,τ (c) as in

Definition 3.6 and (c̃k(γ)) = c̃ = Dλ,τ (d
(0)), as in Definition 3.6. Then we define

ωλ,τ (f) :=
1

(ph − ph−1)e

∑
α∈τh

∑
s≥λ

h−1∑
n=0

pλnVs
λ,nα

−spncs(α
pn)

− pλ(h−1)

e

∑
γ∈C(τ)

∑
s≥λ

Vs
λ,h−1γ

−s(c̃s(γ) + d(0)s (γ)), (5.4)

where the universal Mahler coefficients Vs
λ,n ∈ Q are defined as in Section 2.5.

The significance of this definition of the residual average ωλ,τ (f) and our choice of nomen-
clature is explained in the proof of Proposition 5.17 below (with the aid of Lemma 5.16). We
are now ready to define the λ-Mahler discrete residues at torsion Mahler trees. In [AZ22b,
Def. 4.16] we gave a recursive definition of Mahler discrete residues for torsion τ ∈ T+ in
the λ = 0 case. Here we provide a less recursive definition for λ ∈ Z arbitrary, which can
be shown to agree with the one from [AZ22b] in the special case λ = 0. This new definition

is only less recursive than that of [AZ22b] because of the intervention of the map I(ω)
λ,τ , for

which we have not found a closed form and whose definition is still essentially recursive.

Definition 5.12. For f ∈ K(x), λ ∈ Z, and τ ∈ T with τ ⊂ K×
t , the λ-Mahler discrete

residue of f at τ of degree k ∈ N is the vector

dresλ(f, τ, k) =
(
dresλ(f, τ, k)α

)
α∈τ

∈
⊕
α∈τ

K

defined as follows.
We set dresλ(f, τ, k) = 0 if either τ /∈ supp(f) or k > ord(f, τ) as in Definition 2.9. For

τ ∈ supp(f), let us write

fτ =
∑
k∈N

∑
α∈τ

ck(α)

(x− α)k
. (5.5)

We set dresλ(f, τ, k)α = 0 for every k ∈ N−{λ} whenever α ∈ τ is such that η(α) ̸= h, where
h := ht(f, τ) and η(α) are as in Definition 5.10. In case λ ≥ 1, we set dresλ(f, τ, λ)α = 0
also whenever η(α) /∈ {0, h}.
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In case h = 0, so that sing(f, τ) ⊆ C(τ), we simply set

dresλ(f, τ, k)γ := ck(γ)

for every 1 ≤ k ≤ ord(f, τ) and γ ∈ C(τ). In case h ≥ 1, let us write c = (ck(γ)) for γ

ranging over C(τ) only, and let (dk(γ)) = d := I(ω)
λ,τ (c) as in Definition 3.6, where ω := ωλ,τ (f)

(cf. Definition 5.11), and (c̃k(γ)) = c̃ := Dλ,τ (d) as in Definition 3.2. For α ∈ τ such that
η(α) = h and for 1 ≤ k ≤ ord(f, τ) =: m, we define

dresλ(f, τ, k)α :=
m∑
s=k

h−1∑
n=0

pλnV s
k,n(α)cs(α

pn)

− pλ(h−1)

m∑
s=k

Vs
k,h−1α

k−sph+e−1
(
c̃s

(
αph+e−1

)
+ ds

(
αph+e−1

))
. (5.6)

In case λ ≥ 1, for γ ∈ C(τ) we set

dresλ(f, τ, λ)γ := cλ(γ)− c̃λ(γ) =
γλ

e

e∑
j=1

γ−λpj

(
cλ(γ

pj)− pλ
∑

s≥λ+1

V s
λ,1(γ

pj)ds(γ
pj+1

)

)
.

(5.7)

Remark 5.13. The Definition 5.12 can be expressed equivalently in ways that are easier to
compute, but which require a lot of hedging. We cannot improve on the definition in case
h = 0; so let us address the case h ≥ 1. The different ingredients used in Definition 5.12
are best computed in the following order. In every case, one should first compute the vector

d(0) := I(0)
λ,τ (c) of Proposition 3.8. Every instance of c̃s in (5.4) and in (5.6) can (and should)

be replaced with cs, with the single exception of c̃λ (if it happens to occur), which should

be rewritten in terms of the cs and d
(0)
s using (3.6). There is no need to find c̃ by applying

Dλ,τ to anything. Having made these replacements, and only then, one should then compute
the residual average ω from Definition 5.11. If this ω happens to be 0 then we already have
all the required ingredients to compute our discrete residues. Only in case ω ̸= 0, we then
proceed to compute the vector w(λ) of Lemma 3.4, and by Definition 3.6 we can replace the

ds in (5.6) with d
(0)
s + ω · w(λ)

s , all of which have already been computed, and now we are
once again in possession of all the required ingredients.

We next present several preparatory Lemmas that will aid us in streamlining our proof of
Proposition 5.17 below that the λ-Mahler discrete residues just defined comprise a complete
obstruction to the λ-Mahler summability of fτ for τ ∈ T+. We hope that the reader who,
like us, finds the above Definition 5.12 painfully complicated, especially in comparison with
the relatively simpler Definition 5.7 in the non-torsion case, can begin to glimpse in the
statements of the following preliminary results the reasons for the emergence of the additional
ingredients in Definition 5.12 that are absent from Definition 5.7. This is why we have chosen
to present them first, and postpone their proofs until after their usefulness has become
apparent in the proof of Proposition 5.17.

Lemma 5.14. Let f ∈ K(x), λ ∈ Z, and τ ∈ supp(f, τ) ∩ T+. If ht(f, τ) = 0 then fτ is not
λ-Mahler summable.
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Lemma 5.15. Let λ ∈ Z and τ ∈ T+, and set e := |C(τ)| as in Definition 2.7. Let f ∈ K(x),
and let us write the cyclic component

C(fτ ) =
∑
k∈N

∑
γ∈C(τ)

ck(γ)

(x− γ)k
,

as in Definition 3.1, and let us write c = (ck(γ)) ∈ SC(τ). Let ω ∈ K be arbitrary, and let us

write d = (dk(γ)) = I(ω)
λ,τ (c) as in Definition 3.6 and c̃ = Dλ,τ (d) as in Definition 3.2. Set

g0 :=
∑
k∈N

∑
γ∈C(τ)

dk(γ)

(x− γ)k
and g1 := −

∑
k∈N

∑
γ∈C(τ)

p−1∑
i=1

ζkip (c̃k(γ) + dk(γ))

(x− ζ ipγ)
k

. (5.8)

Then

C(fτ )−∆λ(g0) =


g1 if λ ≤ 0;

g1 +
∑

γ∈C(τ)

cλ(γ)− c̃(γ)

(x− γ)λ
if λ ≥ 1. (5.9)

Moreover, for any h ≥ 1, writing τh := {α ∈ τ | η(α) = h}, we have

σh−1(g1) = −
∑
k∈N

∑
α∈τh

∑
s≥k Vs

k,h−1α
k−sph+e−1

(
c̃s

(
αph+e−1

)
+ ds

(
αph+e−1

))
(x− α)k

. (5.10)

Lemma 5.16. Let λ ≥ 1, h ≥ 1, f̄τ ∈ K(x)τ , and τ ∈ supp(f̄) ∩ T+ such that ord(f̄ , τ) = λ
and sing(f, τ) ⊆ τh = {α ∈ τ | η(α) = h}, so that we can write

f̄τ =
λ∑

k=1

∑
α∈τh

c̄k(α)

(x− α)k
.

