
Received: September 13, 2023. Revised: May 29, 2024. Accepted: September 17, 2024

© The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail:
journals.permission@oup.com.

International Mathematics Research Notices, 2024, 00(00), 1–30

https://doi.org/10.1093/imrn/rnae238
Advance access publication date 00 Month 2024

Article

Twisted Mahler Discrete Residues
Carlos E. Arreche1 and Yi Zhang2,*

1Department of Mathematical Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
2Department of Foundational Mathematics, School of Mathematics and Physics, Xi’an Jiaotong-Liverpool University,
Suzhou, 215123, China
*Correspondence to be sent to: e-mail: Yi.Zhang03@xjtlu.edu.cn
Communicated by Prof. Umberto Zannier

Recently we constructed Mahler discrete residues for rational functions and showed they comprise a
complete obstruction to the Mahler summability problem of deciding whether a given rational function
f (x) is of the form g(xp) − g(x) for some rational function g(x) and an integer p > 1. Here we develop
a notion of λ-twisted Mahler discrete residues for λ ∈ Z, and show that they similarly comprise a
complete obstruction to the twisted Mahler summability problem of deciding whether a given rational
function f (x) is of the form pλg(xp) − g(x) for some rational function g(x) and an integer p > 1. We
provide some initial applications of twisted Mahler discrete residues to differential creative telescoping
problems for Mahler functions and to the differential Galois theory of linear Mahler equations.

1 Introduction
Continuous residues are fundamental and crucial tools in complex analysis, and have extensive and
compelling applications in combinatorics [17]. In the past decade, a theory of discrete and q-discrete
residues was proposed in [13] for the study of telescoping problems for bivariate rational functions, and
subsequently found applications in the computation of differential Galois groups of second-order linear
difference [5] and q-difference equations [8] and other closely-related problems [12, 20]. More recently,
the authors of [10, 11] developed a theory of residues for skew rational functions, which has important
applications in duals of linearized Reed–Solomon codes [11]. In [19] the authors introduce a notion of
elliptic orbit residues, which, in analogy with [13], similarly serves as an obstruction to summability
in the context of elliptic shift difference operators. Most recently, we initiated in [9] a theory of Mahler
discrete residues aimed at helping bring to the Mahler case the successes of these earlier notions of
residues.

Let K be an algebraically closed field of characteristic zero and K(x) be the field of rational functions
in an indeterminate x over K. Fix an integer p ≥ 2. For a given f (x) ∈ K(x), we considered in [9] the Mahler
summability problem of deciding effectively whether f (x) = g(xp) − g(x) for some g(x) ∈ K(x); if so, we say
f (x) is Mahler summable. We defined in [9] a collection of K-vectors, called the Mahler discrete residues of
f (x) and defined purely in terms of its partial fraction decomposition, having the property that they are
all zero if and only if f (x) is Mahler summable. More generally, a (linear) Mahler equation is any equation
of the form

y(xpn
) + an−1(x)y(xpn−1

) + · · · + a1(x)y(xp) + +a0(x)y(x) = 0, (1.1)
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2 | C. E. Arreche and Y. Zhang

where the ai(x) ∈ K(x) and y(x) is an unknown “function” (or possibly some more general entity, for
example, the generating series of a combinatorial object, a Puiseux series, etc.). The motivation to
study Mahler equations comes from several directions. They first arose in [22] in connection with
transcendence results on values of special functions at algebraic numbers, and have since found other
applications, for example to automata theory and automatic sequences since the work of [15]. We refer
to [3, 4, 14, 16] and the references therein for more details.

A particularly fruitful approach over the past few decades to study difference equations in general,
and Mahler equations such as (1.1) in particular, is through the Galois theory for linear difference
equations developed in [25], and the differential (also sometimes called parameterized) Galois theory
for difference equations developed in [18]. Both theories associate a geometric object to a given
difference equation such as (1.1), called the Galois group, that encodes the sought (differential-)algebraic
properties of the solutions to the equation. There are now several algorithms and theoretical results
(see in particular [6, 7, 16, 24]) addressing qualitative questions about solutions of Mahler equations
(1.1), in particular whether they must be (differentially) transcendental, which rely on procedures to
compute enough information about the corresponding Galois group (i.e., whether it is “sufficiently
large”). These Galois-theoretic arguments very often involve, as a sub-problem, deciding whether a
certain auxiliary object—often but not always a rational solution to some Riccati-type equation—
is Mahler summable, or more generally whether it becomes Mahler summable after applying some
linear differential operator to it, that is, a telescoper. Rather than being able to answer the Mahler
summability question for any one individual rational function, the systematic obstructions to the
Mahler summability problems developed here serve as essential building blocks for other results
and algorithms that rely on determining Mahler summability as an intermediate step. An immediate
application of the technology developed here is Theorem 6.3: if y1(x), . . . , yt(x) ∈ K((x)) are solutions
to Mahler equations of the form yi(xp) = ai(x)yi(x) for some non-zero ai(x) ∈ K(x), then either the
y1(x), . . . , yt(x) are differentially independent over K(x) or else they are multiplicatively dependent over
K(x)×, that is, there exist integers k1, . . . , kt ∈ Z, not all zero, such that

∏t
i=1 yi(x)ki ∈ K(x). Let us explain

in more detail the technology that we develop here.
For arbitrary λ ∈ Z and f (x) ∈ K(x), we say that f (x) is λ-Mahler summable if there exists g(x) ∈ K(x) such

that f (x) = pλg(xp)−g(x). We shall construct certain K-vectors from the partial fraction decomposition of
f (x), which we call the (twisted) λ-Mahler discrete residues of f (x), and prove our main result in Section 5.4:

Theorem 1.1. For λ ∈ Z, f is λ-Mahler summable if and only if all λ-Mahler discrete residues of f
are zero.

Our desire to develop an obstruction theory for such a “twisted” λ-Mahler summability problem,
beyond the “un-twisted” 0-Mahler summability problem considered in [9], is motivated by our desire
to apply this obstruction theory to the following kind of Mahler creative telescoping problem. Given
f1, . . . , fn ∈ K(x) decide whether there exist linear differential operators L1, . . . ,Ln ∈ K[δ], for δ some
suitable derivation, such that L1(f1) + · · · + Ln(fn) is suitably Mahler summable. The double-usage of
“suitable” above is due to the fact that there are in the Mahler case two traditional and respectable ways
to adjoin a Mahler-compatible derivation in order to study differential-algebraic properties of solutions
of Mahler equations, as we next explain and recall.

A σδ-field is a field equipped with an endomorphism σ and a derivation δ such that σ ◦ δ = δ ◦σ . Such
are the base fields considered in the δ-Galois theory for linear σ -equations developed in [18]. Denoting
by σ : K(x) → K(x) : f (x) �→ f (xp) the Mahler endomorphism, one can show there is no non-trivial derivation
δ on K(x) that commutes with this σ . In the literature one finds the following two approaches (often
used in combination; see e.g., [4, 16]): (1) take δ = x d

dx , and find a systematic way to deal with the fact
that σ and δ do not quite commute (but almost do), σ ◦ δ = p · δ ◦ σ ; or (2) work over the larger field
K(x, log x), where σ(log x) = p log x, set δ = x log x d

dx , and find a systematic way to deal with this new
element log x as the cost of having σ ◦ δ = δ ◦ σ on the nose. There is, to be sure, a dictionary of sorts
between these two approaches.

Let us consider the σδ-field L := K(x, log x), and given F ∈ L, let us write the log-Laurent series
expansion

F =
∑
λ≥N

fλ(x) logλ x ∈ K(x)((log x)),
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where fλ(x) ∈ K(x) for each λ ∈ Z, and logλ x := [log x]λ. Suppose there exists G ∈ L̂ := K(x)((log x)) such
that F = σ(G) − G (where σ is applied term-by-term). Writing such a putative G = ∑λ≥N gλ(x) logλ x ∈ L̂,
for some gλ(x) ∈ K(x) for λ ∈ Z, we find that F is Mahler summable within L̂ if and only if fλ(x) =
pλgλ(xp)−gλ(x) for each λ ∈ Z. This was our initial motivation for introducing the twisted Mahler discrete
residues developed here.

Our strategy expands upon that of [9], which in turn was inspired by that of [13]: for λ ∈ Z, we
construct in Section 5.5 a λ-Mahler reduction f̄λ(x) ∈ K(x) such that

f̄λ(x) = f (x) + (pλgλ(xp) − gλ(x)
)

(1.2)

for some gλ(x) ∈ K(x) (whose explicit computation it is our purpose to avoid!), with the structure of
this f̄λ(x) being such that it cannot possibly be λ-Mahler summable unless f̄λ(x) = 0. The λ-Mahler
discrete residues of f (x) are (vectors whose components are) the coefficients occurring in the partial
fraction decomposition of f̄λ(x). This f̄λ(x) plays the role of a “λ-Mahler remainder” of f (x), analogous to
the remainder of Hermite reduction in the context of integration.

The contents of this work are as follows. In §2 we recall some notation and ancillary results from [9]—
we also present a new closed formula in §2.5 for the Mahler coefficients, used everywhere here and in [9] to
track the effect of the Mahler operator on partial fractions, as sums over certain integer partitions. In §3
we develop a linear-algebraic framework for controlling the pre-periodic behavior of roots of unity under
the Mahler operator. In §4 we prove that λ-Mahler summable rational functions have Mahler dispersion
0 almost everywhere, which is an essential tool in our proofs in spite of the exceptions that arise for the
first time in the Mahler context with positive twists λ. In §5 we define the eponymous twisted Mahler
discrete residues and prove our Main Theorem 1.1—we also show the non-obvious agreement of the
0-twisted residues defined here with those of [9], which suggests that the Mahler coefficients of §2.5
enjoy some “umbral” properties that probably deserve further study. In §6 we apply our new technology
to study the differential properties of the solutions of any finite collection of first-order homogeneous
linear Mahler equations. We conclude in §7 with several concrete examples.

2 Preliminaries
In this section we recall and expand upon some conventions, notions, and ancillary results from [9] that
we shall use systematically throughout this work.

2.1 Notation and conventions
We fix once and for all an algebraically closed field K of characteristic zero and an integer p ≥ 2
(not necessarily prime). We denote by K(x) the field of rational functions in the indeterminate x with
coefficients in K. We denote by σ : K(x) → K(x) the K-linear endomorphism defined by σ(x) = xp, called
the Mahler operator, so that σ(f (x)) = f (xp) for f (x) ∈ K(x). For λ ∈ Z, we write �λ := pλσ − id, so that
�λ(f (x)) = pλf (xp) − f (x) for f (x) ∈ K(x). We often suppress the functional notation and write f ∈ K(x)

instead of f (x). We say that f ∈ K(x) is λ-Mahler summable if there exists g ∈ K(x) such that f = �λ(g).
Let K× = K\{0} denote the multiplicative group of K. Let K×

t denote the torsion subgroup of K×, that
is, the group of roots of unity in K×. For ζ ∈ K×

t , the order of ζ is the smallest r ∈ Z>0 such that ζ r = 1.
We fix once and for all a compatible system of p-power roots of unity (ζpn )n≥0 ⊂ K×

t , that is, each ζpn has

order pn and ζ
p�

pn = ζpn−� for 0 ≤ � ≤ n. Each f ∈ K(x) decomposes uniquely as

f = f∞ + fT , (2.1)

where f∞ ∈ K[x, x−1] is a Laurent polynomial and fT = a
b for polynomials a, b ∈ K[x] such that either

a = 0 or else deg(a) < deg(b) and gcd(a, b) = 1 = gcd(x, b). The reasoning behind our choice of subscripts
∞ and T for the Laurent polynomial component of f and its complement will become apparent in the
sequel.

We obtain similarly as in [9, Lem. 2.2] the following result.

Lemma 2.1. The K-linear decomposition K(x) 
 K[x, x−1] ⊕ K(x)T given by f ↔ f∞ ⊕ fT as in (2.1)
is σ -stable. For f , g ∈ K(x) and for λ ∈ Z, f = �λ(g) if and only if f∞ = �λ(g∞) and fT = �λ(gT ).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnae238/7831337 by guest on 26 O

ctober 2024
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2.2 Mahler trajectories, Mahler trees, and Mahler cycles
We let P := {pn | n ∈ Z≥0} denote the multiplicative monoid of non-negative powers of p. Then P acts on
Z by multiplication, and the set of maximal trajectories for this action is

Z/P := {{0}} ∪ {{ipn | n ∈ Z≥0}
∣∣ i ∈ Z such that p � i

}
.

Definition 2.2. For a maximal trajectory θ ∈ Z/P , we let

K[x, x−1]θ :=
{∑

j cjxj ∈ K[x, x−1]
∣∣∣ cj = 0 for all j /∈ θ

}
, (2.2)

and call it the θ-subspace. The θ-component fθ of f ∈ K(x) is the projection of f∞ as in (2.1) to
K[x, x−1]θ .

We obtain similarly as in [9, Lem. 2.3] the following result.

Lemma 2.3. For f , g ∈ K(x) and for λ ∈ Z, f∞ = �λ(g∞) if and only if fθ = �λ(gθ ) for every θ ∈ Z/P .

Definition 2.4. We denote by T the set of equivalence classes in K× for the equivalence relation
α ∼ γ ⇔ αpr = γ ps

for some r, s ∈ Z≥0. For α ∈ K×, we denote by τ(α) ∈ T the equivalence class
of α under ∼. The elements τ ∈ T are called Mahler trees.

We refer to [9, Remark 2.7] for a brief discussion on our choice of nomenclature in Definition 2.4.

Definition 2.5. For a Mahler tree τ ∈ T , the τ -subspace is

K(x)τ := {fT ∈ K(x)T
∣∣ every pole of fT is contained in τ }. (2.3)

For f ∈ K(x), the τ -component fτ of f is the projection of fT as in (2.1) to K(x)τ .

The following result is proved similarly as in [9, Lem. 2.12].

Lemma 2.6. For f , g ∈ K(x) and for λ ∈ Z, fT = �λ(gT ) if and only if fτ = �λ(gτ) for every τ ∈ T .

Definition 2.7. For a Mahler tree τ ∈ T , the (possibly empty) Mahler cycle of τ is

C(τ ) := {γ ∈ τ | γ is a root of unity of order coprime to p}.

The (possibly zero) cycle length of τ is defined to be ε(τ ) := |C(τ )|. For e ∈ Z≥0, let Te := {τ ∈
T | ε(τ ) = e}. We refer to T0 as the set of non-torsion Mahler trees, and to T+ := T − T0 as the set
of torsion Mahler trees.

Remark 2.8. Let us collect as in [9, Rem. 2.10] some immediate observations about Mahler cycles
that we shall use, and refer to, throughout the sequel.

For τ ∈ T it follows from the Definition 2.4 that either τ ⊂ K×
t or else τ ∩ K×

t = ∅ (that is, either
τ consists entirely of roots of unity or else τ contains no roots of unity at all). In particular,
τ ∩K×

t = ∅ ⇔ C(τ ) = ∅ ⇔ ε(τ ) = 0 ⇔ τ ∈ T0 (the non-torsion case). On the other hand, K×
t consists

of the pre-periodic points for the action of the monoid P on K× given by α �→ αpn
for n ∈ Z≥0.

For τ ⊂ K×
t (the torsion case), the Mahler cycle C(τ ) is a non-empty set endowed with a simply

transitive action of the quotient monoid P/Pe 
 Z/eZ, where Pe := {pne | n ∈ Z}, and e := ε(τ ).
We emphasize that in general C(τ ) is only a set, and not a group. The Mahler tree τ(1) consists
precisely of the roots of unity ζ ∈ K×

t whose order r is such that gcd(r, pn) = r for some pn ∈ P ,
or equivalently such that every prime factor of r divides p. When τ ⊂ K×

t but τ �= τ(1), the cycle
length ε(τ ) = e is the order of p in the group of units (Z/rZ)×, where r > 1 is the common order
of the roots of unity γ ∈ C(τ ), and C(τ ) = {γ p� | 0 ≤ � ≤ e − 1} for any given γ ∈ C(τ ).
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2.3 Mahler supports and singular supports in Mahler trees
As in [9] we utilize Mahler trees to define the following useful variants of the singular support sing(f )
of a rational function f (i.e., its set of poles) and the order ordα(f ) of a pole of f at α ∈ K.

