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CONVERGENT EXPANSIONS AND BOUNDS FOR THE

INCOMPLETE ELLIPTIC INTEGRAL OF THE SECOND KIND

NEAR THE LOGARITHMIC SINGULARITY

DMITRII KARP AND YI ZHANG

Abstract. We find two series expansions for Legendre’s second incomplete
elliptic integral E(λ, k) in terms of recursively computed elementary functions.
Both expansions converge at every point of the unit square in the (λ, k) plane.
Partial sums of the proposed expansions form a sequence of approximations
to E(λ, k) which are asymptotic when λ and/or k tend to unity, including
when both approach the logarithmic singularity λ = k = 1 from any direction.
Explicit two-sided error bounds are given at each approximation order. These
bounds yield a sequence of increasingly precise asymptotically correct two-
sided inequalities for E(λ, k). For the reader’s convenience we further present
explicit expressions for low-order approximations and numerical examples to
illustrate their accuracy. Our derivations are based on series rearrangements,
hypergeometric summation algorithms and extensive use of the properties of
the generalized hypergeometric functions including some recent inequalities.

1. Introduction

Legendre’s second elliptic integral (EI) is defined by [5, (2.2)]

(1) E(λ, k) =

∫ λ

0

√
1− k2t2√
1− t2

dt.

It can be expressed in terms of Appell’s hypergeometric function [5, (2.7)]

F1(α;β, β
′; γ;x, y) =

∞∑
m,n=0

(α)m+n(β)m(β′)n
(γ)m+n

xmyn

m!n!

as follows [5, (2.9)]

(2) E(λ, k) = λF1(1/2; 1/2,−1/2; 3/2;λ2, k2λ2).

The double series defining F1 converges in the domain |λ2| < 1, |k2λ2| < 1 in the
space C2 of the complex variables (λ, k) and defines an analytic function there.
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Clearly, the bi-disk |λ| < 1, |k| < 1 is (properly) contained in the convergence
domain. The function F1 in (2) can be analytically continued to the domain{

|k| < 1, |kλ| > 1, | arg(−λ2)| < π, | arg(−k2λ2)| < π
}

according to [3, Proposition 5] and further to |k| > 1, |λ| > 1 and the same
restrictions on the arguments via the reflection relation [21, (19.7.4)]

kE(λ, 1/k) = E(λ/k, k)− (1− k2)F (λ/k, k),

where

F (λ, k) =

∫ λ

0

dt√
(1− t2)(1− k2t2)

= λF1(1/2; 1/2, 1/2; 3/2;λ
2, k2λ2)

is the first Legendre’s incomplete elliptic integral [5, (2.8)]. Note that E(λ, 1) = λ
for each 0 < λ < 1, while E(1, k) = E(k), which is the complete elliptic integral of
the second kind. Expansions for F (λ, k) analogous to those derived in this paper
for E(λ, k) were found by the first author jointly with S. M. Sitnik in [15].

The following two symmetric standard EIs are defined in [5, 6, 9, 10] as follows:

RF (x, y, z) =
1

2

∫ ∞

0

dt√
(t+ x)(t+ y)(t+ z)

,

RD(x, y, z) =
3

2

∫ ∞

0

dt

(t+ z)
√
(t+ x)(t+ y)(t+ z)

,

and related to E(λ, k) by [7, (4.2)]

(3) E(λ, k) = λRF (1− λ2, 1− k2λ2, 1)− 1

3
k2λ3RD(1− λ2, 1− k2λ2, 1).

Asymptotic expansions for E(λ, k) near the point (1, 1) appeared in [12, 13]. For
symmetric elliptic integrals with one of the parameters going to infinity, the first
(and the second in some cases) term of the asymptotic expansion of RF , RD, and
RJ , as well as a quite accurate bounds for the remainder, have been obtained by
Carlson and Gustafson [10]. Moreover, for all the symmetric EIs, they also con-
sidered the case of several parameters going to infinity. The first approximation
of Carlson and Gustafson has been extended to the general zero-balanced Appell
function F1 by the first author in [14]. Complete convergent expansions for sym-
metric EIs (and not only first terms) have been obtained earlier by Carlson using
Mellin transform techniques [8], but computation of the higher order terms is not
at all straightforward and the error bounds are not satisfactory [8, Section 3]. The
complete asymptotic expansions with recursively computed terms and explicit error
bounds at each approximation order were obtained by López in [18,19] for various
asymptotic regimes. Formula (3) allows converting his results into the asymptotic
approximations for Legendre’s EI E(λ, k) as λ → 1 (while k is fixed or tends to 1
as well). Details of these conversion are given in the Appendix to this paper. The
resulting approximation takes the form

(4) E(λ, k) = λ(1− k2λ2) ln
4√

1− λ2 +
√
1− k2λ2

+ k2λ3 + r1,

with the remainder r1 satisfying (72) and (73). For a more comprehensive overview
of the theories, algorithms, and applications of elliptic integrals, we refer to [1, 2].

In this paper we will derive two types of convergent series directly for E(λ, k)
which are also asymptotic when either λ or k or both tend to 1. Each of the two
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series converges at each point of the unit square in the (λ, k) plane. Convergence is
uniform on compact subsets of the closed unit square with one boundary segment
removed (λ = 1 (k = 1) for the first (second) expansion). We further furnish ex-
plicit two-sided error bounds at each approximation order. Hence, our results can
also be interpreted as a sequence of asymptotically precise (as λ, k → 1) two-sided
inequalities for the second incomplete EI E(λ, k). Our derivation does not rely on
asymptotic methods and uses standard analytic techniques combined with the al-
gorithms of symbolic computation and some recent and rather accurate inequalities
for the generalized hypergeometric function. This leads to high-precision approx-
imations which are much better than those present in the literature so far. We
demonstrate this numerically in the ultimate section of the paper. For example,
our first order approximation is given by

E1(λ, k) = (λ− 1/λ)
√
1 + (λ2(1− k2))/(1− λ2)− 1− k2

4
ln

1− λ

1 + λ
+ 1/λ.