If f̄τ is λ-Mahler summable then all the elements α−λc̄λ(α) are equal to the constant

ω̄ =
1

|τh|
∑
α∈τh

α−λc̄λ(α),

which is their arithmetic average. Letting e := |C(τ)|, we have |τh| = (ph − ph−1)e.

Proposition 5.17. For f ∈ K(x), λ ∈ Z, and τ ∈ T+, the component fτ is λ-Mahler
summable if and only if dresλ(f, τ, k) = 0 for every k ∈ N.

Proof. The statement is trivial for τ /∈ supp(f) ⇔ fτ = 0. If ht(f, τ) = 0 then 0 ̸= fτ cannot
be λ-Mahler summable by Lemma 5.14, whereas in this case we defined dres(f, τ, k)γ = ck(γ)
in Definition 5.12, and we obtain our conclusion vacuously in this case.

From now on we assume τ ∈ supp(f), and let h := ht(f, τ) ≥ 1, m := ord(f, τ), and
ω := ωλ,τ (f). Writing fτ as in (5.5), let τn := {α ∈ τ | η(α) = n} for n ∈ Z≥0 and let us also
write

f (n)
τ :=

m∑
k=1

∑
α∈τn

ck(α)

(x− α)k
so that fτ =

h∑
n=0

f (n)
τ .
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The same computation as in the proof of Proposition 5.8 yields

f̃λ,τ := fτ +
h−1∑
n=0

∆
(n)
λ (f (h−n)

τ ) =
m∑
k=1

∑
α∈τh

∑
s≥k

∑h−1
n=0 p

λnV s
k,n(α)cs(α

pn)

(x− α)k
+

m∑
k=1

∑
γ∈C(τ)

ck(γ)

(x− γ)k
.

(5.11)
Let us now write, as in Definition 5.12, c = (ck(γ)) for γ ranging over C(τ) = τ0 only,

(dk(γ)) = d := I(ω)
λ,τ (c), and (c̃k(γ)) = c̃ := Dλ,τ (d). Writing g0 and g1 as in (5.8), it follows

from Lemma 5.15 and Definition 5.12 that

f̄λ,τ := f̃λ,τ −∆λ(g0) + ∆
(h−1)
λ (g1) =

m∑
k=1

∑
α∈τ

dresλ(f, τ, k)α
(x− α)k

. (5.12)

By a twofold application of Lemma 2.17, to (5.11) and to (5.12), we find that

fτ is λ-Mahler summable ⇐⇒ f̃λ,τ is λ-Mahler summable ⇐⇒ f̄λ,τ is λ-Mahler summable.

On the other hand, we see from (5.12) that f̄λ,τ = 0 if and only if dresλ(f, τ, k) = 0 for every
k ∈ N. Therefore we immediately conclude that if dresλ(f, τ, k) = 0 for every k ∈ N then
fτ is λ-Mahler summable. Moreover, in case λ ≤ 0, if fτ is λ-Mahler summable, so that
f̄λ,τ is also λ-Mahler summable, then we must have f̄λ,τ = 0, for otherwise we would have
disp(f̄λ,τ , τ) = 0, contradicting Theorem 4.2(2). This concludes the proof of the Propostion
in case λ ≤ 0.
It remains to prove the converse in the case where λ ≥ 1: assuming fτ is λ-Mahler

summable, we must have dresλ(f, τ, k) = 0 for every k ∈ N. By Proposition 3.8, we must
have c = c̃, and therefore dresλ(f, τ, k)γ = cλ(γ) − c̃λ(γ) = 0 for every γ ∈ C(τ), whence
sing(f̄λ,τ , τ) ⊆ τh by the Definition 5.12 of dresλ(f, τ, k). Moreover, if we had f̄λ,τ ̸= 0,
contrary to our contention, then we would have disp(f̄λ,τ , τ) = 0, and by Theorem 4.2(3)
this can only happen in case ord(f̄λ,τ , τ) = λ. So we already conclude that dresλ(f, τ, k) = 0
for every k > λ if fτ is λ-Mahler summable. If we can further show that dresλ(f, τ, λ) = 0
also, then this will force ord(f̄λ,τ , τ) ̸= λ and we will be able to conclude that actually
dresλ(f, τ, k) = 0 for every k ∈ N, as we contend, by another application of Theorem 4.2.

Thus it remains to show that if fτ is λ-Mahler summable then dresλ(f, τ, λ) = 0, which
task will occupy us for the rest of the proof. We already know that dresλ(f, τ, k) = 0 for every
k > λ and dresλ(f, τ, λ)γ = 0 for every γ ∈ C(τ), and therefore f̄λ,τ satisfies the hypotheses
of Lemma 5.16 by (5.12) and the Definition 5.12. So let us write c̄k(α) := dresλ(f, τ, k)α as
in Lemma 5.16, so that

f̄λ,τ =
λ∑

k=1

∑
α∈τh

c̄k(α)

(x− α)k
,

and compute the arithmetic average ω̄ of the elements α−λc̄λ(α) for α ranging over τh, which
must be equal to α−λc̄λ(α) for each α ∈ τh by Lemma 5.16. Firstly, we see that

1

|τh|
∑
α∈τh

α−λ

(∑
s≥λ

h−1∑
n=0

pλnV s
λ,n(α)cs(α

pn)

)
=

1

(ph − ph−1)e

∑
α∈τh

∑
s≥λ

h−1∑
n=0

pλnVs
λ,nα

−spncs(α
pn),
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since V s
λ,n(α) = Vs