Definition 2.9. For f ∈ K(x), we define supp(f ) ⊂ T ∪{∞}, called the Mahler support of f , as follows:

• ∞ ∈ supp(f ) if and only if f∞ �= 0; and
• for τ ∈ T , τ ∈ supp(f ) if and only if τ contains a pole of f .

For τ ∈ T , the singular support of f in τ , denoted by sing(f , τ), is the (possibly empty) set of poles of
f contained in τ , and the order of f at τ is ord(f , τ) := max

({0} ∪ {ordα(f )
∣∣ α ∈ sing(f , τ)

})
.

For the sake of completeness, we include the straightforward proof of the following lemma, which
was omitted from [9, Section 2.2] for lack of space.

Lemma 2.10. For f , g ∈ K(x), τ ∈ T , λ ∈ Z, and 0 �= c ∈ K, we have the following:

1) supp(f ) = ∅ ⇐⇒ f = 0;
2) supp(σ (f )) = supp(f ) = supp(c · f ); and
3) supp(f + g) ⊆ supp(f ) ∪ supp(g).
4) τ ∈ supp(�λ(g)) ⇐⇒ τ ∈ supp(g);
5) ord(σ (f ), τ) = ord(f , τ) = ord(c · f , τ);
6) ord(f + g, τ) ≤ max

(
ord(f , τ), ord(g, τ)

)
; and

7) ord(�λ(g), τ) = ord(g, τ).

Proof. (1). f = 0 ⇐⇒ f∞ = 0 and fT = 0, and fT = 0 ⇐⇒ f has no poles in K×.
(2) and (5). For 0 �= c ∈ K, cf∞ �= 0 if and only if f∞ �= 0, and f and cf have the same poles and the orders

of these poles are the same, and therefore supp(f ) = supp(cf ) and ord(f , τ) = ord(cf , τ) for every τ ∈ T .
Moreover, σ(f∞) �= 0 if and only if f∞ �= 0, since σ is an injective endomorphism of K(x), and α ∈ K× is a
pole of σ(f ) if and only if αp is a pole of f , whence τ contains a pole of f if and only if τ contains a pole
of σ(f ). In this case, it is clear that ord(σ (f ), τ) ≤ ord(f , τ). Moreover, since f has only finitely many poles
in τ of maximal order m := ord(f , τ), there exists α ∈ sing(σ (f ), τ) such that ordαp (f ) = m > ordα(f ), and
it follows that ordα(σ (f )) = m = ord(σ (f ), τ).

(3) and (6). If f∞ + g∞ �= 0 then at least one of f∞ �= 0 or g∞ �= 0. The set of poles of f + g is contained
in the union of the set of poles of f and the set of poles of g, and therefore if τ contains a pole of f + g
then τ must contain a pole of f or a pole of g. This shows that supp(f + g) ⊆ supp(f )∪ supp(g). For m the
maximal order of a pole of f + g in τ we see that at least one of f or g must contain a pole of order ≥ m
in τ . This shows that ord(f + g, τ) ≤ max(ord(f , τ), ord(g, τ)).

(4) and (7). By (2) and (3), supp(�λ(g)) ⊆ supp(g), and by (5) and (6), ord(�λ(g), τ) ≤ ord(g, τ). Suppose
τ ∈ supp(g), and let α1, . . . , αs ∈ sing(g, τ) be all the elements, pairwise distinct, with ordαj (g) =
ord(g, τ) =: m ≥ 1, and choose γj ∈ τ such that γ

p
j = αj, we find as in the proof of (5) that ordζ i

pγj
(σ (g)) = m

and the elements ζ i
pγj are pairwise distinct for 0 ≤ i ≤ p − 1 and 1 ≤ j ≤ s, whence at least one of the ζ i

pγj

is different from every αj′ for 1 ≤ j′ ≤ s, and therefore ord(�λ(g), τ) = m, which implies τ ∈ supp(�λ(g)).
�

2.4 Mahler dispersion
We now recall from [9] the following Mahler variant of the notion of (polar) dispersion used in [13],
following the original definitions in [1, 2].

Definition 2.11. For f ∈ K(x) and τ ∈ supp(f ), the Mahler dispersion of f at τ , denoted by disp(f , τ),
is defined as follows.

1) For τ ∈ T , disp(f , τ) is the largest d ∈ Z≥0 (if it exists) for which there exists α ∈ sing(f , τ) such that
αpd ∈ sing(f , τ). If there is no such d ∈ Z≥0, then we set disp(f , τ) = ∞.

2) For τ = ∞, let us write f∞ =∑N
i=n cixi ∈ K[x, x−1] with cncN �= 0.

• If f∞ = c0 �= 0 then we set disp(f , ∞) = 0; otherwise
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6 | C. E. Arreche and Y. Zhang

• disp(f , ∞) is the largest d ∈ Z≥0 for which there exists an index i �= 0 such that ci �= 0 and
cipd �= 0.

For f ∈ K(x) and τ ∈ T ∪ {∞} such that τ /∈ supp(f ), we do not define disp(f , τ) at all (cf. [1, 2, 13]).

Similarly as in the shift and q-difference cases (cf. [18, Lemma 6.3] and [13, Lemma 2.4 and Lemma
2.9]), Mahler dispersions will play a crucial role in what follows. As we prove in Theorem 4.2, they already
provide a partial obstruction to summability: if f ∈ K(x) is λ-Mahler summable then almost every Mahler
dispersion of f is non-zero. Moreover, Mahler dispersions also detect whether f has any “bad” poles (i.e.,
at roots of unity of order coprime to p) according to the following result proved in [9, Lem. 2.16].

Lemma 2.12. Let f ∈ K(x) and τ ∈ supp(f ). Then disp(f , τ) = ∞ if and only if sing(f , τ) ∩ C(τ ) �= ∅.

2.5 Mahler coefficients
Here we extend the study of the effect of the Mahler operator σ on partial fractions initiated in [9, §2.4].
For α ∈ K× and m, k, n ∈ Z with n ≥ 0 and 1 ≤ k ≤ m, we define the Mahler coefficients Vm

k,n(α) ∈ K implicitly
by

σ n
(

1
(x − αpn

)m

)
= 1

(xpn − αpn
)m

=
m∑

k=1

pn−1∑
i=0

Vm
k,n(ζ

i
pn α)

(x − ζ i
pn α)k

. (2.4)

These Mahler coefficients are computed explicitly with the following result, proved analogously to the
similar [9, Lem. 2.17] in case n = 1.

Lemma 2.13. The universal Mahler coefficients Vm
k,n := Vm

k,n(1) are the first m Taylor coefficients
at x = 1 of

(xpn−1 + · · · + x + 1)−m =
m∑

k=1

Vm
k,n · (x − 1)m−k + O((x − 1)m). (2.5)

For arbitrary α ∈ K×, the Mahler coefficients Vm
k,n(α) = Vm

k,n · αk−mpn
.

Although Lemma 2.13 serves to compute the Vm
k,n(α) for α ∈ K×, n ∈ Z≥0, and 1 ≤ k ≤ m efficiently in

practice, the following result provides an explicit symbolic expression for these Mahler coefficients.

Definition 2.14. For k, n ∈ Z≥0, let n(k) be the set of integer partitions μ = (μ1, . . . , μ�) of k with
greatest part μ1 < pn, and denote by �(μ) := � the length of μ and by �i(μ) the multiplicity of i in
μ for 1 ≤ i ≤ pn − 1. We adopt the conventions that n(0) = {∅} for every n ≥ 0 and 0(k) = ∅ for
every k ≥ 1. The empty partition μ = ∅ has length �(∅) = 0 and multiplicity �i(∅) = 0 for every
1 ≤ i ≤ pn − 1 (vacuously so when n = 0).

Proposition 2.15. For n ≥ 0 and 1 ≤ k ≤ m,

Vm
k,n = p−nm ·

∑
μ∈n(m−k)

(−pn)−�(μ)

(
m − 1 + �(μ)

m − 1, �1(μ), . . . , �pn−1(μ)

) pn−1∏
i=1

(
pn

i + 1

)�i(μ)

.

Proof. By Lemma 2.13, Vm
k,n(α) = Vm

k,n · αk−mpn
, where the Vm

k,n ∈ Q are given by (2.5). Writing fm(x) = x−m

and gn(x) = xpn−1 + · · · + x + 1, and letting Wm
k,n ∈ Q be the coefficient of (x − 1)k in the Taylor expansion

of (fm ◦ gn)(x) at x = 1 as in Lemma 2.13, Vm
k,n = Wm

m−k,n for 1 ≤ k ≤ m. By Faà di Bruno’s formula [21],

Wm
k,n = (fm ◦ gn)

(k)(1)

k!
= 1

k!
·
∑

μ∈(k)

k!
�1(μ)! · · · �k(μ)!

f (�(μ))
m (gn(1))

k∏
i=1

(
g(i)

n (1)

i!

)�i(μ)
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Twisted Mahler Discrete Residues | 7

for every k ≥ 0, where (k) denotes the set of all partitions of k, and �(μ) and �i(μ) are as in Definition
2.14. For every �, i ∈ Z≥0, we compute

f (�)
m (gn(1)) = (−1)�p−n(m+�) (m − 1 + �)!

(m − 1)!
and g(i)

n (1) = i!

(
pn

i + 1

)
,

where we adopt the usual convention that
(

pn

i+1

)
= 0 whenever i ≥ pn. Therefore the partitions μ ∈

(k)\n(k) with greatest part μ1 ≥ pn do not contribute to the sum. �

We isolate the following special case for ease of reference (cf. [9, Cor. 2.18]), since it arises often.

Corollary 2.16. Let α ∈ K×, m ∈ N, and n ∈ Z≥0. Then Vm
m,n(α) = p−nmαm−pnm.

Proof. In the special case where k = m in Proposition 2.15, the sum is over μ ∈ (0) = {∅}, and �(∅) =
0 = �i(∅) for every i ∈ N, whence Vm

m,n(α) = p−nmαm−pnm by Lemma 2.13. �

The Mahler coefficients Vm
k,n(α) defined above are the main ingredients in our definition of twisted

Mahler discrete residues. Our proofs that these residues comprise a complete obstruction to λ-Mahler
summability will rely on the following elementary computations, which we record here once and for all
for future reference.

Lemma 2.17. Let n ∈ Z≥0, α ∈ K×, and d1, . . . , dm ∈ K for some m ∈ N. Then

σ n

(
m∑

k=1

dk

(x − αpn
)k

)
=

m∑
k=1

pn−1∑
i=0

∑m
s=k Vs

k,n(ζ
i
pn α)ds

(x − ζ i
pn α)k

.

For λ ∈ Z and g ∈ K(x), the element �
(n)
λ (g) := pλnσ n(g) − g is λ-Mahler summable.

Proof. The claims are trivial if n = 0: ζ1 = 1, Vs
k,0(α) = δs,k (Kronecker’s δ) for k ≤ s ≤ m, and �

(0)
λ (g) = 0 is

λ-Mahler summable. Suppose that n ≥ 1. For 1 ≤ s ≤ m we have

σ n
(

ds

(x − αpn
)s

)
=

s∑
k=1

pn−1∑
i=0

Vs
k,n(ζ

i
pn α)ds

(x − ζ i
pn α)k

by definition (cf. (2.4)), and it follows that

σ n

(
m∑

s=1

ds

(x − αpn
)s

)
=

m∑
s=1

s∑
k=1

pn−1∑
i=0

Vs
k,n(ζ

i
pn α)ds

(x − ζ i
pn α)k

=
m∑

k=1

pn−1∑
i=0

∑m
s=k Vs

k,n(ζ
i
pn α)ds

(x − ζ i
pn α)k

.

Finally, the λ-Mahler summability of �
(n)
λ (g) follows from the computation

�
(n)
λ (g) = pλnσ n(g) − g = pλσ

⎛
⎝n−1∑

j=0

pλjσ j(g)

⎞
⎠−
⎛
⎝n−1∑

j=0

pλjσ j(g)

⎞
⎠ = �λ

⎛
⎝n−1∑

j=0

pλjσ j(g)

⎞
⎠ .

�

3 Cycle Maps and Their ω-Sections
The goal of this section is to define and study the properties of two auxiliary maps Dλ,τ and I(ω)

λ,τ that will
help us retain some control over the perverse periodic behavior of the roots of unity γ ∈ C(τ ) under the
p-power map γ �→ γ p. The following definitions and results are relevant only for torsion Mahler trees
τ ∈ T+.
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8 | C. E. Arreche and Y. Zhang

Definition 3.1. Let τ ∈ T+ be a torsion Mahler tree, let g ∈ K(x), and let us write gτ =∑
k∈N
∑

α∈τ
dk(α)

(x−α)k as in Definition 2.5. We define the cyclic component C(gτ ) :=∑k∈N
∑

γ∈C(τ )
dk(γ )

(x−γ )k .

Definition 3.2. Let S := ⊕k∈N K denote the K-vector space of finitely supported sequences in K.
For τ ∈ T+, we let SC(τ ) := ⊕γ∈C(τ ) S. For λ ∈ Z, we define cycle map Dλ,τ to be the K-linear
endomorphism

Dλ,τ : SC(τ ) → SC(τ ) :
(
dk(γ )
)

k∈N
γ∈C(τ )

�→
⎛
⎝−dk(γ ) + pλ

∑
s≥k

Vs
k,1(γ ) · ds(γ

p)

⎞
⎠

k∈N
γ∈C(τ )

, (3.1)

where the Mahler coefficients Vs
k,1(γ ) are defined as in (2.4).

We treat the K-vector space SC(τ ) introduced in the preceding Definition 3.2 as an abstract receptacle
for the coefficients occurring in the partial fraction decomposition of C(gτ ) for τ ∈ T+ and arbitrary
elements g ∈ K(x). Note that the infinite summation in (3.1) is harmless, since ds(γ

p) = 0 for every
γ ∈ C(γ ) for large enough s ∈ N. The cycle map Dλ,τ for λ = 0 is the negative of the (truncated) linear map
introduced in [9, Lemma 4.14]. The relevance of Dλ,τ to our study of λ-Mahler summability is captured
by the following immediate computation.

Lemma 3.3. Let λ ∈ Z, g ∈ K(x), and τ ∈ T+. Let us write C(gτ ) = ∑k,γ
dk(γ )

(x−γ )k and C
(
�λ(gτ )
) =∑

k,γ
ck(γ )

(x−γ )k as in Definition 3.1. Writing d := (dk(γ ))k,γ and c := (ck(γ ))k,γ as in Definition 3.2, we
have c = Dλ,τ (d).

Proof. It follows from Lemma 2.17 that C(σ (gτ )) = ∑k∈N
∑

γ∈C(τ )

∑
s≥k Vs

k,1(γ )ds(γ
p)

(x−γ )k , and therefore, for every
k ∈ N and γ ∈ C(τ ), ck(γ ) = −dk(γ ) + pλ

∑
s≥k Vs

k,1(γ )ds(γ
p). �

The following Lemma is essential to our study of λ-Mahler summability at torsion Mahler trees τ ∈ T+.

Lemma 3.4. Let λ ∈ Z, τ ∈ T+, and set e := |C(τ )| as in Definition 2.7. Let Dλ,τ be as in Definition
3.2.

1) If λ ≤ 0 then Dλ,τ is an isomorphism.
2) If λ ≥ 1 then im(Dλ,τ ) has codimension 1 in SC(τ ) and ker(Dλ,τ ) = K · w(λ), where (w(λ)

k (γ )) = w(λ) is
recursively determined by the conditions

w(λ)

k (γ ) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 for k > λ;

γ λ for k = λ;

pλγ k

1 − p(λ−k)e

e−1∑
j=0

λ∑
s=k+1

p(λ−k)jVs
k,1γ

−spj+1
w(λ)

s

(
γ pj+1 )

for any remaining k < λ;

(3.2)

for each γ ∈ C(τ ), where the universal Mahler coefficients Vs
k,1 ∈ Q are as in Proposition 2.15.