λ,n ·αλ−spn by Lemma 2.13. Secondly, we find that in the remaining portion

of the average of α−λc̄λ(α) = α−λdresλ(f, τ, λ)α for α ranging over τh,

1

|τh|
∑
α∈τh

α−λ

(
−pλ(h−1)

∑
s≥λ

Vs
λ,h−1α

λ−sph+e−1
(
c̃s

(
αph+e−1

)
+ ds

(
αph+e−1

)))

=
−pλ(h−1)

(ph − ph−1)e

∑
α∈τh

∑
s≥λ

Vs
λ,h−1

((
αph
)pe−1

)−s(
c̃s

((
αph
)pe−1

)
+ ds

((
αph
)pe−1

))
,

(5.13)

the summands depend only on αph = γ ∈ C(τ). For each γ ∈ C(τ), the set {α ∈ τh | αph = γ}
has ph − ph−1 elements: there are (p− 1) distinct pth-roots of γ that do not belong to C(τ),
and then there are ph−1 distinct (ph−1)th roots of each of those elements. Therefore the
expression in (5.13) is equal to the simpler

−pλ(h−1)

e

∑
γ∈C(τ)

∑
s≥λ

Vs
λ,h−1γ

−s(c̃s(γ) + ds(γ)),

whence the average

ω̄ :=
1

|τh|
∑
α∈τh

α−λc̄λ(α) =
1

(ph − ph−1)e

∑
α∈τh

h−1∑
n=0

∑
s≥λ

pλnVs
λ,nα

−spncs(α
pn)

− pλ(h−1)

e

∑
γ∈C(τ)

∑
s≥λ

Vs
λ,h−1γ

−s(c̃s(γ) + ds(γ))). (5.14)

Note that this is not necessarily the same as the similar expression for the residual average

ωλ,τ (f) from Definition 5.11, which was defined with respect to (d
(0)
k (γ)) = d(0) := I(0)

λ,τ (c) as

ωλ,τ (f) =
1

(ph − ph−1)e

∑
α∈τh

∑
s≥λ

h−1∑
n=0

pλnVs
λ,nα

−spncs(α
pn)

− pλ(h−1)

e

∑
γ∈C(τ)

∑
s≥λ

Vs
λ,h−1γ

−s(c̃s(γ) + d(0)s (γ)).

And yet, ds(γ) = d
(0)
s (γ) for every s > λ and γ ∈ C(τ) by Proposition 3.8 and

dλ(γ) = ωλ,τ (f) · γλ + d
(0)
λ (γ)
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for each γ ∈ C(τ) by the Definition 3.6 of I(0)
λ,τ and of I(ω)

λ,τ with ω = ωλ,τ (f). By Corollary 2.16,

Vλ
λ,h−1 = p−λ(h−1), and therefore we find from (5.14) that

ω̄ =
1

(ph − ph−1)e

∑
α∈τh

h−1∑
n=0

∑
s≥λ

pλnVs
λ,nα

−spncs(α
pn)

−pλ(h−1)

e

∑
γ∈C(τ)

∑
s≥λ+1

Vs
λ,h−1γ

−s(c̃s(γ)+d(0)s (γ)))−pλ(h−1)

e

∑
γ∈C(τ)

Vλ
λ,h−1γ

−λ(c̃λ(γ)+ωγλ+d
(0)
λ (γ))

= ω − pλ(h−1)

e

∑
γ∈C(τ)

p−λ(h−1)γ−λγλω = ω − ω = 0.

Since we must have c̄λ(α) = dresλ(f, τ, λ)α = αλω̄ in (5.14) for each α ∈ τh by Lemma 5.16,
it follows that dresλ(f, τ, λ) = 0, concluding the proof of Proposition 5.17. □

Remark 5.18. For f ∈ K(x) and τ ∈ supp(f) ∩ T+, the element f̄λ,τ in (5.12) is the τ -
component of the f̄λ ∈ K(x) in the λ-Mahler reduction (1.2).

We conclude this section by providing the proofs of the preliminary Lemmas that we used
in the proof of Proposition 5.17.

Proof of Lemma 5.14. It suffices to show that for any g ∈ K(x) such that gτ ̸= 0 we have
ht(∆λ(g), τ) ≥ 1. So let us write m := ord(g, τ), h := ht(g, τ), τn := {α ∈ τ | η(α) = n} for
n ∈ Z≥0, and

0 ̸= gτ =
m∑
k=1

h∑
n=0

∑
α∈τn

dk(α)

(x− α)k
.

Then

∆λ(g) =
∑

α∈τh+1

pλV m
m,1(α)dm(α

p)

(x− α)m
+ (lower-order or lower-height terms),

and since pλV m
m,1(α) = pλ−mαm−pm by Corollary 2.16 and at least one dm(α

p) ̸= 0 for some
α ∈ τh+1 by assumption, we conclude that ∆λ(g) has at least one pole in τh+1 and therefore
ht(∆λ(g), τ) = h+ 1 ≥ 1, as claimed. □

Proof of Lemma 5.15. It follows from (2.4) and Lemma 3.3 that

∆λ(g0) =
∑
k∈N

∑
γ∈C(τ)

c̃k(γ)

(x− γ)k
+
∑
k∈N

∑
γ∈C(τ)

p−1∑
i=1

pλ
∑

s≥k V
s
k,1(ζ

i
pγ)ds(γ

p)

(x− ζ ipγ)
k

.

To see that

pλ
∑
s≥k

V s
k (ζ

i
pγ)ds(γ

p) = ζkip (c̃k(γ) + dk(γ)),

note that by Lemma 2.13

V s
k,1(ζ

i
pγ) = (ζ ipγ)

k−sp · Vs
k,1 = ζkip V s

k,1(γ)
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for every s ≥ k simultaneously, and

pλ
∑
s≥k

V s
k,1(γ)ds(γ

p) = c̃k(γ) + dk(γ)

by the definition of c̃ = Dλ,τ (d) and that of the map Dλ,τ in Definition 3.2. For γ ∈ C(τ)
and 1 ≤ i ≤ p− 1, let S(γ, i) :=

{
α ∈ τ

∣∣ αph−1
= ζ ipγ

}
. Then τh is the disjoint union of the

sets S(γ, i), and it follows from Lemma 2.17 that, for each γ ∈ C(τ) and 1 ≤ i ≤ p− 1,

σh−1

(∑
k∈N

ζ ikp (c̃k(γ) + dk(γ))

(x− ζ ipγ)
k

)
=
∑
k∈N

∑
α∈S(γ,i)

∑
s≥k V

s
k,h−1(α)ζ

is
p (c̃s(γ) + ds(γ))

(x− α)k
. (5.15)

For each α ∈ S(γ, i) ⇔ αph−1
= ζ ipγ, we compute

αph+e−1

=
(
αph−1

)pe
=
(
ζ ipγ
)pe

= γ and ζ isp =
(
αph−1

γ−1
)s

= αsph−1(1−pe),

and therefore we can rewrite each summand

V s
k,h−1(α)ζ

is
p (c̃s(γ) + ds(γ)) = V s

k,h−1(α)α
sph−1(1−pe)

(
c̃s

(
αph+e−1

)
+ ds

(
αph+e−1

))
.

By Lemma 2.13, V s
k,h−1(α) = Vs

k,h−1 · αk−sph−1
, and therefore

V s
k,h−1(α)α

sph−1(1−pe) = Vs
k,h−1 · αk−sph−1 · αsph−1(1−pe) = Vs

k,h−1α
k−sph+e−1

.

Hence (5.15) is equal to

∑
k∈N

∑
α∈S(γ,i)

∑
s≥k Vs

k,h−1α
k−sph+e−1

(
c̃s

(
αph+e−1

)
+ ds

(
αph+e−1

))
(x− α)k

,

and our result follows by summing over γ ∈ C(γ) and 1 ≤ i ≤ p− 1. □

Proof of Lemma 5.16. First of all, |τh| = (ph − ph−1)e because there are e elements in C(τ),
each of which has (p − 1) distinct pth roots (of height 1) that do not belong to C(τ), and
each of these latter elements has ph−1 distinct (ph−1)th distinct roots – it follows from the
Definition 5.10 that α ∈ τ has height η(α) = h if and only if α is a (ph−1)th root of an
element of height 1. Moreover, the elements α−λc̄λ(α) are all equal to one another if and
only if they are all equal to their arithmetic average. So it remains to show that α−λc̄λ(α)
is independent of α.

Now let gτ ∈ K(x)τ such that f̄τ = ∆λ(gτ ). By Lemma 2.10(7), ord(g, τ) = ord(f, τ) = λ,
so we can write

gτ =
λ∑

k=1

h−1∑
n=0

∑
α∈τn

dk(α)

(x− α)k
,

because if g had a pole in τn for some n ≥ h then ∆λ(gτ ) = fτ would have a pole in
τn+1, contradicting our assumptions. Let d = (dk(γ)) for γ ranging over C(τ) only. Since
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∆λ(gτ ) = fτ has no poles in C(τ), we must have d ∈ ker(Dλ,τ ) by Lemma 3.3. In particular,
for each γ ∈ C(τ) we must have

0 = cλ(γ) = (Dλ,τ (d))λ,γ = −dλ(γ) +
∑
s≥λ

pλV s
λ,1(γ) = γλ−pλdλ(γ

p)− dλ(γ),

since ds(γ) = 0 for every s > λ and γ ∈ C(τ) and V λ
λ,1(γ) = p−λγλ−pλ by Corollary 2.16,

and therefore γ−λdλ(γ) = ω̄ is a constant that does not depend on γ ∈ C(τ). This is the
base case n = 0 of an induction argument showing that α−λdλ(α) = ω̄ is independent of
α ∈ τn for 0 ≤ n ≤ h − 1. Indeed, it follows from Lemma 2.17 and our assumption that
sing(f, τ) ∩ C(τ) = ∅ that

∆λ

(
h−1∑
n=0

∑
α∈τn

dλ(α)

(x− α)λ

)
=

h−1∑
n=0

∑
α∈τn+1

pλV λ
λ,1(α)dλ(α

p)− dλ(α)

(x− α)λ
+ (lower-order terms)

=
h−1∑
n=0

∑
α∈τn+1

αλ · ((αp)−λdλ(α
p))− dλ(α)

(x− α)λ
+ (lower-order terms)

=
∑
α∈τh

c̄λ(α)

(x− α)λ
+ (lower-order terms), (5.16)

where the second equality follows from the computation V λ
λ,1(α) = p−λαλ−pλ in Corollary 2.16.

In case h = 1 we have already concluded our induction argument. In case h ≥ 2, we proceed
with our induction argument and find from (5.16) that we must have

αλ · ((αp)−λdλ(α
p))− dλ(α) = 0 ⇐⇒ α−λdλ(α) = (αp)−λdλ(α

p) = ω̄

for each α ∈ τn+1 whenever n + 1 ≤ h − 1, since αp ∈ τn for such an α, concluding our
induction argument. Finally, since dλ(α) = 0 for α ∈ τh, we find again that

c̄λ(α) = αλ · ((αp)−λdλ(α
p)) = αλω̄

for α ∈ τh, since dλ(α) = 0 and αp ∈ τh−1 for such α, whence each dλ(α
p) = αpλω̄. □

5.4. Proof of the Main Theorem. Let us now gather our earlier results into a formal
proof of the Main Theorem stated in the introduction, that the λ-Mahler discrete residue at
∞ constructed in Definition 5.1 for the Laurent polynomial component f∞, together with
the λ-Mahler discrete residues at Mahler trees τ ∈ T constructed in Definition 5.7 for non-
torsion τ ∈ T0 and in Definition 5.12 for torsion τ ∈ T+, comprise a complete obstruction to
the λ-Mahler summability problem.

Theorem 1.1. For λ ∈ Z, f ∈ K(x) is λ-Mahler summable if and only if dresλ(f,∞) = 0
and dresλ(f, τ, k) = 0 for every τ ∈ T and every k ∈ N.
Proof. Let f ∈ K(x). By Lemma 2.1, f is λ-Mahler summable if and only if both f∞ and
fT are Mahler summable. By Proposition 5.2, f∞ is λ-Mahler summable if and only if
dres(f,∞) = 0. By Lemma 2.6, fT is λ-Mahler summable if and only if fτ is λ-Mahler
summable for each τ ∈ T = T0 ∪ T+. By Proposition 5.8 in the non-torsion case τ ∈ T0,
and by Proposition 5.17 in the torsion case τ ∈ T+, fτ is λ-Mahler summable if and only if
dresλ(f, τ, k) = 0 for every k ∈ N. □
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5.5. Mahler reduction. We can now define the λ-Mahler reduction f̄λ of f ∈ K(x) in (1.2),
in terms of the local reductions constructed in the proofs of Proposition 5.2, Proposition 5.8,
and Proposition 5.17:

f̄λ :=
∑

θ∈Z/P

f̄λ,θ +
∑
τ∈T

f̄λ,τ =
∑

θ∈Z/P

dresλ(f,∞)θ · xiθhθ(f) +
∑
k∈N

∑
τ∈T

∑
α∈τ

dresλ(f, τ, k)α
(x− α)k

. (5.17)