Proof. Let (dk(γ )) = d ∈ SC(τ )−{0}, let m ∈ N be as large as possible such that dm(γ ) �= 0 for some γ ∈ C(τ ),
and let us write (ck(γ )) = c := Dλ,τ (d).

Let us first assume that d ∈ ker(Dλ,τ ). Then by the Definition 3.2 and our choice of m, for each γ ∈ C(τ ),

0 = cm(γ ) = pλVm
m,1(γ )dm(γ p) − dm(γ ) = pλ−mγ m−pmdm(γ p) − dm(γ ), (3.3)

where the second equality results from Corollary 2.16. Since (3.3) holds for every γ ∈ C(τ ) simultane-
ously, it follows that dm(γ pj+1

) = pm−λγ (pj+1−pj)mdm(γ pj
) for every j ≥ 0 and for each γ ∈ C(τ ), whence none

of the dm(γ pj
) can be zero. Since γ pe = γ , we find that

1 = dm(γ pe
)

dm(γ )
=

e−1∏
j=0

dm(γ pj+1
)

dm(γ pj
)

=
e−1∏
j=0

pm−λγ (pj+1−pj)m = p(m−λ)eγ (pe−1)m = p(m−λ)e, (3.4)

which is only possible if m = λ. Therefore dk(γ ) = 0 for every k > λ, whence Dλ,τ is injective in case
λ ≤ 0. In case λ ≥ 1, it also follows from (3.3) with m = λ that γ −pλdλ(γ

p) = γ −λdλ(γ ) = ω must be a
constant that does not depend on γ ∈ C(τ ) (recall C(τ ) is stable by taking pth powers). We claim that if
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Twisted Mahler Discrete Residues | 9

we further impose that this ω = 1, then the remaining components of our d are uniquely determined by
the recursion (3.2). Indeed, if λ = 1 then there are no more components to determine, whereas if λ ≥ 2
then we must have, for 1 ≤ k ≤ λ − 1,

0 = −dk(γ ) + pλ

λ∑
s=k

Vs
k,1(γ )ds(γ

p) ⇐⇒ dk(γ ) − pλ−kγ k−pkdk(γ
p) = pλ

λ∑
s=k+1

Vs
k,1(γ )ds(γ

p)

by Corollary 2.16. Replacing the arbitrary γ above with γ pj
for j = 0, . . . , e − 1, we find the telescoping

sum

γ −k(1 − p(λ−k)e)dk(γ ) =
e−1∑
j=0

p(λ−k)jγ −kpj ·
(
dk
(
γ pj )− pλ−kγ kpj−kpj+1

dk
(
γ pj+1 ))

=
e−1∑
j=0

p(λ−k)jγ −kpj · pλ

λ∑
s=k+1

Vs
k,1

(
γ pj )

ds
(
γ pj+1 ) = pλ

e−1∑
j=0

λ∑
s=k+1

p(λ−k)jVs
k,1γ

−spj+1
ds
(
γ pj+1 )

,

which is clearly equivalent to the expression defining the components w(λ)

k (γ ) for k < λ in (3.2), and
where we have once again used Lemma 2.13 to obtain the last equality, since Vs

k,1(γ
pj
) = Vs

k,1γ
kpj−spj+1

.
This concludes the proof of the statements concerning ker(Dλ,τ ).

Let us now prove the statements concerning im(Dλ,τ ). We see from Definition 3.2 that Dλ,τ preserves
the increasing filtration of SC(τ ) by the finite-dimensional subspaces

SC(τ )
<m := {(dk(γ )) ∈ SC(τ )

∣∣ dk(γ ) = 0 for k ≥ m and every γ ∈ C(τ )
}

. (3.5)

In case λ ≤ 0, since Dλ,τ is injective, it must restrict to an automorphism of SC(τ )
<m for each m ∈ N,

concluding the proof of (1). In case λ ≥ 1, so long as m ≥ λ + 1, the one-dimensional ker(Dλ,τ ) ⊆ SC(τ )
<m ,

whence Dλ,τ (SC(τ )
<m ) has codimension 1 in SC(τ )

<m . Also for m ≥ λ+1, the computations (3.3) and (3.4) imply
d ∈ SC(τ )

<m ⇔ Dλ,τ (d) ∈ SC(τ )
<m , and therefore Dλ,τ (SC(τ )

<m ) = im(Dλ,τ ) ∩ SC(τ )
<m . Thus im(Dλ,τ ) has codimension

1 in all of SC(τ ). �

We refer to Remark 4.3 for a small example of the relevance of Lemma 3.4 to λ-Mahler summability.
The following maps will mediate our Definition 5.13 of λ-Mahler discrete residues at torsion Mahler
trees τ ∈ T+.

Definition 3.5. Let λ ∈ Z, τ ∈ T+, and set e := |C(τ )| as in Definition 2.7. We define the 0-section
I(0)

λ,τ (of the map Dλ,τ of Definition 3.2) as follows. For (ck(γ )) = c ∈ SC(τ ), let us write (dk(γ )) =
d = I(0)

λ,τ (c) ∈ SC(τ ). We set dk(γ ) = 0 for every γ ∈ C(τ ) whenever k ∈ N is such that ck̃(γ̃ ) = 0 for

every γ̃ ∈ C(τ ) and every k̃ ≥ k. For any remaining k ∈ N, we define recursively

dk(γ ) := γ k

p(λ−k)e − 1

e−1∑
j=0

p(λ−k)jγ −kpj

⎡
⎣ck
(
γ pj )− pλ

∑
s≥k+1

Vs
k,1

(
γ pj )

ds
(
γ pj+1 )⎤⎦ for k �= λ; (3.6)

and, if λ ≥ 1, we set

dλ(γ ) := γ λ

e

e−1∑
j=0

(j + 1 − e)γ −λpj

⎡
⎣cλ

(
γ pj )− pλ

∑
s≥λ+1

Vs
λ,1

(
γ pj )

ds
(
γ pj+1 )⎤⎦ . (3.7)

More generally, for any ω ∈ K, the ω-section I(ω)
λ,τ (of Dλ,τ ) is defined by setting

I(ω)
λ,τ (c) :=

⎧⎨
⎩I

(0)
λ,τ (c) if λ ≤ 0;

I(0)
λ,τ (c) + ωw(λ) if λ ≥ 1;

(3.8)

for every c ∈ SC(τ ), where w(λ) is the vector defined in (3.2) for λ ≥ 1.

Although, by Lemma 3.4, the map Dλ,τ is not always surjective, in which case it cannot have an honest
inverse, we show in the following result that their ω-sections I(ω)

λ,τ above come as close as possible to
inverting Dλ,τ .
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10 | C. E. Arreche and Y. Zhang

Proposition 3.6. Let λ ∈ Z, τ ∈ T+, and set e := |C(τ )| as in Definition 2.7. Let ω ∈ K and let I(ω)
λ,τ be

as in Definition 3.5. Let c ∈ SC(τ ), and let us write d := I(ω)
λ,τ (c) and c̃ := Dλ,τ (d) as in Definition

3.2. Then

ck(γ ) = c̃k(γ ) whenever k �= λ, for every γ ∈ C(γ ); and, (3.9)

in case λ ≥ 1, cλ(γ ) − c̃λ(γ ) = γ λ

e

e∑
j=1

γ −λpj

⎛
⎝cλ

(
γ pj
)

− pλ
∑

s≥λ+1

Vs
λ,1

(
γ pj
)
ds

(
γ pj+1
)⎞⎠ . (3.10)

Moreover, c ∈ im(Dλ,τ ) if and only if c = c̃.

Proof. The expression (3.6) arises from a similar computation as in the proof of Lemma 3.4. Let c ∈ SC(τ )

be arbitrary, and let us try (and maybe fail), to construct d ∈ SC(τ ) such that Dλ,τ (d) = c, that is, with

ck(γ ) = −dk(γ ) + pλ
∑
s≥k

Vs
k,1(γ )ds(γ ) ⇐⇒ pλ−kγ k−pkdk(γ

p) − dk(γ ) = ck(γ ) − pλ
∑

s≥k+1

Vs(γ )ds(γ
p). (3.11)

Then we again have the telescoping sum

(
p(λ−k)e − 1

)
γ −kdk(γ ) =

e−1∑
j=0

p(λ−k)jγ −kpj ·
(
pλ−kγ kpj−kpj+1

dk
(
γ pj+1 )− dk

(
γ pj ))

=
e−1∑
j=0

p(λ−k)jγ −kpj ·
⎛
⎝ck
(
γ pj )− pλ

∑
s≥k+1

Vs
k,1

(
γ pj )

ds
(
γ p)
⎞
⎠ ,

which is equivalent to (3.6) provided precisely that k �= λ. Thus we see that (3.6) is a necessary condition
on the dk(γ ) in order to satisfy (3.9). In case λ ≤ 0, we know that Dλ,τ is an isomorphism by Lemma
3.4(1), in which case this condition must also be sufficient and we have nothing more to show. Let us
assume from now on that λ ≥ 1. Since by Lemma 3.4(2) the restriction of Dλ,τ to

SC(τ )
>λ := {d ∈ SC(τ )

∣∣ dk(γ ) = 0 for every k ≤ λ and γ ∈ C(γ )
}

is injective, and since it preserves the induced filtration (3.5), it follows that prλ ◦ Dλ,τ restricts to an
automorphism of SC(τ )

>λ , where prλ : SC(τ ) � SC(τ )
>λ denotes the obvious projection map. Therefore the

necessary condition (3.6) must also be sufficient in order to satisfy (3.9) for k > λ. Since Dλ,τ also restricts
to an automorphism of SC(τ )

<λ (trivially so in case λ = 1, since SC(τ )

<1 = {0}), it similarly follows that the
necessary condition (3.8) must also be sufficient in order to satisfy (3.9) for any k < λ also, regardless
of how the dλ(γ ) are chosen. Now for the prescribed choice of dλ(γ ) in (3.7), we compute

c̃λ(γ ) − pλ
∑

s≥λ+1

Vs
λ,1(γ )ds(γ

p) = pλVλ
λ,1(γ )dλ(γ

p) − dλ(γ ) = γ λ−pλdλ(γ
p) − dλ(γ ), (3.12)

where the first equality follows from the definition of c̃ = Dλ,τ (d), and the second equality from Corollary
2.16. On the other hand, after re-indexing the sum in (3.7), evaluated at γ p instead of γ , we find that

γ λ−pλdλ(γ
p) = γ λ

e

e∑
j=1

(j − e)γ −λpj

⎡
⎣cλ

(
γ pj )− pλ

∑
s≥λ+1

Vs
λ,1

(
γ pj )

ds
(
γ pj+1 )⎤⎦ ,

and after subtracting dλ(γ ) exactly as given in (3.7) we find that

γ λ−pλdλ(γ
p) − dλ(γ ) = − γ λ

e

e−1∑
j=1

γ −λpj

⎡
⎣cλ

(
γ pj )− pλ

∑
s≥λ+1

Vs
λ,1

(
γ pj )

ds
(
γ pj+1 )⎤⎦

− γ λ

e
(1 − e)γ −λ

⎡
⎣cλ

(
γ
)− pλ

∑
s≥λ+1

Vs
λ,1(γ )ds

(
γ p)
⎤
⎦

= − γ λ

e

e−1∑
j=0

γ −λpj

⎡
⎣cλ

(
γ pj )− pλ

∑
s≥λ+1

Vs
λ,1

(
γ pj )

ds
(
γ pj+1 )⎤⎦+ cλ(γ ) − pλ

∑
s≥λ+1

Vs
λ,1(γ )ds(γ

p), (3.13)
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with the convention that the sum
∑e−1

j=1 is empty in case e = 1. Putting (3.12) and (13) together establishes
(3.10). Since c = c̃ is a non-trivial sufficient linear condition to have c ∈ im(Dλ,τ ), by Lemma 3.4(2) it
must also be necessary, since im(Dλ,τ ) has codimension 1 in SC(τ ). This concludes the proof. �

4 Mahler Dispersion and λ-Mahler Summability
Our goal in this section is to prove Theorem 4.2: if f ∈ K(x) is λ-Mahler summable for some λ ∈ Z, then
it has non-zero dispersion almost everywhere, generalizing to arbitrary λ ∈ Z the analogous result for
λ = 0 obtained in [9, Corollary 3.2]. In spite of the exceptions that occur for λ ≥ 1, this will be an essential
tool in our proofs that twisted Mahler discrete residues comprise a complete obstruction to λ-Mahler
summability.

In the following preliminary result, which generalizes [9, Proposition 3.1] from the special case λ = 0
to arbitrary λ ∈ Z, we relate the Mahler dispersions of a λ-Mahler summable f ∈ K(x) to those of a
certificate g ∈ K(x) such that f = �λ(g).

Proposition 4.1. Let f , g ∈ K(x) and λ ∈ Z such that f = �λ(g).

1) If ∞ ∈ supp(f ), then disp(f , ∞) = disp(g, ∞) + 1, except in case λ �= 0 and the Laurent polynomial
component f∞ = c0 ∈ K×, in which case we must have g∞ = c0/(pλ − 1).

2) If ∞ �= τ ∈ supp(f ), then disp(f , τ) = disp(g, τ) + 1, with the convention that ∞ + 1 = ∞, except
possibly in case that: τ ∈ T+ is torsion ; and λ ≥ 1; and g has a pole of order exactly λ at every
γ ∈ C(τ ).

Proof. (1). First suppose that {0} �= θ ∈ Z/P is such that gθ �= 0, and let us write gθ =∑d
j=0 cipj xipj

, where
we assume that cicipd �= 0, that is, that disp(gθ , ∞) = d. Then

�λ(gθ ) = pλcipd xipd+1 − cix
i +

d∑
j=1

(pλcipj−1 − cipj )xipj
,

from which it follows that 0 �= fθ = �λ(gθ ) and disp(fθ , ∞) = disp(�λ(gθ ), ∞) = d + 1. Since in this case

disp(f , ∞) = max
{
disp
(
fθ , ∞) ∣∣ {0} �= θ ∈ Z/P , fθ �= 0

}
by Definition 2.11(2), and similarly for disp(g, ∞), we find that disp(f , ∞) = disp(g, ∞) + 1 provided that
the Laurent component g∞ ∈ K[x, x−1] is not constant.

In any case, by Lemma 2.10(2,3), if ∞ ∈ supp(f ) then ∞ ∈ supp(g). In this case, we have 0 �= f∞ =
�λ(g∞), since ∞ ∈ supp(f ), and if λ = 0 it follows in particular g∞ /∈ K. In case λ �= 0 and f∞ = c0 ∈ K×,
the computation above shows that gθ = 0 for every {0} �= θ ∈ Z/P , and we see that g∞ = g{0} = c0/(pλ −1).

(2). Suppose τ ∈ supp(f ), and therefore τ ∈ supp(g) by Lemma 2.10(4). We consider two cases,
depending on whether disp(g, τ) is finite or not.

If disp(g, τ) =: d < ∞, let α ∈ τ be such that α and αpd
are poles of g. Choose γ ∈ τ such that γ p = α.

Then γ is a pole of σ(g) but not of g (by the maximality of d), and therefore γ is a pole of f . On the other
hand, γ pd+1 = αpd

is a pole of g but not of σ(g), for if αpd
were a pole of σ(g) then αpd+1

would be a pole
of g, contradicting the maximality of d. Therefore γ pd+1

is a pole of f . It follows that disp(f , τ) ≥ d + 1.
One can show equality by contradiction: if α ∈ τ is a pole of f such that αps

is also a pole of f for some
s > d + 1, then each of α and αps

is either a pole of g or a pole of σ(g). If αps
is a pole of g, then α cannot

also be a pole of g, for this would contradict the maximality of d, whence α must be a pole of σ(g), but
then αp would have to be a pole of g, still contradicting the maximality of d. Hence αps

must be a pole
of σ(g). But then αps+1

is a pole of g, which again contradicts the maximality of d whether α is a pole of
σ(g) or of g. This concludes the proof that disp(f , τ) = disp(g, τ) + 1 in this case where disp(g, τ) < ∞.