We refer to Remark 5.3, Remark 5.9, and Remark 5.18 for more details.
In the un-twisted case where λ = 0, we had already defined 0-Mahler discrete residues

in [AZ22b], where we proved that they comprise a complete obstruction to what we call here
the 0-Mahler summability problem. That the dres(f,∞) of [AZ22b, Def. 4.1] agrees with
the dres0(f,∞) of Definition 5.1 is immediately clear from the formulas. In contrast, the
Mahler discrete residues dres(f, τ, k) at non-torsion Mahler trees τ ∈ T0 in [AZ22b, Def. 4.10]
were defined recursively, using the Mahler coefficients V s

k,1(α) only, whereas here we provide
closed formulas using the full set of Mahler coefficients V s

k,n with n ≥ 1 for dres0(f, τ, k)
in Definition 5.7. Similarly, the Mahler discrete residues at torsion Mahler trees τ ∈ T+

in [AZ22b, Def. 4.16] are defined recursively and in terms of an auxiliary K-linear map
(see [AZ22b, Def. 4.15]), whereas here we provide a closed formulas in terms of a different2

auxiliary K-linear map I(0)
0,τ in Definition 5.12. It is not clear at all (to us) from their

respective definitions that the dres(f, τ, k) of [AZ22b] should agree with the dres0(f, τ, k)
defined here. And yet, they do.

Proposition 5.19. The Mahler discrete residues dres(f, τ, k) of [AZ22b] coincide with the
0-Mahler discrete residues dres0(f, τ, k) in Definitions 5.7 and 5.12.

Proof. It is clear from [AZ22b, Defs. 4.10 and 4.16] and Definitions 5.7 and 5.12 that the
support of both vectors dres(f, τ, k) and dres0(f, τ, k) is contained in the set of α ∈ τ such
that η(α|f) = ht(f, τ) in the non-torsion case (see Definition 5.6) and such that η(α) =
ht(f, τ) in the torsion case (see Definition 5.10). In the torsion case τ ∈ T+ such that
ht(f, τ) = 0, it is immediately clear from the definitions that dres(f, τ, k) = dres0(f, τ, k),
so we can assume without loss of generality that either τ ∈ T0 or ht(f, τ) ≥ 1. In [AZ22b,
Equation (4.16)] we constructed a Mahler reduction

f̄τ =
∑
k∈N

∑
α∈τ

dres(f, τ, k)α
(x− α)k

such that f̄τ − f is Mahler summable (see [AZ22b, §4.4]), whereas here we have constructed
an analogous f̄0,τ in (5.17) with the same property that f̄0,τ − fτ is 0-Mahler summable.
Therefore

(f̄0,τ − fτ )− (f̄τ − fτ ) = f̄0,τ − f̄τ =
∑
k∈N

∑
α∈τ

dres0(f, τ, k)α − dres(f, τ, k)α
(x− α)

is 0-Mahler summable. If we had f̄0,τ ̸= f̄τ then disp(f̄0,τ − f̄τ , τ) = 0 would contradict
Theorem 4.2, so we conclude that dres0(f, τ, k) = dres(f, τ, k) for every τ ∈ T and k ∈ N. □

2The auxiliary K-linear map in [AZ22b, Def. 4.15] is essentially a truncated version of the map I(0)
0,e of

Definition 3.6, in terms of the latter of which we defined I(0)
0,τ (cf. Corollary ??).
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6. Differential relations among solutions of first-order Mahler equations

Let us now consider the differential structures that we shall consider for the most imme-
diate applications of our λ-Mahler discrete residues. We denote by

∂ := x
d

dx

the unique K-linear derivation on K(x) such that ∂(x) = x. We immediately compute that
pσ ◦ ∂ = ∂ ◦ δ as derivations on K(x). In order to remedy this, one can proceed as proposed
by Michael Singer (see [DHR18]), to work in the overfield K(x, log x) and introduce the
derivation

δ = x log x
d

dx
= log x · ∂.

We insist that the notation log x is meant to be suggestive only: here log x is a new tran-
scendental element satisfying σ(log x) = p · log x and ∂(log x) = 1. Using these properties
alone, one can verify that δ ◦ σ = σ ◦ δ as derivations on all of K(x, log x).

The following computational result is a Mahler analogue of [AZ22a, Lem. 3.4], and of
an analogous and more immediate computation in the shift case, which occurs in the proof
of [Arr17, Cor. 2.1]. We wish to emphasize that the computation is actually quite straight-
forward in the case of λ-Mahler discrete residues at non-torsion Mahler trees τ ∈ T0, and in
contrast, rather involved for torsion Mahler trees τ ∈ T+, to to the additional ingredients
involved in that case.

Lemma 6.1. Let 0 ̸= a ∈ K(x). For λ ≥ 1, τ ∈ T , and α ∈ τ ,

dresλ

(
∂λ−1

(
∂(a)

a

)
, τ, λ

)
α

= (−1)λ−1(λ− 1)!αλ−1 · dres1
(
∂(a)

a
, τ, 1

)
α

∈ Q · αλ.

Proof. Let a = b
∏

α∈K(x− α)m(α), where 0 ̸= b ∈ K and m(α) ∈ Z, almost all zero, and let

f :=
∂(a)

a
= c(0) +

∑
α∈K×

m(α)x

x− α
=
∑
α∈K

m(α) +
∑
α∈K×

α ·m(α)

x− α
.

Then we compute, using a similar induction argument as in [AZ22a, Lem. 3.4], that for
τ ∈ T and λ ≥ 1:

∂λ−1(f)τ =
∑
α∈τ

(−1)λ−1(λ− 1)!αλm(α)

(x− α)λ
+ (lower-order terms) =

λ∑
k=1

∑
α∈τ

c
[λ]
k (α)

(x− α)k
, (6.1)

where the notation c
[λ]
k (α) is meant to let us directly apply the definitions of λ-Mahler discrete

residues of degree λ of ∂λ−1(f) and more easily compare them with one another. In fact, as

we shall see, we will only need to know that c
[1]
1 (α) = α ·m(α), and more generally

c
[λ]
λ (α) = (−1)λ−1(λ− 1)!αλm(α) = (−1)λ−1(λ− 1)!αλ−1c

[1]
1 (α). (6.2)

We shall also repeatedly use the results from Lemma 2.13 and Corollary 2.16, that

V λ
λ,n(α) = Vλ

λ,nα
λ−λpn = p−λnαλ−λpn ,

without further comment.
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For τ ∈ supp(f) ∩ T0, let h := ht(f, τ), and let α ∈ β(f, τ) such that η(α|f) = h
(cf. Definition 5.6). Then by Definition 5.7

dresλ(∂
λ−1(f), τ, λ)α =

h∑
n=0

pλnV λ
λ,n(α)c

[λ]
λ (αpn) =

h∑
n=0

pλnp−nλαλ−λpnc
[λ]
λ (αpn)

= (−1)λ−1(λ− 1)!αλ

h∑
n=0

m(αpn) = (−1)λ−1(λ− 1)!αλ−1dres1(f, τ, 1)α ∈ Q · αλ.

For τ ∈ supp(f) ∩ T+, let us first suppose ht(f, τ) = 0 as in Definition 5.10, and compute
immediately for γ ∈ C(τ),

dresλ(∂
λ−1(f), τ, λ)γ = c

[λ]
λ (γ) = (−1)λ−1(λ−1)!γλm(γ) = (−1)λ−1(λ−1)!γλ−1dres1(f, τ, 1)γ,

which clearly belongs to Q · γλ. On the other hand, if h := ht(f, τ) ≥ 1, we compute for
γ ∈ C(τ) using (5.7)

dresλ(∂
λ−1(f), τ, λ)γ =

γλ

e

e∑
j=1

γ−λpjc
[λ]
λ (γpj) =

γλ

e

e∑
j=1

γ−λpj(−1)λ−1(λ− 1)!γλpjm(γpj)

= (−1)λ−1(λ− 1)!
γλ

e

e∑
j=1

m(γpj) = (−1)λ−1(λ− 1)!γλ−1dres1(f, τ, 1)γ ∈ Q · γλ (6.3)

Before computing the α-component of dresλ(∂
λ−1(f), τ, λ) for α ∈ τ such that η(α) = h,

we must first compute a few preliminary objects (cf. Remark 5.13). Consider the vector

d[λ] := I(0)
λ,τ (c

[λ]) as in Definition 3.6, and let us compute in particular as in (3.6):

d
[λ]
λ (γ) =

γλ

e

e−1∑
j=0

(j+1−e)γ−λpjc
[λ]
λ (γpj) =

γλ

e

e−1∑
j=0

(j+1−e)γ−λpj ·(−1)λ−1(λ−1)!γλpjm(γpj)

= (−1)λ−1(λ− 1)!
γλ

e

e−1∑
j=0

(j + 1− e)m(γpj) = (−1)λ−1(λ− 1)!γλ−1d
[1]
1 (γ). (6.4)

The λ-components of c̃[λ] := Dλ,τ (d
[λ]) are simply given by

c̃
[λ]
λ (γ) = c

[λ]
λ (γ)− dresλ(∂

λ−1(f), τ, λ)γ

by Proposition 3.8 and (5.7). Therefore, for each γ ∈ C(τ),

c̃
[λ]
λ (γ) + d

[λ]
λ (γ) =

(−1)λ−1(λ− 1)!γλ

e

e∑
j=1

(j − e)m(γpj). (6.5)

With this, we next compute the residual average (cf. Definition 5.11), for which we compute
separately the two long sums appearing in (5.4). First, the sum over elements of positive
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height

ω
(+)
λ,τ (∂

λ−1(f)) =
1

(ph − ph−1)e

∑
α∈τh

h−1∑
n=0

pλnVλ
λ,nα

−λpnc
[λ]
λ (αpn)

=
(−1)λ−1(λ− 1)!

(ph − ph−1)e

∑
α∈τh

h−1∑
n=0

m(αpn) = (−1)λ−1(λ− 1)! · ω(+)
1,τ (f). (6.6)

Second, the sum over the elements of zero height

ω
(0)
λ,τ (∂

λ−1(f)) =
pλ(e−1)

e

∑
γ∈C(τ)

Vλ
λ,h−1γ

−λ(c̃[λ](γ) + d
[λ]
λ (γ))

=
(−1)λ−1(λ− 1)!

e2

∑
γ∈C(τ)

e∑
j=1

(j − e)m(γpj) = (−1)λ−1(λ− 1)! · ω(0)
1,τ (f). (6.7)

Now putting together (6.6) and (6.7) we obtain

ωλ,τ (∂
λ−1(f)) = ω

(+)
λ,τ (∂

λ−1(f))− ω
(0)
λ,τ (∂

λ−1(f)) = (−1)λ−1(λ− 1)! · ω1,τ (f), (6.8)

where

ω1,τ (f) = ω
(+)
1,τ (f)− ω

(0)
1,τ (f) =

1

(ph − ph−1)e

∑
α∈τ

η(α>0

m(α)− e− e2

2e2

∑
γ∈C(τ)

m(γ) ∈ Q. (6.9)

Since the vector w(λ) of Lemma 3.4 satisfies w
(λ)
λ (γ) = γλ = γλ−1w

(1)
1 (γ), we finally compute

dresλ(∂
λ−1(f), τ, λ)α =

h−1∑
n=0

pnλV λ
λ,n(α)c

[λ]
λ (αpn)

− pλ(h−1)Vλ
λ,h−1α

λ−λph+e−1

(c̃
[λ]
λ (αph+e−1

) + d
[λ]
λ (αph+e−1

) + ωλ,τ (∂
λ−1(f))w

(λ)
λ (αph+e−1

))

= (−1)λ−1(λ− 1)!αλ

[
h−1∑
n=0

m(αpn)− 1

e

e∑
j=1

(j − e)m(αph+j−1

) + ω1,τ (f)

]
= (−1)λ−1(λ− 1)!αλ−1dres1(f, τ, 1)α ∈ Q · αλ. (6.10)

This concludes the proof of the Lemma. □

With this preliminary computation now out of the way, we can prove our first application
of λ-Mahler discrete residues in the following result, which is a Mahler analogue of [Arr17,
Cor. 2.1] in the shift case and [AZ22a, Prop. 3.5] in the q-dilation case.