If disp(g, τ) = ∞ then g has a pole in C(τ ) by Lemma 2.12, and therefore τ ∈ T+ (cf. Remark 2.8). If f also
has a pole in C(τ ) then disp(f , τ) = ∞ = disp(g, τ) + 1 and we are done. So let us suppose disp(f , τ) < ∞
and conclude that g has a pole of order exactly λ at every γ ∈ C(τ ). In this case, writing

0 �= C(gτ ) =
∑
k∈N

∑
γ∈C(τ )

dk(γ )

(x − γ )k
and 0 = C(fτ ) =

∑
k∈N

∑
γ∈C(τ )

ck(γ )

(x − γ )k

as in Definition 3.1, it follows from Lemma 3.3 that Dλ,τ (d) = c, where d := (dk(γ )) and c := (ck(γ )) = 0.
By Lemma 3.4, λ ≥ 1 and d = ωw(λ) for some 0 �= ω ∈ K, where w(λ) = (w(λ)

k (γ )) is the unique vector
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12 | C. E. Arreche and Y. Zhang

specified in Lemma 3.4(2), whose components satisfy w(λ)

k (γ ) = 0 for k > λ and w(λ)
λ (γ ) = γ λ �= 0 for

every γ ∈ C(τ ). �

In the next result we deduce from Proposition 4.1 that if f ∈ K(x) is λ-Mahler summable then f has
non-zero dispersion almost everywhere.

Theorem 4.2. Let λ ∈ Z and and suppose that f ∈ K(x) is λ-Mahler summable.

1) If ∞ ∈ supp(f ) and either λ = 0 or f∞ /∈ K then disp(f , ∞) > 0.
2) If λ ≤ 0 then disp(f , τ) > 0 for every ∞ �= τ ∈ supp(f ).
3) If λ ≥ 1 and ∞ �= τ ∈ supp(f ) is such that either τ ∈ T0 or ord(f , τ) �= λ then disp(f , τ) > 0.

Proof. Suppose f ∈ K(x) is λ-Mahler summable and let g ∈ K(x) such that f = �λ(g).
(1) and (2). If ∞ ∈ supp(f ) then by Proposition 4.1(1) disp(f , ∞) = disp(g, ∞)+1 > 0 provided that either

λ = 0 or f∞ /∈ K. If λ ≤ 0 then disp(f , τ) = disp(g, τ) + 1 > 0 for all ∞ �= τ ∈ supp(f ) by Proposition 4.1(2).
(3). Assuming that λ ≥ 1, we know by Proposition 4.1(2) that disp(f , τ) = disp(g, τ) + 1 > 0 for every

∞ �= τ ∈ supp(f ), except possibly in case τ ∈ T+ and g has a pole of order exactly λ at every γ ∈ C(τ ).
Thus our claim is already proved for τ ∈ T0. So from now on we suppose τ ∈ T+. By Lemma 2.10(7),
ord(f , τ) = ord(g, τ), and therefore if ord(f , τ) < λ, there are no poles of g of order λ anywhere in τ ,
let alone in C(τ ), whence disp(f , τ) = disp(g, τ) + 1 > 0 by Proposition 4.1(2) in this case also. Moreover,
if f has a pole of any order in C(τ ), then disp(f , τ) = ∞ > 0 by Lemma 2.12. It remains to show that if
m := ord(f , τ) > λ then disp(f , τ) > 0. In this case, even though ord(g, τ) = m > λ by Lemma 2.10(7) it
could be the case that g has a pole of order exactly λ at every γ ∈ C(τ ) and yet the order-m poles of g lie
in the complement τ − C(τ ), in which case Proposition 4.1 remains silent. So let α1, . . . , αs ∈ sing(g, τ) be
all the pairwise-distinct elements at which g has a pole of order m > λ. Choose βj ∈ τ such that β

p
j = αj

for j = 1, . . . , s, and let us write gτ =∑s
j=1

dj

(x−αj)
m + (lower-order terms) so that

fτ =
s∑

j=1

⎛
⎝p−1∑

i=0

pλVm
m,1(ζ

i
pβj) · dj

(x − ζ i
pβj)

m
− dj

(x − αj)
m

⎞
⎠+ (lower-order-terms) (4.1)

by Lemma 2.17. If any αj ∈ C(τ ), then by Proposition 4.1(2) we already have disp(f , τ) = disp(g, τ)+ 1 > 0.
So let us now further assume that no αj belongs to C(τ ). Then there exists j0 ∈ {1, . . . , s} such that

α
pr

j �= αj0 for every j �= j0 and every r ∈ Z≥0, for otherwise we would have at least one αj ∈ C(τ ). Then

every ζ i
pβj �= αj0 , and it is now clear that the apparent pole of fτ at this αj0 in (4.1) is a true pole of fτ (i.e.,

it does get canceled). Similarly, the p elements ζ i
pβj0 , which are obviously pairwise distinct, are also all

different from every αj, and moreover ζ i
pβj0 = ζ i′

p βj′ if and only if i′ = i and j′ = j0. Thus, in particular, the
apparent pole of fτ at βj0 in (4.1) is also a true pole of fτ . Thus disp(f , τ) ≥ 1 also in this last case where
ord(f , τ) = m > λ. �

Remark 4.3. The exceptions in Theorem 4.2 cannot be omitted. If λ �= 0 then every �λ(
c

pλ−1 ) = c ∈
K is λ-Mahler summable and has disp(c, ∞) = 0 whenever c �= 0. If λ ≥ 1 then for any γ ∈ C(τ )

with ε(τ ) =: e ≥ 1 one can construct (cf. Section 5.3) g = ∑λ
k=1

∑e−1
�=0 ck,� · (x − γ p�

)−k such that
disp(�λ(g), τ) = 0. The simplest such example is with λ, γ , e = 1 (and p ∈ Z≥2 still arbitrary):

f := �1

(
1

x − 1

)
= p

xp − 1
− 1

x − 1
= pV1

1,1(1) − 1

x − 1
+

p−1∑
i=1

pV1
1,1(ζ

i
p)

x − ζ i
p

=
p−1∑
i=1

ζ i
p

x − ζ i
p

,

which is 1-Mahler summable but has disp(f , τ(1)) = 0. We provide a slightly more elaborate
illustration of this phenomenon in Example 7.3. More generally, all other such examples for
arbitrary λ ≥ 1 and τ ∈ T+, of f ∈ K(x) such that fτ is λ-Mahler summable but disp(f , τ) = 0,
arise essentially from the construction fτ := �λ(gτ ) with

gτ =
λ∑

k=1

∑
γ∈C(τ )

ω · w(λ)

k (γ )

(x − γ )k

for an arbitrary constant 0 �= ω ∈ K and the vector w(λ) = (w(λ)

k (γ )) defined in Lemma 3.4(2).
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Twisted Mahler Discrete Residues | 13

5 Twisted Mahler Discrete Residues
Our goal in this section is to define the λ-Mahler discrete residues of f (x) ∈ K(x) for λ ∈ Z and prove our
Main Theorem in Section 5.4, that these λ-Mahler discrete residues comprise a complete obstruction to
λ-Mahler summability. We begin with the relatively simple construction of λ-Mahler discrete residues
at ∞ (for Laurent polynomials), followed by the construction of λ-Mahler discrete residues at Mahler
trees τ ∈ T = T0 ∪ T+ (see Definition 2.7), first for non-torsion τ ∈ T0, and finally for torsion τ ∈ T+, in
increasing order of complexity, and prove separately in each case that these λ-Mahler discrete residues
comprise a complete obstruction to the λ-Mahler summability of the corresponding components of f .

5.1 Twisted Mahler discrete residues at infinity
We now define the λ-Mahler discrete residue of f ∈ K(x) at ∞ in terms of the Laurent polynomial
component f∞ ∈ K[x, x−1] of f in (2.1), and show that it forms a complete obstruction to the λ-Mahler
summability of f∞. The definition and proof in this case are both straightforward, but they provide
helpful moral guidance for the analogous definitions and proofs in the case of λ-Mahler discrete
residues at Mahler trees τ ∈ T .

Definition 5.1. For f ∈ K(x) and λ ∈ Z, the λ-Mahler discrete residue of f at ∞ is the vector

dresλ(f , ∞) =
(
dresλ(f , ∞)θ

)
θ ∈Z/P

∈
⊕

θ ∈Z/P

K

defined as follows. Write f∞ = ∑θ ∈Z/P fθ as in Definition 2.2, and write each component fθ =∑hθ

j=0 cipj xipj
with p � i whenever i �= 0 (that is, with each i initial in its maximal P-trajectory θ ),

and where hθ = 0 if fθ = 0 and otherwise hθ ∈ Z≥0 is as large as possible such that ciphθ �= 0.
Then we set

dresλ(f , ∞)θ := pλhθ

hθ∑
j=0

p−λjcipj for θ �= {0}; and dresλ(f , ∞){0} :=
⎧⎨
⎩c0 if λ = 0;

0 if λ �= 0.

Proposition 5.2. For f ∈ K(x) and λ ∈ Z, the component f∞ ∈ K[x, x−1] in (2.1) is λ-Mahler summable
if and only if dresλ(f , ∞) = 0.

Proof. By Lemma 2.3, f∞ is λ-Mahler summable if and only if fθ is λ-Mahler summable for all θ ∈ Z/P .
We shall show that fθ is λ-Mahler summable if and only if dresλ(f , ∞)θ = 0. If λ �= 0 then f{0} = �λ(

c0
pλ−1 )

is always λ-Mahler summable, while we have defined dresλ(f , ∞){0} = 0 in this case. On the other hand,
for λ = 0, f{0} = dres0(f , ∞){0}, and disp(f{0}, ∞) = 0 if f{0} �= 0, while if f{0} = 0 then it is clearly λ-Mahler
summable. By Theorem 4.2(1) in case λ = 0, and trivially in case λ �= 0, we conclude that f{0} is λ-Mahler
summable if and only if dresλ(f , ∞){0} = 0.

Now let us assume {0} �= θ ∈ Z/P and let us write fθ =∑j≥0 cipj xipj ∈ K[x, x−1]θ , for the unique minimal
i ∈ θ such that p � i. If fθ = 0 then we have nothing to show, so suppose fθ �= 0 and let hθ ∈ Z≥0 be maximal
such that ciphθ �= 0. Letting �

(n)
λ := pλnσ n − id as in Lemma 2.17, we find that

f̄λ,θ := fθ +
hθ∑

j=0

�
(hθ −j)
λ (cipj xipj

) =
hθ∑

j=0

pλ(hθ −j)cipj xiphθ + 0 = dresλ(f , ∞)θ · xiphθ .

By Lemma 2.17, we see that fθ is λ-Mahler summable if and only if f̄λ,θ is λ-Mahler summable. Clearly,
f̄λ,θ = 0 if and only if dres(f , ∞)θ = 0. We also see that disp(f̄λ,θ , ∞) = 0 if dresλ(f , ∞)θ �= 0, in which case
f̄λ,θ cannot be λ-Mahler summable by Theorem 4.2(1), and so fθ cannot be λ-Mahler summable either.
On the other hand, if f̄λ,θ = 0 then fθ is λ-Mahler summable by Lemma 2.17. �

Remark 5.3. The factor of pλhθ in the Definition 5.1 of dresλ(f , ∞)θ for {0} �= θ ∈ Z/P plays no
role in deciding whether f∞ is λ-Mahler summable, but this normalization allows us to define
uniformly the f̄λ,θ = dresλ(f , ∞)θ · xiphθ as the θ-component of the f̄λ ∈ K(x) in the λ-Mahler
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14 | C. E. Arreche and Y. Zhang

reduction (1.2). For every {0} �= θ ∈ Z/P , we set hθ (f ) to be the hθ defined in the course of the
proof of Proposition 5.2 in case fθ �= 0, and in all other cases we set hθ (f ) := 0.

5.2 Twisted Mahler discrete residues at Mahler trees: the non-torsion case
We now define the λ-Mahler discrete residues of f ∈ K(x) at non-torsion Mahler trees τ ∈ T0 in terms
of the partial fraction decomposition of the component fτ ∈ K(x)τ in Definition 2.5, and show that it
forms a complete obstruction to the λ-Mahler summability of fτ . We begin by introducing some auxiliary
notions, which already appeared in [9], but with an unfortunately different choice of notation.

Definition 5.4. Let τ ∈ T0, γ ∈ τ , and h ∈ Z≥0. The bouquet of height h rooted at γ is

βh(γ ) :=
{
α ∈ τ | αpn = γ for some 0 ≤ n ≤ h

}
.

Lemma 5.5 (cf. [9, Lem. 4.4]). Let τ ∈ T0 and S ⊂ τ be a finite non-empty subset. Then there exists
a unique γ ∈ τ such that S ⊆ βh(γ ) with h as small as possible.

Proof. This is an immediate consequence of the proof of [9, Lem. 4.4], whose focus and notation was
rather different from the one adopted here, so let us complement it here with an alternative and more
conceptual argument. As explained in [9, Remark 2.7 and Example 2.9], we can introduce a digraph
structure on τ in which we have a directed edge α → ξ whenever αp = ξ , resulting in an infinite (directed)
tree. The “meet” of the elements of S is the unique γ ∈ τ such that S ⊆ βh(γ ) with h as small as possible.

�
Definition 5.6 (cf. [9, Def. 4.6]). For f ∈ K(x) and τ ∈ supp(f ) ∩ T0, the height of f at τ , denoted by

ht(f , τ), is the smallest h ∈ Z≥0 such that sing(f , τ) ⊆ βh(γ ) for the unique γ ∈ τ identified in
Lemma 5.5 with S = sing(f , τ) ⊂ τ . We write β(f , τ) := βh(γ ), the bouquet of f in τ . For α ∈ β(f , τ),
the height of α in f , denoted by η(α|f ), is the unique 0 ≤ n ≤ h such that αpn = γ .

Example 5.7. Consider p = 3 and τ = τ(2) as in [9, Example 2.9], let α1 := ζ3
9
√

2 and α2 := ζ 2
3

3
√

2
and suppose f ∈ K(x) is such that sing(f , τ) = {α1, α2}. The first common 3-power power of α1

and α2 is γ = 2 = α32

1 = α3
2 — this is the “meet” of α1 and α2 referred to in the proof of Lemma

5.5, and h = 2 is the largest exponent n such that α3n = γ for some α ∈ sing(f , τ). We see that

sing(f , τ) ⊂ β2(2) = {α ∈ K | α32 = 2} ∪ {α ∈ K | α31 = 2} ∪ {α ∈ K | α30 = 2} = β(f , τ),

which is the union of the elements α whose η(α|f ) (height in f ) is 2, 1, 0, respectively. So η(α1|f ) =
2 and η(α2|f ) = 1 and η(2|f ) = 0 (the latter is defined even though 2 /∈ sing(f , τ), because
2 ∈ β(f , τ)).

In [9, Def. 4.10] we gave a recursive definition in the λ = 0 case of Mahler discrete residues for non-
torsion τ ∈ T0. Here we provide a non-recursive definition for λ ∈ Z arbitrary, which can be shown to
agree with the one from [9] in the special case λ = 0 (see Proposition 5.21).

Definition 5.8. For f ∈ K(x), λ ∈ Z, and τ ∈ T0, the λ-Mahler discrete residue of f at τ of degree k ∈ N

is the vector

dresλ(f , τ , k) =
(
dresλ(f , τ , k)α

)
α∈τ

∈
⊕
α∈τ

K

defined as follows.
We set dresλ(f , τ , k) = 0 if either τ /∈ supp(f ) or k > ord(f , τ) as in Definition 2.9. For τ ∈ supp(f ), let

fτ =
∑
k∈N

∑
α∈τ

ck(α)

(x − α)k
. (5.1)
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Twisted Mahler Discrete Residues | 15

We set dresλ(f , τ , k)α = 0 for every k ∈ N whenever α ∈ τ is such that either α /∈ β(f , τ) or, for
α ∈ β(f , τ), such that η(α|f ) �= h, where h := ht(f , τ) and β(f , τ) are as in Definition 5.6.

Finally, for the remaining α ∈ β(f , τ) with η(α|f ) = h and 1 ≤ k ≤ ord(f , τ) =: m, we define

dresλ(f , τ , k)α :=
m∑

s=k

h∑
n=0

pλnVs
k,n(α)cs(α

pn
), (5.2)

where the Mahler coefficients Vs
k,n(α) are as in Proposition 2.15.

We compute explicitly the 1-Mahler discrete residues of a concrete f ∈ K(x) in Example 7.1. A
computational example of 0-Mahler discrete residues is presented in [9, Example 5.1], but computed
differently (see Proposition 5.21).

Proposition 5.9. For f ∈ K(x), λ ∈ Z, and τ ∈ T0, the component fτ is λ-Mahler summable if and
only if dresλ(f , τ , k) = 0 for every k ∈ N.

Proof. The statement is trivial for τ /∈ supp(f ) ⇔ fτ = 0. So let us suppose τ ∈ supp(f ), and let h := ht(f , τ),
m := ord(f , τ), and η(α) := η(α|f ) for each α ∈ β(f , τ). Writing fτ as in (5.1), let us also write, for 0 ≤ n ≤ h,

f (n)
τ :=

m∑
k=1

∑
α∈β(f ,τ)
η(α)=n

ck(α)

(x − α)k
so that fτ =

h∑
n=0

f (n)
τ .

By Lemma 2.17, for each 0 ≤ n ≤ h, we have

σ n
(
f (h−n)
τ

)
=

m∑
k=1

∑
α∈β(f ,τ)

η(α)=h

∑m
s=k Vs

k,n(α)cs(α
pn

)

(x − α)k
,

and therefore

�
(n)
λ

(
f (h−n)
τ

)
= −f (h−n)

τ +
m∑

k=1

∑
α∈β(f ,τ)

η(α)=h

pλn∑m
s=k Vs

k,n(α)cs(α
pn

)

(x − α)k
.

It follows from the Definition 5.8 that

f̄τ := fτ +
n∑

n=0

�
(n)
λ

(
f (h−n)
τ

)
=

m∑
k=1

∑
α∈τ

dresλ(f , τ , k)α

(x − α)k
. (5.3)

By Lemma 2.17, f̄λ,τ − fτ is λ-Mahler summable, and therefore fτ is λ-Mahler summable if and only
if f̄λ,τ is λ-Mahler summable. If dresλ(f , τ , k) = 0 for every 1 ≤ k ≤ m, then f̄λ,τ = 0 and therefore fτ is
λ-Mahler summable. On the other hand, if some dresλ(f , τ , k) �= 0, then 0 �= f̄λ,τ has disp(f̄λ,τ , τ) = 0. This
is because, in Definition 5.8, the only α ∈ τ for which dres(f , τ , k)α could possibly be non-zero in (5.2) are
those with η(α) = h, so it is impossible to have any such α be a p-power power of another (see Definition
5.6 and Definition 2.11(1)). By Theorem 4.2(2,3) f̄λ,τ could not possibly be λ-Mahler summable unless it
is 0, and therefore neither could fτ . This concludes the proof that fτ is λ-Mahler summable if and only
if dresλ(f , τ , k) = 0 for every k ∈ N. �

Remark 5.10. For f ∈ K(x) and τ ∈ supp(f ) ∩ T0, the element f̄λ,τ in (5.3) is the τ -component of the
f̄λ ∈ K(x) in the λ-Mahler reduction (1.2).
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16 | C. E. Arreche and Y. Zhang

5.3 Twisted Mahler discrete residues at Mahler trees: the torsion case
We now define the λ-Mahler discrete residues of f ∈ K(x) at torsion trees τ ∈ T+ (see Definition 2.7) in
terms of the partial fraction decomposition of the component fτ ∈ K(x)τ in Definition 2.5, and show that
it forms a complete obstruction to the λ-Mahler summability of fτ . The definitions and proofs in this
case are more technical than in the non-torsion case, involving the cycle map Dλ,τ of Definition 3.2 and
its ω-section I(ω)

λ,τ from Definition 3.5, for a particular choice of constant ω ∈ K associated to f , which we
construct in Definition 5.12.

We begin by recalling the following definition from [9], which is the torsion analogue of Definition 5.6.

Definition 5.11 (cf. [9, Def. 4.6]). For τ ∈ T+ and α ∈ τ , the height of α, denoted by η(α), is the
smallest n ∈ Z≥0 such that αpn ∈ C(τ ) (cf. Definition 2.7). For f ∈ K(x) and τ ∈ supp(f ) ∩ T+, the
height of f at τ is

ht(f , τ) := max{η(α) | α ∈ sing(f , τ)},

or equivalently, the smallest h ∈ Z≥0 such that αph ∈ C(τ ) for every pole α of f in τ .

The following technical definition will allow us to use the correct ω-section I(ω)
λ,τ from Definition 3.5

in our construction of λ-Mahler discrete residues in the torsion case.

Definition 5.12. For f ∈ K(x) and τ ∈ supp(f ) ∩ T+, let us write

fτ =
∑
k∈N

∑
α∈τ

ck(α)

(x − α)k
.

For λ ∈ Z, we define the residual average ωλ,τ (f ) ∈ K of f (relative to λ and τ ) as follows.
If λ ≤ 0 or if h := ht(f , τ) = 0 (cf. Definition 5.11), we simply set ωλ,τ (f ) = 0. In case both λ, h ≥ 1, let

τh := {α ∈ τ | η(α) = h} be the set of elements of τ of height h. Let us write c = (ck(γ )), for γ ranging
over C(τ ) only, and let (d(0)

k (γ )) = d(0) := I(0)
λ,τ (c) as in Definition 3.5 and (c̃k(γ )) = c̃ = Dλ,τ (d

(0)
),

as in Definition 3.5. Then we define

ωλ,τ (f ) := 1
(ph − ph−1)e

∑
α∈τh

∑
s≥λ

h−1∑
n=0

pλnVs
λ,nα

−spn
cs(α

pn
) − pλ(h−1)

e

∑
γ∈C(τ )

∑
s≥λ

Vs
λ,h−1γ

−s(c̃s(γ ) + d(0)
s (γ )), (5.4)

where the universal Mahler coefficients Vs
λ,n ∈ Q are defined as in Section 2.5.

Explicit computations of the residual average ωλ,τ (f ) are presented in Examples 5.15, 7.2, and 7.3.
The significance of this definition and our choice of nomenclature is explained in the proof of
Proposition 5.19 below (with the aid of Lemma 5.18). We are now ready to define the λ-Mahler discrete
residues at torsion Mahler trees. In [9, Def. 4.16] we gave a recursive definition of Mahler discrete residues
for torsion τ ∈ T+ in the λ = 0 case. Here we provide a less recursive definition for λ ∈ Z arbitrary, which
can be shown to agree with the one from [9] in the special case λ = 0 (see Proposition 5.21). This new
definition is only less recursive than that of [9] because of the intervention of the map I(ω)

λ,τ , for which
we have not found a closed form and whose definition is still essentially recursive.

Definition 5.13. For f ∈ K(x), λ ∈ Z, and τ ∈ T with τ ⊂ K×
t , the λ-Mahler discrete residue of f at τ of

degree k ∈ N is the vector

dresλ(f , τ , k) =
(
dresλ(f , τ , k)α

)
α∈τ

∈
⊕
α∈τ

K

defined as follows.
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Twisted Mahler Discrete Residues | 17

We set dresλ(f , τ , k) = 0 if either τ /∈ supp(f ) or k > ord(f , τ) as in Definition 2.9. For τ ∈ supp(f ), let

fτ =
∑
k∈N

∑
α∈τ

ck(α)

(x − α)k
. (5.5)

We set dresλ(f , τ , k)α = 0 for every k ∈ N − {λ} whenever α ∈ τ is such that η(α) �= h, where
h := ht(f , τ) and η(α) are as in Definition 5.11. In case λ ≥ 1, we set dresλ(f , τ , λ)α = 0 also
whenever η(α) /∈ {0, h}.

In case h = 0, so that sing(f , τ) ⊆ C(τ ), we simply set

dresλ(f , τ , k)γ := ck(γ ) (5.6)

for every 1 ≤ k ≤ ord(f , τ) and γ ∈ C(τ ).
In case h ≥ 1, let us write c = (ck(γ )) for γ ranging over C(τ ) only, and let (dk(γ )) = d := I(ω)

λ,τ (c) as in
Definition 3.5, where ω := ωλ,τ (f ) (cf. Definition 5.12), and (c̃k(γ )) = c̃ := Dλ,τ (d) as in Definition
3.2. For α ∈ τ such that η(α) = h and for 1 ≤ k ≤ ord(f , τ) =: m, we define

dresλ(f , τ , k)α :=
m∑

s=k

h−1∑
n=0

pλnVs
k,n(α)cs(α

pn
) − pλ(h−1)

m∑
s=k

Vs
k,h−1α

k−sph+e−1
(
c̃s

(
αph+e−1
)

+ ds

(
αph+e−1
))

. (5.7)

In case λ ≥ 1, for γ ∈ C(τ ) we set

dresλ(f , τ , λ)γ := cλ(γ ) − c̃λ(γ ) = γ λ

e

e∑
j=1

γ −λpj

⎛
⎝cλ(γ

pj
) − pλ

∑
s≥λ+1

Vs
λ,1(γ

pj
)ds(γ

pj+1
)

⎞
⎠ . (5.8)

As before, the Mahler coefficients Vs
k,n(α) and the universal Mahler coefficients Vs

k,h−1 are as in
Section 2.5.

Remark 5.14. The Definition 5.13 can be expressed equivalently in ways that are easier to
compute but more difficult to write. We cannot improve on the definition (5.6) in case h = 0;
so let us address the case h ≥ 1. The different ingredients used in Definition 5.13 are best
computed in the following order. In every case, one should first compute the vector d(0) :=
I(0)

λ,τ (c) of Definition 3.5. Every instance of c̃s in (5.4) and in (5.7) can (and should) be replaced
with cs, with the single exception of c̃λ (if it happens to occur), which should be rewritten in
terms of the cs and d(0)

s using (3.7). There is no need to find c̃ by applyingDλ,τ to anything. Having
made these replacements, and only then, one should then compute the residual average ω from
Definition 5.12, if necessary, using (5.4). If this ω = 0 then we already have all the required
ingredients to compute our discrete residues. Only in case ω �= 0, we then proceed to compute
the vector w(λ) of Lemma 3.4(2), and by Definition 3.5 we can replace the ds in (5.7) with
d(0)

s +ω ·w(λ)
s , all of which have already been computed, and now we are once again in possession

of all the required ingredients.

Example 5.15. In the small example f =∑p−1
i=1 ζ i

p/(x− ζ i
p) considered in Remark 4.3, we have λ = 1,

τ = τ(1), C(τ ) = {1} = τ0, e = 1, h = 1, and τ1 = {ζ i
p | i = 1, . . . , p − 1}. Here we have c = (ck(1))k∈N =

0, whence so are d(0) = c̃ = 0. Moreover, c1(ζ
i
p) = ζ i

p for i = 1, . . . , p − 1, and every cs(α) = 0 for
s ≥ 2, so we compute from (5.4)

ω1,τ (f ) = 1
(p1 − p0) · 1

p−1∑
i=1

∑
s≥1

0∑
n=0

p1·nVs
1,n

(
ζ i

p

)−1·pn

cs
((

ζ i
p

)pn )− p1·0

1

∑
s≥1

Vs
1,01−s(0 + 0)

= 1
p − 1

p−1∑
i=1

ζ−i
p ζ i

p − 1 · 0 = 1.
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18 | C. E. Arreche and Y. Zhang

Next we compute the vector w(1) = (wk(1))k∈N, which is given by wk(1) = δ1,k (Kronecker’s
δ), whence the vector d = I(1)

1,τ = 1 · w(1). Since m = 1, according to Definition 5.13 every
dres1(f , τ(1), k)α = 0 except possibly for k = 1 and α ∈ {ζ i

p | i = 0, . . . , p − 1} = τ0 ∪ τ1. But since
c = 0 = c̃, we find dres1(f , τ(1), 1)1 = 0 immediately from (5.8). The remaining components of
the vector dres1(f , τ(1), 1) are computed by (5.7):

dres1(f , τ(1), 1)ζ i
p

=
1∑

s=1

0∑
n=0

p1·nVs
1,n(ζ

i
p)cs
((

ζ i
p

)pn )− p1·0
1∑

s=1

Vs
1,0

(
ζ i

p

)1−sp1(
0 + ds
((

ζ i
p

)p1 )) = ζ i
p − ζ i

p = 0.

We encourage the reader who would find it helpful at this point to see more instances of
the computational strategy of Remark 5.14 in action to consult the more elaborate concrete
Examples 7.2 and 7.3.

We next present three preparatory Lemmas that will aid us in streamlining our proof of Proposi-
tion 5.19 below that the λ-Mahler discrete residues just defined comprise a complete obstruction to
the λ-Mahler summability of fτ for τ ∈ T+. We hope that the reader who, like us, finds the above
Definition 5.13 painfully complicated, especially in comparison with the relatively simpler Definition 5.8
in the non-torsion case, can begin to glimpse in the statements of the following preliminary results
the reasons for the emergence of the additional ingredients in Definition 5.13 that are absent from
Definition 5.8. This is why we have chosen to present them first, and postpone their proofs until after
their usefulness has become apparent in the proof of Proposition 5.19.

Lemma 5.16. If f ∈ K(x) and τ ∈ supp(f , τ) ∩ T+ are such that ht(f , τ) = 0 then fτ is not λ-Mahler
summable for any λ ∈ Z.

Lemma 5.17. Let λ ∈ Z and τ ∈ T+, and set e := |C(τ )| as in Definition 2.7. Let f ∈ K(x), and write
C(fτ ) = ∑k∈N

∑
γ∈C(τ )

ck(γ )

(x−γ )k as in Definition 3.1. Let us write c = (ck(γ )) ∈ SC(τ ). Let ω ∈ K be

arbitrary, and let d = (dk(γ )) = I(ω)
λ,τ (c) as in Definition 3.5 and c̃ = Dλ,τ (d) as in Definition 3.2.

Set

g0 :=
∑
k∈N

∑
γ∈C(τ )

dk(γ )

(x − γ )k
and g1 := −

∑
k∈N

∑
γ∈C(τ )

p−1∑
i=1

ζ ki
p (c̃k(γ ) + dk(γ ))

(x − ζ i
pγ )k

. (5.9)

Then

C(fτ ) − �λ(g0) =
⎧⎨
⎩g1 if λ ≤ 0;

g1 +∑γ∈C(τ )
cλ(γ )−c̃(γ )

(x−γ )λ
if λ ≥ 1.

(5.10)

Moreover, for any h ≥ 1, writing τh := {α ∈ τ | η(α) = h}, we have

σ h−1(g1) = −
∑
k∈N

∑
α∈τh

∑
s≥k V

s
k,h−1α

k−sph+e−1
(
c̃s

(
αph+e−1
)

+ ds

(
αph+e−1
))

(x − α)k
. (5.11)

Lemma 5.18. Let λ ≥ 1, h ≥ 1, f̄τ ∈ K(x)τ , and τ ∈ supp(f̄ ) ∩ T+ such that ord(f̄ , τ) = λ and

sing(f , τ) ⊆ τh = {α ∈ τ | η(α) = h}, so that we can write f̄τ =
λ∑

k=1

∑
α∈τh

c̄k(α)

(x − α)k
.

If f̄τ is λ-Mahler summable then all the elements α−λ c̄λ(α) are equal to the constant ω̄ =
1

|τh |
∑

α∈τh
α−λ c̄λ(α), which is their arithmetic average. Letting e := |C(τ )|, we have |τh| = (ph −

ph−1)e.
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Twisted Mahler Discrete Residues | 19

Proposition 5.19. For f ∈ K(x), λ ∈ Z, and τ ∈ T+, the component fτ is λ-Mahler summable if and
only if dresλ(f , τ , k) = 0 for every k ∈ N.

Proof. The statement is trivial for τ /∈ supp(f ) ⇔ fτ = 0. If ht(f , τ) = 0 then 0 �= fτ cannot be λ-Mahler
summable by Lemma 5.16, whereas in this case we defined dres(f , τ , k)γ = ck(γ ) in (5.6) of Definition
5.13, and we obtain our conclusion vacuously in this case.