Proposition 6.2. Let U be a σ∂-K(x, log x)-algebra such that Uσ = K. Let a1, . . . , at ∈
K(x)− {0}, and suppose y1, . . . , yt ∈ U× satisfy

σ(yi) = aiyi for i = 1, . . . , t.
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Then y1, . . . , yt are ∂-dependent over K(x) if and only if there exist k1, . . . , kt ∈ Z, not all
zero, and g ∈ K(x), such that

t∑
i=1

ki
∂ai
ai

= pσ(g)− g. (6.11)

Proof. First, suppose there exist k1, . . . , kt ∈ Z and g ∈ K(x) satisfying (6.11). Consider

σ

(
t∑

i=1

δyi
yi

− g log x

)
−

(
t∑

i=1

δyi
yi

− g log x

)
= log x

(
t∑

i=1

∂ai
ai

− (pσ(g)− g)

)
= 0,

and therefore
t∑

i=1

δyi
yi

− g log x ∈ Uσ = K,

and therefore y1, . . . , yt are δ-dependent over K(x, log x), which is equivalent to them being
∂-dependent over K(x), since log x is ∂-algebraic over K(x).
Now suppose y1, . . . , yt are ∂-dependent over K(x). Then there exist linear differential

operators Li ∈ K[δ], not all zero, such that

t∑
i=1

Li

(
δ(ai)

ai

)
= σ(G)−G

for some G ∈ K(x, log x). Let λ ≥ 1 be as small as possible such that ord(Li) ≤ λ − 1 for
every 1 ≤ i ≤ t. Then we must have

G =
λ∑

ℓ=1

gℓ log
ℓ x with g1, . . . , gλ ∈ K(x).

Moreover, writing each Li =
∑λ−1

j=0 ki,jδ
j, we must also have

t∑
i=1

ki,λ−1∂
λ−1

(
∂ai
ai

)
= pλσ(gλ)− gλ. (6.12)

Without loss of generality we can reduce to the situation where, for each τ ∈ T0 and for
each 1 ≤ i ≤ t such that τ ∈ supp(∂ai

ai
) we have the same bouquet β(∂ai

ai
, τ) (cf. Definition 5.6,

and similarly that for each τ ∈ T+ and for each 1 ≤ i ≤ t such that τ ∈ supp(∂ai
ai
) we have

ht(∂ai
ai
, τ) the same constant for each i = 1, . . . , t. Under these conditions, (6.12) implies that

t∑
i=1

ki,λ−1dresλ

(
∂λ−1

(
∂ai
ai

)
, τ, λ

)
= 0

for every τ ∈ T . But by Lemma 6.1, this is equivalent to
t∑

i=1

ki,λ−1dres1

(
∂ai
ai

, τ, 1

)
= 0,

and since each dres1(
∂ai
ai
, τ, 1)α ∈ Q·α uniformly in 1 ≤ i ≤ t and α ∈ τ (again by Lemma 6.1),

we may further take the ki,λ−1 ∈ Z. □
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7. Examples

In [AZ22b, Section 5], the authors provide two small examples for the λ-Mahler discrete
residues for λ = 0. Here, we illustrate λ-Mahler discrete residues for λ = ±1 in several
examples. Example 7.1 gives a 1-Mahler summable f in the non-torsion case τ ⊂ T0.
Example 7.2 gives a 1-Mahler non-summable f in the torsion case τ ⊂ T+. Moreover,
Example 7.3 gives a (−1)-Mahler summable f in the non-torsion case τ ⊂ T0. Example 7.4
gives a (−1)-Mahler non-summable f in the torsion case τ ⊂ T+.

Example 7.1. Let p = 3, λ = 1, and τ = τ(2). Consider the following f = fτ with
sing(f, τ) = {2, 3

√
2, ζ3

3
√
2, ζ23

3
√
2} :

f =
−x6 + 4x3 + 3x2 − 12x+ 8

(x− 2)2 (x3 − 2)2

=
−1

(x− 2)2
+

1

6 3
√
2
·

2∑
i=0

ζ2i3
(x− ζ i3

3
√
2)2

− 1

3 3
√
4
·

2∑
i=0

ζ i3
x− ζ i3

3
√
2

=
2∑

k=1

∑
α∈β(f,τ)

ck(α)

(x− α)k
,

where β(f, τ) = {2, γ, ζ3γ, ζ23γ} with γ := 3
√
2. By Definition 5.6, we have ht(f, τ) = 1. It

follows from Definition 5.7 that for i ∈ {0, 1, 2}:

dres1(f, τ, 1)ζi3γ = V 1
1,0(ζ

i
3γ)c1(ζ

i
3γ) + 3V 1

1,1(ζ
i
3γ)c1(2) + V 2

1,0(ζ
i
3γ)c1(ζ

i
3γ) + 3V 2

1,1(ζ
i
3γ)c2(2)

= 1 · (− ζ i3
3 3
√
4
) + (−3) ·

(
− ζ i3γ

2 · 32

)
= 0,

and

dres1(f, τ, 2)ζi3γ = V 2
2,0(ζ

i
3γ)c2(ζ

i
3γ) + 3V 2

2,1(ζ
i
3γ)c2(2)

=
ζ2i3
6 3
√
2
+ (−3) ·

(
ζ2i3

2 · 32 · 3
√
2

)
= 0.

Thus, we see from Proposition 5.8 that f is 1-Mahler summable. And indeed,

f = ∆1

(
1

(x− 2)2

)
.
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Example 7.2. Let p = 3, λ = 1, and τ = τ(ζ4). Consider the following f = fτ with
sing(f, τ) = {ζ±1

4 , ζ±1
12 , ζ

±5
12 }:

f =
−2x4 + 2x2 + 1

(x2 + 1) (x4 − x2 + 1)

=
1

2

(
− ζ34
x− ζ4

− ζ4
x− ζ34

+
ζ712

x− ζ12
+

ζ1112
x− ζ512

+
ζ12

x− ζ712
+

ζ512
x− ζ1112

)
=

∑
α∈sing(f,τ)

ck(α)

x− α
.

By Definition 5.10, we see that ht(f, τ) = 1. Furthermore, by Definition 3.6, 5.11, and 3.2,
we find that

ω := ω1,τ (f) = −1/4,

I(ω)
1,τ (c) =

(
d1(ζ4), d1(ζ

3
4 )
)
= −1

4
(ζ4 + ζ34 ) (1, 1) ,

D1,τ (d) =
(
c̃1(ζ4), c̃1(ζ

3
4 )
)
= (0, 0).

Thus, it follows from Definition 5.12 that

dres1(f, τ, 1)ζ12 = V 1
1,0(ζ12) · c1(ζ12)− V1

1,0 · (ζ12)−8 · d1(ζ912)
= c1(ζ12)− ζ3 · d1(ζ34 )

= ζ712 − ζ3 · (−
1

4
) · (ζ34 − ζ4)

=
1

4
ζ12 +

3

4
ζ712 ̸= 0.