From now on we assume τ ∈ supp(f ), and let h := ht(f , τ) ≥ 1, m := ord(f , τ), and ω := ωλ,τ (f ). Writing
fτ as in (5.5), let τn := {α ∈ τ | η(α) = n} for n ∈ Z≥0 and let us also write

f (n)
τ :=

m∑
k=1

∑
α∈τn

ck(α)

(x − α)k
so that fτ =

h∑
n=0

f (n)
τ .

Similarly as in the proof of Proposition 5.9, we compute that by Lemma 2.17, for each 0 ≤ n ≤ h − 1 we
have

σ n
(
f (h−n)
τ

)
=

m∑
k=1

∑
α∈τh

∑m
s=k Vs

k,n(α)cs(α
pn

)

(x − α)k
,

and therefore (notice that the component f (0)
τ = C(fτ ), corresponding to n = h, is left untouched!)

f̃λ,τ := fτ +
h−1∑
n=0

�
(n)
λ (f (h−n)

τ ) =
m∑

k=1

∑
α∈τh

∑
s≥k

∑h−1
n=0 pλnVs

k,n(α)cs(α
pn

)

(x − α)k
+

m∑
k=1

∑
γ∈C(τ )

ck(γ )

(x − γ )k
. (5.12)

Let us now write, as in Definition 5.13 (in the present case h ≥ 1), c = (ck(γ )) for γ ranging over C(τ ) = τ0

only, (dk(γ )) = d := I(ω)
λ,τ (c), and (c̃k(γ )) = c̃ := Dλ,τ (d).

Writing g0 and g1 as in (5.9), it follows from Lemma 5.17 and Definition 5.13 (where in case λ ≤ 0, we
use (5.7) alone; and in case λ ≥ 1, we use (5.7) for α ∈ τh and (5.8) for α ∈ C(τ )) that

f̄λ,τ := f̃λ,τ − �λ(g0) + �
(h−1)
λ (g1) =

m∑
k=1

∑
α∈τ

dresλ(f , τ , k)α

(x − α)k
. (5.13)

By a twofold application of Lemma 2.17, to (5.12) and to (5.13), we find that

fτ is λ-Mahler summable ⇐⇒ f̃λ,τ is λ-Mahler summable ⇐⇒ f̄λ,τ is λ-Mahler summable.

On the other hand, we see from (5.13) that f̄λ,τ = 0 if and only if dresλ(f , τ , k) = 0 for every k ∈ N. Therefore
we immediately conclude that if dresλ(f , τ , k) = 0 for every k ∈ N then fτ is λ-Mahler summable.
Moreover, in case λ ≤ 0, if fτ is λ-Mahler summable, so that f̄λ,τ is also λ-Mahler summable, then we must
have f̄λ,τ = 0. Otherwise we would have, in contradiction with Theorem 4.2(2), that disp(f̄λ,τ , τ) = 0. This
is because, by (5.10) in Lemma 5.17 in case λ ≤ 0 (cf. (5.7) in Definition 5.13), we have dresλ(f , τ , k)α = 0
for every k ∈ N and α /∈ τh, and it is impossible to have any such α being a p-power power of another
when h ≥ 1 (see Definition 5.11 and Definition 2.11(1)). This concludes the proof of the Proposition in
case λ ≤ 0.

It remains to prove the converse in the case where λ ≥ 1: assuming fτ is λ-Mahler summable, we
must have dresλ(f , τ , k) = 0 for every k ∈ N. By Proposition 3.6, we must have c = c̃, and therefore in
(5.8) dresλ(f , τ , k)γ = cλ(γ ) − c̃λ(γ ) = 0 for every γ ∈ C(τ ), whence sing(f̄λ,τ , τ) ⊆ τh by the Definition 5.13
of dresλ(f , τ , k) (since we set dresλ(f , τ , k)α = 0 whenever α ∈ τ is neither in τh nor in C(τ )). Moreover, if
we had f̄λ,τ �= 0, contrary to our contention, then we would have disp(f̄λ,τ , τ) = 0 (for the same reasons
as those just discussed above in the case λ ≤ 0), and by Theorem 4.2(3) this can only happen in case
ord(f̄λ,τ , τ) = λ. So we already conclude that dresλ(f , τ , k) = 0 for every k > λ if fτ is λ-Mahler summable.
If we can further show that dresλ(f , τ , λ) = 0 also, then this will force ord(f̄λ,τ , τ) �= λ and we will be able
to conclude that actually dresλ(f , τ , k) = 0 for every k ∈ N, as we contend, by another application of
Theorem 4.2(3).
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20 | C. E. Arreche and Y. Zhang

Thus it remains to show that if fτ is λ-Mahler summable then dresλ(f , τ , λ) = 0, which task will occupy
us for the rest of the proof. We already know that dresλ(f , τ , k) = 0 for every k > λ and dresλ(f , τ , λ)γ = 0
for every γ ∈ C(τ ), and therefore f̄λ,τ satisfies the hypotheses of Lemma 5.18 by (5.13) and the Definition
5.13 (where we had set dresλ(f , τ , k)α = 0 whenever α ∈ τ is neither in τh nor in C(τ )). So let us write
c̄k(α) := dresλ(f , τ , k)α (given here as in (5.7)) as in Lemma 5.18, so that f̄λ,τ = ∑λ

k=1

∑
α∈τh

c̄k(α)

(x−α)k , and
compute the arithmetic average ω̄ of the elements α−λ c̄λ(α) for α ranging over τh, which must be equal
to α−λ c̄λ(α) for each α ∈ τh by Lemma 5.18. Firstly, we see that

1
|τh|
∑
α∈τh

α−λ

(∑
s≥λ

h−1∑
n=0

pλnVs
λ,n(α)cs(α

pn
)

)
= 1

(ph − ph−1)e

∑
α∈τh

∑
s≥λ

h−1∑
n=0

pλnVs
λ,nα

−spn
cs(α

pn
),

since Vs
λ,n(α) = Vs

λ,n ·αλ−spn
by Lemma 2.13. Secondly, we find that in the remaining portion of the average

of α−λ c̄λ(α) = α−λdresλ(f , τ , λ)α for α ranging over τh,

1
|τh|
∑
α∈τh

α−λ

(
−pλ(h−1)

∑
s≥λ

Vs
λ,h−1α

λ−sph+e−1
(
c̃s

(
αph+e−1
)

+ ds

(
αph+e−1
)))

= −pλ(h−1)

(ph − ph−1)e

∑
α∈τh

∑
s≥λ

Vs
λ,h−1

((
αph
)pe−1)−s (

c̃s

((
αph
)pe−1)

+ ds

((
αph
)pe−1))

, (5.14)

the summands depend only on αph = γ ∈ C(τ ). For each γ ∈ C(τ ), the set {α ∈ τh | αph = γ } has ph − ph−1

elements: there are (p − 1) distinct pth-roots of γ that do not belong to C(τ ), and then there are ph−1

distinct (ph−1)th roots of each of those elements. Therefore the expression in (14) is equal to the simpler

− pλ(h−1)

e

∑
γ∈C(τ )

∑
s≥λ

Vs
λ,h−1γ

−s(c̃s(γ ) + ds(γ )), whence the average

ω̄ := 1
|τh|
∑
α∈τh

α−λ c̄λ(α) = 1
(ph − ph−1)e

∑
α∈τh

h−1∑
n=0

∑
s≥λ

pλnVs
λ,nα

−spn
cs(α

pn
) (5.15)

Note that this is not necessarily the same as the similar expression for the residual average ωλ,τ (f ) given
by (5.4) in Definition 5.12, which was defined with respect to (d(0)

k (γ )) = d(0) := I(0)
λ,τ (c) as

ωλ,τ (f ) = 1
(ph − ph−1)e

∑
α∈τh

∑
s≥λ

h−1∑
n=0

pλnVs
λ,nα

−spn
cs(α

pn
) − pλ(h−1)

e

∑
γ∈C(τ )

∑
s≥λ

Vs
λ,h−1γ

−s(c̃s(γ ) + d(0)
s (γ )).

And yet, by (3.8) in Definition 3.5 and the definition (3.2) of w(λ) in Lemma 3.4, we have ds(γ ) = d(0)
s (γ )

for every s > λ and γ ∈ C(τ ) and dλ(γ ) = ωλ,τ (f ) · γ λ + d(0)
λ (γ ) for each γ ∈ C(τ ). By Corollary 2.16,

Vλ
λ,h−1 = p−λ(h−1), and therefore we find from (13), with ω := ωλ,τ (f ), that

ω̄ = 1
(ph − ph−1)e

∑
α∈τh

h−1∑
n=0

∑
s≥λ

pλnVs
λ,nα

−spn
cs(α

pn
)

− pλ(h−1)

e

∑
γ∈C(τ )

∑
s≥λ+1

Vs
λ,h−1γ

−s(c̃s(γ ) + d(0)
s (γ ))) − pλ(h−1)

e

∑
γ∈C(τ )

Vλ
λ,h−1γ

−λ(c̃λ(γ ) + ωγ λ + d(0)
λ (γ ))

= ω − pλ(h−1)

e

∑
γ∈C(τ )

p−λ(h−1)γ −λγ λω = ω − ω = 0.

Since we must have c̄λ(α) = dresλ(f , τ , λ)α = αλω̄ in (13) for each α ∈ τh by Lemma 5.18, it follows that
dresλ(f , τ , λ) = 0, concluding the proof of Proposition 5.19. �

Remark 5.20. For f ∈ K(x) and τ ∈ supp(f ) ∩ T+, the element f̄λ,τ in (5.13) is the τ -component of
the f̄λ ∈ K(x) in the λ-Mahler reduction (1.2).

Next we provide the proofs of the preliminary Lemmas that we used in the proof of Proposition 5.19.
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Proof of Lemma 5.16. It suffices to show that for any g ∈ K(x) such that gτ �= 0, ht(�λ(g), τ) ≥ 1. So let
m := ord(g, τ), h := ht(g, τ), τn := {α ∈ τ | η(α) = n} for n ∈ Z≥0, and 0 �= gτ =∑m

k=1

∑h
n=0

∑
α∈τn

dk(α)

(x−α)k . Then

�λ(g) =
∑

α∈τh+1

pλVm
m,1(α)dm(αp)

(x − α)m
+ (lower-order or lower-height terms),

and since pλVm
m,1(α) = pλ−mαm−pm by Corollary 2.16 and at least one dm(αp) �= 0 for some

α ∈ τh+1 by assumption, we conclude that �λ(g) has at least one pole in τh+1 and therefore
ht(�λ(g), τ) = h + 1 ≥ 1. �

Proof of Lemma 5.17. It follows from (2.4) and Lemma 3.3 that

�λ(g0) =
∑
k∈N

∑
γ∈C(τ )

c̃k(γ )

(x − γ )k
+
∑
k∈N

∑
γ∈C(τ )

p−1∑
i=1

pλ
∑

s≥k Vs
k,1(ζ

i
pγ )ds(γ

p)

(x − ζ i
pγ )k

.

To see that pλ
∑

s≥k Vs
k(ζ

i
pγ )ds(γ

p) = ζ ki
p (c̃k(γ ) + dk(γ )), note that Vs

k,1(ζ
i
pγ ) = (ζ i

pγ )k−sp · Vs
k,1 = ζ ki

p Vs
k,1(γ ) for

every s ≥ k simultaneously by Lemma 2.13, and pλ
∑

s≥k Vs
k,1(γ )ds(γ

p) = c̃k(γ ) + dk(γ ) by the Definition
3.2 of c̃ = Dλ,τ (d). This concludes the proof of (5.10).

For γ ∈ C(τ ) and 1 ≤ i ≤ p − 1, let S(γ , i) := {α ∈ τ
∣∣ αph−1 = ζ i

pγ
}
. Then τh is the disjoint union of the

sets S(γ , i), and it follows from Lemma 2.17 that, for each γ ∈ C(τ ) and 1 ≤ i ≤ p − 1,

σ h−1

(∑
k∈N

ζ ik
p (c̃k(γ ) + dk(γ ))

(x − ζ i
pγ )k

)
=
∑
k∈N

∑
α∈S(γ ,i)

∑
s≥k Vs

k,h−1(α)ζ is
p (c̃s(γ ) + ds(γ ))

(x − α)k
. (5.16)

For each α ∈ S(γ , i) ⇔ αph−1 = ζ i
pγ , we compute αph+e−1 = γ and ζ is

p = αsph−1(1−pe), and therefore each

Vs
k,h−1(α)ζ is

p (c̃s(γ ) + ds(γ )) = Vs
k,h−1(α)αsph−1(1−pe)

(
c̃s

(
αph+e−1
)

+ ds

(
αph+e−1
))

.

By Lemma 2.13, Vs
k,h−1(α) = Vs

k,h−1 · αk−sph−1
, and therefore Vs

k,h−1(α)αsph−1(1−pe) = Vs
k,h−1α

k−sph+e−1
. It follows

that (5.16) is equal to

∑
k∈N

∑
α∈S(γ ,i)

∑
s≥k V

s
k,h−1α

k−sph+e−1
(
c̃s

(
αph+e−1
)

+ ds

(
αph+e−1
))

(x − α)k
,

and (5.11) now follows by summing over γ ∈ C(γ ) and 1 ≤ i ≤ p − 1. �

Proof of Lemma 5.18. First of all, |τh| = (ph − ph−1)e because there are e elements in C(τ ), each of which
has (p − 1) distinct pth roots (of height 1) that do not belong to C(τ ), and each of these latter elements
has ph−1 distinct (ph−1)th distinct roots—it follows from the Definition 5.11 that α ∈ τ has height η(α) = h
if and only if α is a (ph−1)th root of an element of height 1. Moreover, the α−λ c̄λ(α) are all equal to one
another if and only if they are all equal to their arithmetic average. It remains to show that α−λ c̄λ(α) is
independent of α.

Now let gτ ∈ K(x)τ such that f̄τ = �λ(gτ ). By Lemma 2.10(7), ord(g, τ) = ord(f , τ) = λ, so we can write

gτ =
λ∑

k=1

h−1∑
n=0

∑
α∈τn

dk(α)

(x − α)k
,

because if g had a pole in τn for some n ≥ h then �λ(gτ ) = f̄τ would have a pole in τn+1, contradicting our
assumptions. Let d = (dk(γ )) for γ ranging over C(τ ) only. Since �λ(gτ ) = f̄τ has no poles in C(τ ), we must
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have d ∈ ker(Dλ,τ ) by Lemma 3.3. In particular, for each γ ∈ C(τ ) we must have

0 = cλ(γ ) = (Dλ,τ (d))λ,γ = −dλ(γ ) +
∑
s≥λ

pλVs
λ,1(γ ) = γ λ−pλdλ(γ

p) − dλ(γ ),

since ds(γ ) = 0 for every s > λ and γ ∈ C(τ ) and Vλ
λ,1(γ ) = p−λγ λ−pλ by Corollary 2.16, and therefore

γ −λdλ(γ ) = ω̄ is a constant that does not depend on γ ∈ C(τ ). This is the base case n = 0 of an induction
argument showing that α−λdλ(α) = ω̄ is independent of α ∈ τn for 0 ≤ n ≤ h − 1. Indeed, it follows from
Lemma 2.17 and our assumption that sing(f , τ) ∩ C(τ ) = ∅ that

�λ

(
h−1∑
n=0

∑
α∈τn

dλ(α)

(x − α)λ

)
=

h−1∑
n=0

∑
α∈τn+1

pλVλ
λ,1(α)dλ(α

p) − dλ(α)

(x − α)λ
+ (lower-order terms)

=
h−1∑
n=0

∑
α∈τn+1

αλ · ((αp)−λdλ(α
p)) − dλ(α)

(x − α)λ
+ (lower-order terms)

=
∑
α∈τh

c̄λ(α)

(x − α)λ
+ (lower-order terms), (5.17)

where the second equality follows from the computation Vλ
λ,1(α) = p−λαλ−pλ in Corollary 2.16. In case

h = 1 we have already concluded our induction argument. In case h ≥ 2, we proceed and find from (17)
that

αλ · ((αp)−λdλ(α
p)) − dλ(α) = 0 ⇐⇒ α−λdλ(α) = (αp)−λdλ(α

p) = ω̄

for each α ∈ τn+1 whenever n+1 ≤ h−1, since αp ∈ τn for such an α, concluding our induction argument.
Finally, since dλ(α) = 0 for α ∈ τh, we find again that c̄λ(α) = αλ · ((αp)−λdλ(α

p)) = αλω̄ for α ∈ τh, since
dλ(α) = 0 and αp ∈ τh−1 for such α, whence each dλ(α

p) = αpλω̄. �

5.4 Proof of the Main Theorem
Let us now gather our earlier results to prove the Main Theorem 1.1 stated in the introduction, that
the λ-Mahler discrete residue at ∞ constructed in Definition 5.1 for the Laurent polynomial component
f∞, together with the λ-Mahler discrete residues at Mahler trees τ ∈ T constructed in Definition 5.8 for
non-torsion τ ∈ T0 and in Definition 5.13 for torsion τ ∈ T+, comprise a complete obstruction to the
λ-Mahler summability problem.

Main Theorem (Theorem 1.1). For λ ∈ Z, f ∈ K(x) is λ-Mahler summable if and only if the λ-
Mahler discrete residues dresλ(f , ∞) = 0 and dresλ(f , τ , k) = 0 for every τ ∈ T and every k ∈ N.

Proof. Let f ∈ K(x). By Lemma 2.1, f is λ-Mahler summable if and only if both f∞ and fT are Mahler
summable. By Proposition 5.2, f∞ is λ-Mahler summable if and only if dres(f , ∞) = 0. By Lemma 2.6, fT
is λ-Mahler summable if and only if fτ is λ-Mahler summable for each τ ∈ T = T0 ∪ T+. By Proposition
5.9 in the non-torsion case τ ∈ T0, and by Proposition 5.19 in the torsion case τ ∈ T+, fτ is λ-Mahler
summable if and only if dresλ(f , τ , k) = 0 for every k ∈ N. �

5.5 Mahler reduction
We can now define the λ-Mahler reduction f̄λ of f ∈ K(x) in (1.2), in terms of the local reductions
constructed in the proofs of Proposition 5.2, Proposition 5.9, and Proposition 5.19:

f̄λ :=
∑

θ∈Z/P

f̄λ,θ +
∑
τ∈T

f̄λ,τ =
∑

θ∈Z/P

dresλ(f , ∞)θ · xiθ hθ (f ) +
∑
k∈N

∑
τ∈T

∑
α∈τ

dresλ(f , τ , k)α

(x − α)k
. (5.18)

We refer to Remark 5.3, Remark 5.10, and Remark 5.20 for more details.
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In the un-twisted case where λ = 0, we had already defined 0-Mahler discrete residues in [9], where
we proved that they comprise a complete obstruction to what we call here the 0-Mahler summability
problem. That the dres(f , ∞) of [9, Def. 4.1] agrees with the dres0(f , ∞) of Definition 5.1 is immediately
clear from their respective formulas. In contrast, the Mahler discrete residues dres(f , τ , k) at non-torsion
Mahler trees τ ∈ T0 in [9, Def. 4.10] were defined recursively, using the Mahler coefficients Vs

k,1(α) only,
whereas here we provide closed formulas using the full set of Mahler coefficients Vs

k,n(α) with n ≥ 1 for
dres0(f , τ , k) in Definition 5.8. Similarly, the Mahler discrete residues at torsion Mahler trees τ ∈ T+ in [9,
Def. 4.16] are defined recursively and in terms of an auxiliary K-linear map (see [9, Def. 4.15]), whereas
here we provide closed formulas in terms of a different auxiliary K-linear map I(0)

0,τ in Definition 5.13
(of which the auxiliary K-linear map introduced in [9, Def. 4.15] is essentially a truncated version). It is
not clear at all (to us) from their respective definitions that the dres(f , τ , k) of [9] should agree with the
dres0(f , τ , k) defined here. And yet, they do.

Proposition 5.21. The Mahler discrete residues dres(f , τ , k) of [9] coincide with the 0-Mahler
discrete residues dres0(f , τ , k) in Definitions 5.8 and 5.13.

Proof. It is clear from [9, Defs. 4.10 and 4.16] and Definitions 5.8 and 5.13 that the support of both vectors
dres(f , τ , k) and dres0(f , τ , k) is contained in the set of α ∈ τ such that η(α|f ) = ht(f , τ) in the non-torsion
case (see Definition 5.6) and such that η(α) = ht(f , τ) in the torsion case (see Definition 5.11). In case
τ ∈ T+ such that ht(f , τ) = 0, it is immediately clear from the case h = 0 in [9, Def. 4.16] vis-à-vis (5.6) in
Definition 5.13 that dres(f , τ , k) = dres0(f , τ , k). So let us assume without loss of generality that either
τ ∈ T0 or ht(f , τ) ≥ 1. In [9, Eq. (4.16)] we constructed a Mahler reduction

f̄τ =
∑
k∈N

∑
α∈τ

dres(f , τ , k)α

(x − α)k

such that f̄τ − f is Mahler summable (see [9, §4.4]), whereas here we have constructed an analogous f̄0,τ

in (5.18) with the same property that f̄0,τ − fτ is 0-Mahler summable. Therefore

(f̄0,τ − fτ ) − (f̄τ − fτ ) = f̄0,τ − f̄τ =
∑
k∈N

∑
α∈τ

dres0(f , τ , k)α − dres(f , τ , k)α

(x − α)

is 0-Mahler summable. For τ ∈ T0 ∩ supp(f ), we always have dres0(f , τ , k)α = 0 (resp., dres(f , τ , k)α = 0),
except possibly for α ∈ β(f , τ) with η(α|f ) = h in Definition 5.8 (resp., in [9, Def. 4.10]). Similarly, for
τ ∈ T+ ∩ supp(f ), we always have dres(f , τ , k)α = 0 except possibly for α ∈ τh in [9, Def. 4.16], and notice
that when λ = 0 and h ≥ 1 we only use (5.7) in Definition 5.13, so dres0(f , τ , k)α = 0 is also possibly
non-zero for α ∈ τh only. Thus if we had f̄0,τ �= f̄τ , then we would have disp(f̄0,τ − f̄τ , τ) = 0. But this would
contradict Theorem 4.2(2), so we conclude that dres0(f , τ , k) = dres(f , τ , k) for every τ ∈ T and k ∈ N. �

6 Differential Relations Among Solutions of First-Order Mahler
Equations
Let us now consider the differential structures that are relevant for the most immediate applications
of our λ-Mahler discrete residues. We denote by ∂ := x d

dx the unique K-linear derivation on K(x) such
that ∂(x) = x. We immediately compute that pσ ◦ ∂ = ∂ ◦ σ as K-linear endomorphisms of K(x). In order
to remedy this, one can proceed as proposed by Michael Singer (see [16, Introduction]), to work in the
overfield K(x, log x) and introduce the derivation δ = x log x d

dx = log x ·∂. We insist that the notation log x
is meant to be suggestive only: here log x is a new transcendental element satisfying σ(log x) = p · log x
and ∂(log x) = 1. Using these properties alone, one can verify that δ◦σ = σ ◦δ as K-linear endomorphisms
on all of K(x, log x).

The following computational result is a Mahler analogue of [8, Lem. 3.4], and of an analogous and
more immediate computation in the shift case, which occurs in the proof of [5, Cor. 2.1].
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24 | C. E. Arreche and Y. Zhang

Lemma 6.1. Let 0 �= a ∈ K(x) and λ ≥ 1. Then dresλ

(
∂λ−1

(
∂a
a

)
, ∞
)

= 0 and, for every τ ∈ T and

α ∈ τ ,

dresλ

(
∂λ−1
(

∂(a)

a

)
, τ , λ
)

α

= (−1)λ−1(λ − 1)! αλ−1 · dres1

(
∂(a)

a
, τ , 1
)

α

∈ Q · αλ.

Proof. Let a = b
∏

α∈K(x − α)m(α), where 0 �= b ∈ K and the m(α) ∈ Z are almost all zero, and let

f := ∂(a)

a
= m(0) +

∑
α∈K×

m(α)x
x − α

=
∑
α∈K

m(α) +
∑
α∈K×

α · m(α)

x − α
. (6.1)

We then see immediately by induction that, for λ ≥ 1, ∂λ−1(f )∞ ∈ K, and therefore by Definition 5.1

dresλ

(
∂λ−1

(
∂a
a

)
, ∞
)

= 0. We also compute, using a similar induction argument as in [8, Lem. 3.4],

that for τ ∈ T and λ ≥ 1:

∂λ−1(f )τ =
∑
α∈τ

(−1)λ−1(λ − 1)! αλm(α)

(x − α)λ
+ (lower-order terms) =

λ∑
k=1

∑
α∈τ

c[λ]
k (α)

(x − α)k
, (6.2)

where the notation c[λ]
k (α) is meant to let us directly apply the definitions of λ-Mahler discrete residues

of degree λ of ∂λ−1(f ) and more easily compare them with one another. In fact, as we shall see, it will
only be necessary for us to know that c[1]

1 (α) = α · m(α), and more generally that

c[λ]
λ (α) = (−1)λ−1(λ − 1)! αλm(α) = (−1)λ−1(λ − 1)! αλ−1c[1]

1 (α). (6.3)

We shall also repeatedly use the results from Lemma 2.13 and Corollary 2.16, that Vλ
λ,n(α) = p−λnαλ−λpn

.
For τ ∈ supp(f ) ∩ T0, let h := ht(f , τ), and let α ∈ β(f , τ) such that η(α|f ) = h (cf. Definition 5.6). Then

dresλ(∂
λ−1(f ), τ , λ)α =

h∑
n=0

pλnVλ
λ,n(α)c[λ]

λ (αpn
) =

h∑
n=0

pλnp−nλαλ−λpn
c[λ]
λ (αpn

)

= (−1)λ−1(λ − 1)! αλ

h∑
n=0

m(αpn
) = (−1)λ−1(λ − 1)! αλ−1dres1(f , τ , 1)α ∈ Q · αλ,

by Definition 5.8. For τ ∈ supp(f )∩T+, let us first suppose ht(f , τ) = 0 as in Definition 5.11, and compute
for γ ∈ C(τ ), using (5.6) in Definition 5.13 that

dresλ(∂
λ−1(f ), τ , λ)γ = c[λ]

λ (γ ) = (−1)λ−1(λ − 1)! γ λm(γ ) = (−1)λ−1(λ − 1)! γ λ−1dres1(f , τ , 1)γ ,

which clearly belongs to Q · γ λ. On the other hand, if h := ht(f , τ) ≥ 1, we compute for γ ∈ C(τ ) using
(5.8):

dresλ(∂
λ−1(f ), τ , λ)γ = γ λ

e

e∑
j=1

γ −λpj
c[λ]
λ (γ pj

) = γ λ

e

e∑
j=1

γ −λpj
(−1)λ−1(λ − 1)! γ λpj

m(γ pj
)

= (−1)λ−1(λ − 1)!
γ λ

e

e∑
j=1

m(γ pj
) = (−1)λ−1(λ − 1)! γ λ−1dres1(f , τ , 1)γ ∈ Q · γ λ (6.4)

Before computing the α-component of dresλ(∂
λ−1(f ), τ , λ) for α ∈ τ such that η(α) = h, we must first

compute a few preliminary objects (cf. Remark 5.14). Consider the vector d[λ] := I(0)
λ,τ (c

[λ]) as in Definition
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3.5, and let us compute in particular as in (3.7):

d[λ]
λ (γ ) = γ λ

e

e−1∑
j=0

(j + 1 − e)γ −λpj
c[λ]
λ (γ pj

) = γ λ

e

e−1∑
j=0

(j + 1 − e)γ −λpj · (−1)λ−1(λ − 1)! γ λpj
m(γ pj

)

= (−1)λ−1(λ − 1)!
γ λ

e

e−1∑
j=0

(j + 1 − e)m(γ pj
) = (−1)λ−1(λ − 1)! γ λ−1d[1]

1 (γ ), (6.5)

where the last equality results again from (3.7), since m(γ pj
) = γ −pj

c[1]
1 (γ pj

) for each j. For c̃[λ] := Dλ,τ (d
[λ]

),
the λ-components c̃[λ]

λ (γ ) = c[λ]
λ (γ )−dresλ(∂

λ−1(f ), τ , λ)γ , by (5.8) in Definition 5.13. Thus, putting together
(6.3), (4), and (5), we obtain

c̃[λ]
λ (γ ) + d[λ]

λ (γ ) = (−1)λ−1(λ − 1)! γ λ

e

e∑
j=1

(j − e)m(γ pj
). (6.6)

With this, we next compute the residual average ωλ,τ (∂
λ−1(f )) of Definition 5.12, for which we compute

separately the two long sums appearing in (5.4). First, the sum over elements of positive height, using
(6.3) and Corollary 2.16, yields

ω
(+)
λ,τ (∂λ−1(f )) = 1

(ph − ph−1)e

∑
α∈τh

h−1∑
n=0

pλnVλ
λ,nα

−λpn
c[λ]
λ (αpn

)

= (−1)λ−1(λ − 1)!
(ph − ph−1)e

∑
α∈τh

h−1∑
n=0

m(αpn
) = (−1)λ−1(λ − 1)! ·ω(+)

1,τ (f ). (6.7)

Second, the sum over the elements of height zero, using (6.6), results in

ω
(0)
λ,τ (∂

λ−1(f )) = pλ(e−1)

e

∑
γ∈C(τ )

Vλ
λ,h−1γ

−λ(c̃[λ](γ ) + d[λ]
λ (γ ))

= (−1)λ−1(λ − 1)!
e2

∑
γ∈C(τ )

e∑
j=1

(j − e)m(γ pj
) = (−1)λ−1(λ − 1)! ·ω(0)

1,τ (f ). (6.8)

Now putting together (7) and (8) we obtain

ωλ,τ (∂
λ−1(f )) = ω

(+)
λ,τ (∂λ−1(f )) − ω

(0)
λ,τ (∂

λ−1(f )) = (−1)λ−1(λ − 1)! ·ω1,τ (f ), (6.9)

where

ω1,τ (f ) = ω
(+)

1,τ (f ) − ω
(0)

1,τ (f ) = 1
(ph − ph−1)e

∑
α∈τ

η(α)>0

m(α) − e − e2

2e2

∑
γ∈C(τ )

m(γ ) ∈ Q. (6.10)

Since the vector w(λ) of Lemma 3.4(2) satisfies w(λ)
λ (γ ) = γ λ = γ λ−1w(1)

1 (γ ), we finally compute from
(5.7):

dresλ(∂
λ−1(f ), τ , λ)α =

h−1∑
n=0

pnλVλ
λ,n(α)c[λ]

λ (αpn
)

− pλ(h−1)Vλ
λ,h−1α

λ−λph+e−1
(c̃[λ]

λ (αph+e−1
) + d[λ]

λ (αph+e−1
) + ωλ,τ (∂

λ−1(f ))w(λ)
λ (αph+e−1

))

= (−1)λ−1(λ − 1)! αλ

⎡
⎣h−1∑

n=0

m(αpn
) − 1

e

e∑
j=1

(j − e)m(αph+j−1
) + ω1,τ (f )

⎤
⎦

= (−1)λ−1(λ − 1)! αλ−1dres1(f , τ , 1)α ∈ Q · αλ. (6.11)

This concludes the proof of the Lemma. �
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Proposition 6.2. Let U be a σ∂-K(x, log x)-algebra such that Uσ = K. Suppose y1, . . . , yt ∈ U× satisfy
σ(yi) = aiyi for some a1, . . . , at ∈ K(x)×. Then y1, . . . , yt are ∂-dependent over K(x) if and only if
there exist 0 �= (k1, . . . , kt) ∈ Zt and g ∈ K(x) with

∑t
i=1 ki

∂ai
ai

= pσ(g) − g.