Similarly, a direct calculation shows that

dres1(f, τ, 1)ζ712 =
3

4
ζ12 +

1

4
ζ712 ̸= 0,

dres1(f, τ, 1)ζ512 =
1

4
ζ512 +

3

4
ζ1112 ̸= 0,

dres1(f, τ, 1)ζ512 =
3

4
ζ512 +

1

4
ζ1112 ̸= 0,

and

dres1(f, τ, 1)ζ4 = c1(ζ4)− c̃1(ζ4) = c1(ζ4) = −1

2
ζ34 ̸= 0,

dres1(f, τ, 1)ζ34 = c1(ζ
3
4 )− c̃1(ζ

3
4 ) = c1(ζ

3
4 ) = −1

2
ζ4 ̸= 0.

Thus, it follows from Proposition 5.17 that f is not 1-Mahler summable.
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Example 7.3. Let p = 3, λ = −1, and τ = τ(5). Consider the following f = fτ with
sing(f, τ) = {5, 3

√
5, ζ3

3
√
5, ζ23

3
√
5} :

f =
−3x6 + 30x3 + x2 − 10x− 50

3(x− 5)2 (x3 − 5)2

=
−1

(x− 5)2
+

1

135 3
√
5
·

2∑
i=0

ζ2i3
(x− ζ i3

3
√
5)2

− 2

135 3
√
25

·
2∑

i=0

ζ i3
x− ζ i3

3
√
5

=
2∑

k=1

∑
α∈β(f,τ)

ck(α)

(x− α)k
,

where β(f, τ) = {2, γ, ζ3γ, ζ23γ} with γ := 3
√
5. By Definition 5.6, we have ht(f, τ) = 1. It

follows from Definition 5.7 that for i ∈ {0, 1, 2}:

dres1(f, τ, 1)ζi3γ = V 1
1,0(ζ

i
3γ)c1(ζ

i
3γ) + 3−1V 1

1,1(ζ
i
3γ)c1(2) + V 2

1,0(ζ
i
3γ)c1(ζ

i
3γ) + 3−1V 2

1,1(ζ
i
3γ)c2(2)

= 1 · (− 2ζ i3
135 3

√
25

) + (−1

3
) ·
(
− 2ζ i3γ

32 · 52

)
= 0,

and

dres1(f, τ, 2)ζi3γ = V 2
2,0(ζ

i
3γ)c2(ζ

i
3γ) + 3−1V 2

2,1(ζ
i
3γ)c2(2)

=
ζ2i3

135 3
√
2
+ (−1

3
) ·
(

ζ2i3
32 · 5 · 3

√
5

)
= 0.

Thus, we see from Proposition 5.8 that f is (−1)-Mahler summable. And indeed,

f = ∆−1

(
1

(x− 5)2

)
.

Example 7.4. Let p = 2, λ = −1, and τ = τ(ζ3). Consider the following f = fτ with
sing(f, τ) = {ζ±1

3 , ζ±1
6 }:

f =
1

2 (x4 + x2 + 1)

= −1

2

(
ζ3

x− ζ3
+

ζ−1
3

x− ζ−1
3

+
ζ6

x− ζ6
+

ζ−1
6

x− ζ−1
6

)
=

∑
α∈sing(f,τ)

ck(α)

x− α
.
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By Definition 5.10, we see that ht(f, τ) = 1. Furthermore, by Definition 3.6, 5.11, and 3.2,
we find that

ω := ω1,τ (f) = 0,

I(ω)
1,τ (c) =

(
d1(ζ3), d1(ζ

−1
3 )
)
=

2

3

(
ζ3, ζ

−1
3

)
,

D1,τ (d) =
(
c̃1(ζ3), c̃1(ζ

−1
3 )
)
= −1

3

(
ζ3, ζ

−1
3

)
.

Thus, it follows from Definition 5.12 that

dres1(f, τ, 1)ζ6 = V 1
1,0(ζ6) · c1(ζ6)− V1

1,0 · (ζ6)−3 ·
(
c̃1(ζ

−1
3 ) + d1(ζ

−1
3 )
)

= c1(ζ6) + c̃1(ζ
−1
3 ) + d(ζ−1

3 )

= −1

2
ζ6 −

1

3
ζ−1
3 +

2

3
ζ−1
3

=
1

3
ζ−1
3 − 1

2
ζ6 ̸= 0.

Similarly, a direct computation shows that

dres1(f, τ, 1)ζ−1
6

=
1

3
ζ3 −

1

2
ζ−1
6 ̸= 0.

Therefore, it follows from Proposition 5.17 that f is not (−1)-Mahler summable.
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— Mathématiques, 8:1159–1192, 2021.

https://arxiv.org/abs/1809.05416
http://dx.doi.org/10.1016/j.jalgebra.2017.02.032
http://dx.doi.org/10.1016/j.jalgebra.2017.02.032


38 CARLOS E. ARRECHE AND YI ZHANG

[CD23] Xavier Caruso and Amaury Durand. Duals of linearized reed–solomon codes. Designs, Codes
and Cryptography, 91(1):241–271, 2023.

[CDDM18] Frédéric Chyzak, Thomas Dreyfus, Philippe Dumas, and Marc Mezzarobba. Computing solutions
of linear Mahler equations. Math. Comp., 87(314):2977–3021, 2018.

[Che18] Shaoshi Chen. Bivariate extensions of abramov’s algorithm for rational summation. In Carsten
Schneider and Eugene Zima, editors, Advances in Computer Algebra, pages 93–104, Cham, 2018.
Springer International Publishing.

[Cob68] Alan Cobham. On the hartmanis-stearns problem for a class of tag machines. In 9th Annual
Symposium on Switching and Automata Theory (swat 1968), pages 51–60, 1968.

[CS12] Shaoshi Chen and Michael F. Singer. Residues and telescopers for bivariate rational functions.
Adv. Appl. Math., 49(2):111–133, aug 2012.

[DHR18] Thomas Dreyfus, Charlotte Hardouin, and Julien Roques. Hypertranscendence of solutions of
Mahler equations. J. Eur. Math. Soc., 20(9):2209–2238, 2018.

[FS09] Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University Press,
Cambridge, UK, 2009.

[HS08] Charlotte Hardouin and Michael F. Singer. Differential galois theory of linear difference equa-
tions. Mathematische Annalen, 342(2):333–377, 2008.

[HS21] Charlotte Hardouin and Michael F. Singer. On differentially algebraic generating series for walks
in the quarter plane. Selecta Mathematica, 27(5):89, 2021.

[HW15] Qing-Hu Hou and Rong-Hua Wang. An algorithm for deciding the summability of bivariate
rational functions. Adv. Appl. Math., 64(C):31–49, mar 2015.

[Joh02] Warren P. Johnson. The curious history of Faà di Bruno’s formula. The American Mathematical
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