Proof. First, suppose there exist k1, . . . , kt ∈ Z and g ∈ K(x) satisfying the conclusion of Proposition 6.2.
Then

σ

(
t∑

i=1

ki
δyi

yi
− g log x

)
−
(

t∑
i=1

ki
δyi

yi
− g log x

)
= log x

(
t∑

i=1

ki
∂ai

ai
− (pσ(g) − g)

)
= 0,

and therefore
∑t

i=1 ki
δyi
yi

− g log x ∈ Uσ = K, whence y1, . . . , yt are δ-dependent over K(x, log x), which is
equivalent to them being ∂-dependent over K(x), since log x is ∂-algebraic over K(x).

Now suppose y1, . . . , yt are ∂-dependent over K(x). Then they are also δ-dependent over K(x, log x).
Just as in [18, Cor. 3.3], mutatis mutandis, there exist Li ∈ K[δ], not all zero, such that

F :=
t∑

i=1

Li

(
δ(ai)

ai

)
= σ(G) − G (6.12)

for some G ∈ K(x, log x). Let λ ≥ 1 be minimal such that ord(Li) ≤ λ−1 for every 1 ≤ i ≤ t, and let us write
Li =∑λ−1

j=0 ki,jδ
j, so that at least one ki,λ−1 �= 0. Then we see from (6.12) that F =∑λ

�=1 f� log� x for certain

f1, . . . , fλ ∈ K(x), so we must have G =∑λ
�=0 g� log� x for some g1, . . . , gλ ∈ K(x) and some irrelevant g0 ∈ K.

We then obtain in particular, by comparing (logλ x)-terms on both sides of (6.12), that

fλ =
t∑

i=1

ki,λ−1∂
λ−1
(

∂ai

ai

)
= pλσ (gλ) − gλ. (6.13)

Let us now conclude the proof in the special case where the following supplementary assumptions
hold:

I) for every τ ∈⋃t
i=1 supp

(
∂ai
ai

)∩ T+, there exists hτ ∈ Z≥0 such that, whenever τ ∈ supp(
∂ai
ai

), we have

ht
(

∂ai
ai

, τ
) = hτ (cf. Definition 5.11); and

II) for every τ ∈⋃t
i=1 supp

(
∂ai
ai

)∩T0, there exist hτ ∈ Z≥0 and γτ ∈ τ such that, whenever τ ∈ supp
(

∂ai
ai

)
,

we have αphτ = γτ for each α ∈ sing
(

∂ai
ai

, τ
)

satisfying η
(
α
∣∣ ∂ai

ai

) = ht
(

∂ai
ai

, τ
)

(cf. Definition 5.6).

These supplementary assumptions permit us to naïvely identify

dresλ(fλ, τ , λ) =
t∑

i=1

ki,λ−1dresλ

(
∂λ−1
(

∂ai

ai

)
, τ , λ
)

for every τ ∈ T . (6.14)

Indeed, for τ ∈ T+, the α-components of the λ-Mahler discrete residues are set to 0 in all cases
of Definition 5.13 for every α ∈ τ whose height is different from hτ or 0, and analogously for
τ ∈ T0 the α-components of the λ-Mahler discrete residues are set to 0 in Definition 5.8 for
every α ∈ βhτ

(γτ ) whose height is non-maximal. Thus, by our Main Theorem 1.1, (6.13) implies

that
∑t

i=1 ki,λ−1dresλ

(
∂λ−1
(

∂ai
ai

)
, τ , λ
)

= 0 for every τ ∈ T . By Lemma 6.1, this is equivalent to∑t
i=1 ki,λ−1dres1

(
∂ai
ai

, τ , 1
)

= 0, which in turn is equivalent to

t∑
i=1

ki,λ−1dres1

(
∂ai

ai
, τ(α), 1

)
α

= 0 ⇐⇒
t∑

i=1

ki,λ−1ξi,α = 0 (6.15)

for every α ∈ K×, where each ξi,α := α−1dres1
(

∂ai
ai

, τ(α), 1
) ∈ Q (again by Lemma 6.1). Thus we may take

our solution 0 �= (k1,λ−1, . . . , kt,λ−1) to the Q-linear system (6.15) to belong to Qt and, after multiplying by a
common denominator, we may further take the ki := ki,λ−1 ∈ Z. As a consequence of our supplementary
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assumptions we have so far that

dres1

(
t∑

i=1

ki
∂ai

ai
, τ , 1

)
= 0

for every τ ∈ T . By another application of Lemma 6.1, we also see that dres1
(∑t

i=1 ki
∂ai
ai

, ∞) = 0, and

since
∑t

i=1 ki
∂ai
ai

only has poles of order 1, we conclude by our Main Theorem 1.1 that indeed there exists

g ∈ K(x) such that
∑t

i=1 ki
∂ai
ai

= pσ(g) − g, as claimed.
It remains to show that our supplementary assumptions I and II above indeed incur no loss of

generality. For τ ∈⋃t
i=1 supp

(
∂ai
ai

)∩T+, let hτ be the largest among the ht
(

∂ai
ai

, τ
)

(see Definition 5.11) such

that τ ∈ supp
(

∂ai
ai

)
, and denote hi,τ := hτ − ht

(
∂ai
ai

, τ
)
; for the remaining i, we set hi,τ := 0. Analogously for

τ ∈⋃t
i=1 supp

(
∂ai
ai

)∩T0, let hτ be the smallest non-negative integer such that
⋃t

i=1 sing
(

∂ai
ai

, τ
) ⊆ βhτ

(γτ ) (see
Definition 5.4) for the (unique) γτ ∈ τ guaranteed to exist by Lemma 5.5. It follows from the Definition
5.6 that hi,τ := hτ − ht

(
∂ai
ai

, τ
) ≥ 0 for each i such that τ ∈ supp(

∂ai
ai

)
; for the remaining i, we set hi,τ := 0.

Writing ai = bi
∏

α∈K(x − α)mi(α), where 0 �= bi ∈ K and the mi(α) ∈ Z are almost all zero, let

ãi := ai ·
∏

τ ∈ supp(fλ)

∏
α∈τ

(
xphi,τ − α

x − α

)mi(α)

, so that β ∈ sing
(

∂ãi

ãi
, τ
)

⇐⇒ βphi,τ ∈ sing
(

∂ai

ai
, τ
)

for every ∞ �= τ ∈ supp(fλ). We see that these ãi satisfy the supplementary hypotheses I and II in the
special case that we have already established. Moreover, the λ-Mahler summability of fλ is equivalent
to that of

f̃λ :=
t∑

i=1

ki,λ−1∂
λ−1
(

∂ãi

ãi

)
,

as we see from Lemma 2.17 by adding

t∑
i=1

ki,λ−1∂
λ−1
(

∂ãi

ãi
− ∂ai

ai

)
=

t∑
i=1

∑
τ ∈ supp(fλ)

∑
α ∈ τ

ki,λ−1mi(α)�
(hi,τ )

λ

(
∂λ−1
(

x
x − α

))

to both sides of (6.13). �

Theorem 6.3. Let U be a σ∂-K(x, log x)-algebra such that Uσ = K. Suppose y1, . . . , yt ∈ U× satisfy
σ(yi) = aiyi for some a1, . . . , at ∈ K(x)×. The following are equivalent.

1) y1, . . . , yt are ∂-dependent over K(x);
2) there exist 0 �= (k1, . . . , kt) ∈ Zt and g ∈ K(x) such that

∑t
i=1 ki

∂ai
ai

= pσ(g) − g;
3) there exist 0 �= (k1, . . . , kt) ∈ Zt such that

∏t
i=1 yki

i ∈ K(x).

Proof. The equivalence of (1) and (2) has already been established in Proposition 6.2. It is obvious that
(3) implies (1). It remains to show that (1,2) imply (3). For 0 �= (k1, . . . , kt) ∈ Zt and g ∈ K(x) as in (2), letting
y :=∏t

i=1 yki
i and a :=∏t

i=1 aki
i we see immediately that

σ(y) = ay and
∂a
a

= pσ(g) − g, (6.16)

or what is the same, we can reduce without loss of generality to the case t = 1, in which case it is
well-known that (1) implies (3) (see for example [23, Thm. 5.1]). �

7 Examples
In [9, Section 5], we provided two small examples of λ-Mahler discrete residues with λ = 0. Here we
illustrate the definitions and properties of λ-Mahler discrete residues with λ = 1 in several examples.
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Example 7.1 gives a 1-Mahler summable f in the non-torsion case τ ⊂ T0. Example 7.2 gives a 1-Mahler
non-summable f in the torsion case τ ⊂ T+. In Example 7.3 we verify the vanishing of 1-Mahler discrete
residues for a concrete example of the type described in Remark 4.3, consisting of a 1-Mahler summable
rational function with Mahler dispersion 0.

Example 7.1. Let p = 3, λ = 1, and τ = τ(2). Consider f = fτ with sing(f , τ) = {2, 3
√

2, ζ3
3
√

2, ζ 2
3

3
√

2}
below.

f = −x6 + 4x3 + 3x2 − 12x + 8

(x − 2)2
(
x3 − 2
)2

= −1
(x − 2)2

+ 1

6 3
√

2
·

2∑
i=0

ζ 2i
3

(x − ζ i
3

3
√

2)2
− 1

3 3
√

4
·

2∑
i=0

ζ i
3

x − ζ i
3

3
√

2
=

2∑
k=1

∑
α∈τ

ck(α)

(x − α)k
,

By Definition 5.6, we have ht(f , τ) = 1. It follows from Definition 5.8 that dresλ(f , τ , k)α = 0
except possibly for k ∈ {1, 2} and α ∈ β1(2) = {ζ i

3
3
√

2 | i = 0, 1, 2}. Now we compute for such
αi := ζ i

3
3
√

2:

dres1(f , τ , 2)αi = V2
2,0(αi)c2(αi) + 3V2

2,1(αi)c2(α
3
i ) = 1 · ζ 2i

3

6 3
√

2
+ 3 ·
(

ζ 2i
3

32 3
√

24

)
· (−1) = 0; and

dres1(f , τ , 1)αi = V2
1,0(αi)c2(αi) + 3V2

1,1(αi)c2(α
3
i ) + V1

1,0(αi)c1(αi) + 3V1
1,1(αi)c1(α

3
i )

= 0 · ζ 2i
3

6 3
√

2
+ 3 · −2ζ i

3

32 3
√

25
· (−1) + 1 ·

(
−ζ i

3

3 3
√

4

)
+ 3 ·
(

ζ i
3

3 3
√

22

)
· 0 = 0,

for each i = 0, 1, 2. By Proposition 5.9, our f should be 1-Mahler summable. And indeed, f =
�1

(
1

(x−2)2

)
.

Example 7.2. Let p = 3, λ = 1, and τ = τ(ζ4). Consider the following f = fτ with sing(f , τ) =
{ζ±1

4 , ζ±1
12 , ζ±5

12 }:

f = −2x4 + 2x2 + 1(
x2 + 1
) (

x4 − x2 + 1
) = 1

2

(
ζ4

x − ζ4
+ ζ 3

4

x − ζ 3
4

+ ζ 7
12

x − ζ12
+ ζ 11

12

x − ζ 5
12

+ ζ12

x − ζ 7
12

+ ζ 5
12

x − ζ 11
12

)
=
∑
α∈τ

ck(α)

x − α
.

By Definition 2.7, C(τ ) = {ζ±1
4 } and e := e(τ ) = 2. By Definition 5.11, ht(f , τ) = 1. We follow the steps

outlined in Remark 5.14. First observe that c1(ζ
±1
4 ) = ζ±1

4 /2. Now using (3.7) in Definition 3.5,
we find for each γ = ζ±1

4 ,

d(0)

1 (γ ) = γ

2

1∑
j=0

(j − 1)γ −3j
c1(γ

3j
) = − γ

4
,

and the remaining components d(0)

k (γ ) = 0 for every k > 1. Comparing this with the definition
of the vector w(1) in Lemma 3.4(2), which spans ker(D1,τ ), we see that d(0) = −w(1)/4. Therefore
c̃ = D1,τ (d

(0)
) = 0. By Definition 5.12, the residual average in this case is given in (5.4) by

ω := ω1,τ (f ) = 1
(31 − 30) · 2

∑
α∈τ1

31·0V1
1,0α

−1·30
c1(α

30
) − p1·0

2

∑
γ∈C(τ )

V1
1,0 · γ −1 · (c̃1(γ ) + d(0)

1 (γ )

= 1
4

(
ζ−1

12 ζ 7
12 + ζ−5

12 ζ 11
12 + ζ−7

12 ζ12 + ζ−11
12 ζ 5

12

)− 1
2

(
ζ−1

4 ·
(

0 − ζ4

4

)
+ ζ−3

4 ·
(

0 − ζ 3
4

4

))
= − 3

4
.

By Definition 3.5 and Lemma 3.4(2), d = I(−3/4)

1,τ (c) = d(0) − 3
4 w(1) = −w(1) has coordinates

d1(γ ) = −γ for γ = ζ±1
4 and all other dk(γ ) = 0 for k ≥ 2. Now we observe that c1(α) = α7 for
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each α ∈ {ζ±1
12 , ζ±5

12 }, and compute

dres1(f , τ , 1)α = 31·0V1
1,0(α)c1(α

30
) − 31·0V1

1,0α
1−1·31+2−1

(c̃1(α
31+2−1

) + d1(α
31+2−1

)) = α7 + α = 0.

On the other hand, we compute from (5.8) that dres1(f , τ , 1)γ = c1(γ ) − c̃1(γ ) = γ /2 �= 0 for each
γ = ζ±1

4 , whence according to Proposition 5.19 our f should not be 1-Mahler summable. Let us
verify this directly. If we had f = �1(g) then g could only have poles in {ζ±1

4 }, so g = ax+b
x2+1 for

some impossible a, b ∈ K such that

−2x4 + 2x2 + 1
x6 + 1

= f = �1(g) = 3
ax3 + b
x6 + 1

− ax + b
x2 + 1

= −ax5 − bx4 + 2ax3 + bx2 − ax + 2b
x6 + 1

.

Example 7.3. Let p = 7, λ = 1, and τ = τ(ζ77), where ζ77 denotes a primitive 77-th root of unity.
Then every ζ i

77 for 1 ≤ i ≤ 76 such that 11 � i belongs to τ , and C(τ ) = {ζ j
11 | j = 1, . . . , 10}, where

ζ11 = ζ 7
77. Now consider

f = fτ = x · �′
77(x)

�77(x)
− 60 =

∑
1≤i≤76

7� i; 11� i

ζ i
77

x − ζ i
77

=
∑
α∈τ

c1(α)

x − α
,

where �77(x) denotes the 77-th cyclotomic polynomial and �′(x) is its usual derivative with
respect to x. Then we see from the Definition 2.11(1) that disp(f , τ) = 0. Since C(fτ ) = 0, the
vectors c, d(0) = I(0)

1,τ (c), and c̃ = D1,τ (d
(0)

) as in Definition 3.5 are all 0. Hence we already have
dres1(f , τ , 1)γ = c1(γ ) − c̃1(γ ) = 0 for each γ ∈ C(τ ) by (5.8) in Definition 5.13. The residual
average in Definition 5.12 in this case is given in (5.4) by

ω = ω1,τ (f ) = 1
(71 − 70) · 10

∑
α∈τ1

71·0V1
1,0α

−1·70
c1(α) = 1.

Therefore the vector d = I(1)(0) = w(1), the vector spanning the kernel of D1,τ in Lemma 3.4(2),
and therefore d1(γ ) = γ for each γ = ζ i

11 with i = 1, . . . , 10 and every dk(γ ) = 0 for k ≥ 2. Thus,
for α ∈ τ1,

dres1(f , τ , 1)α = 71·0V1
1,0(α)c1(α

70
) − 71·0V1

1,0α
1−1·71+10−1

(c̃1(α
71+10−1

) + d1(α
71+10−1

)) = α − α1−710 · α710 = 0.

Therefore dres1(f , τ , 1) = 0, and by Proposition 5.19 f should be 1-Mahler summable. And
indeed, letting �11(x) denote the 11-th cyclotomic polynomial, we can verify that f = �1(g),
where

g = x · �′
11(x)

�11(x)
− 10 = − x9 + 2x8 + 3x7 + 4x6 + 5x5 + 6x4 + 7x3 + 8x2 + 9x + 10

x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x + 1
=

10∑
i=1

ζ i
11

x − ζ i
11

.
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