This approximation is also an upper bound. We further propose a sequence of more
precise refined approximations which do not constitute (neither upper nor lower)
bounds. For instance, the first order refined approximation of the first kind is given
by

Ê1(λ, k) = (λ− 1/λ)

√
1 +

λ2(1− k2)

1− λ2
− (101 + 19k2)(1− k2)

32(7 + 8k2)
ln

1− λ

1 + λ
+ 1/λ

− 675
√
2(1− k2)3/2

128(7 + 8k2)
√
15− 7λ2 − 8λ2k2

ln

√
15− 7λ2 − 8λ2k2 + λ

√
8(1− k2)√

15− 7λ2 − 8λ2k2 − λ
√
8(1− k2)

.

Table 1 in Section 5 shows a remarkable accuracy of this approximation.
The paper is organized as follows. In Section 2 succeeding this introduction

we rederive two known series expansions for E(λ, k) using partial fractions and
the generating function for Legendre’s polynomials and find new bounds for the
remainders. These expansions then serve as the starting points for new expansions
established in Sections 3 and 4. Both of them converge for any fixed (λ, k) ∈
(0, 1)× (0, 1). The partial sums of the first expansion derived in Section 3 form an
asymptotic series as k → 1 which is uniform with respect to λ lying in any subset
of the unit square with bounded ratio (1 − k)/(1 − λ). In a similar fashion, the
partial sums of the second expansion derived in Section 4 form an asymptotic series
as λ → 1 which is uniform with respect to k lying in any subset of the unit square
with bounded ratio (1−λ)/(1−k). In Section 5 we present the results of numerical
experiments illustrating high precision of our first and second approximations and
even more so for the refined approximations obtained by incorporating the error
bounds into the formulas. Finally, we included a short appendix containing a
conversion of the first approximations for the symmetric elliptic integrals due to
Carlson-Gustafson [10] and López [18] and their error bounds into the corresponding
results for the incomplete Legendre’s second elliptic integral.

2. Expansions of Byrd-Friedman and Carlson revisited

In this section we present two auxiliary series expansions which will be the cor-
nerstones for the main results given in Sections 3 and 4. The first expansion can
be regarded as an equivalent form of a known expansion due to Byrd-Friedman [4],
while the second one is derived from an expansion by Bille C. Carlson [5] via certain
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hypergeometric transformations. The error bounds given in this section appear to
be new.

To deduce the first expansion, we need Lemma 2.1.

Lemma 2.1. For an integer j ≥ 1 and 0 ≤ λ < 1, we have the following identity:

(5)

∫ λ

0

t2jdt

(1− t2)j
=

λ2j+1

2j + 1
2F1(j, j + 1/2; j + 3/2;λ2)

=
λ2j+1

(1− λ2)j
+ (−1)j

(1/2)j
(j − 1)!

ln
1− λ

1 + λ
+

1

λ

j−1∑
n=0

(−1)n−1 (1/2− j)n
(1− j)n

(
λ2

1− λ2

)j−n

,

where

(b)0 = 1, (b)n = b(b+ 1)(b+ 2) · · · (b+ n− 1), n ≥ 1,

is the Pochhammer symbol (or the rising factorial).

Proof. The first equality is the direct consequence of Euler’s integral representation
[21, 15.6.1]. To establish the second equality by using integration by parts, we have

I =

∫ λ

0

t2jdt

(1− t2)j
=

1

2j + 1

∫ λ

0

d(t2j+1)

(1− t2)j

=
1

2j + 1

[
t2j+1

(1− t2)j

∣∣∣∣λ
0

−
∫ λ

0

t2j+1d

(
1

(1− t2)j

)]

=
1

2j + 1
· λ2j+1

(1− λ2)j
+

2j

2j + 1
I − 2j

2j + 1

∫ λ

0

t2jdt

(1− t2)j+1
,

where we used
t2j+2

(1− t2)j+1
=

t2j

(1− t2)j+1
− t2j

(1− t2)j

in the last equality. Thus, we get

I =
λ2j+1

(1− λ2)j
− 2j

∫ λ

0

t2jdt

(1− t2)j+1
.

Substituting the closed formula from [15, Lemma 1] for the integral on the right-
hand side of the above identity, we arrive at (5). �

For conciseness of the subsequent formulas it is convenient to introduce the
parameter

(6) β = β(λ, k) =
1− λ2

1− k2
.

Theorem 2.2. Suppose

(7) β > λ2 ⇔ 1− λ2k2 < 2(1− λ2).

For each integer N ≥ 1, we have the following decomposition

E(λ, k) = λ

N∑
j=0

(−1)j
(−1/2)j

j!

[
λ2

β

]j
+ ln

(
1− λ

1 + λ

) N∑
j=1

(−1/2)j(1/2)j
j!(j − 1)!

(1− k2)j

+
1

λ

N∑
j=1

[
λ2

β

]j j−1∑
n=0

(−1)j+n−1 (−1/2)j(1/2− j)n
j!(1− j)n

(
1− λ2

λ2

)n
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+R1,N (λ, k).(8)

The remainder R1,N (λ, k) satisfies the inequality

(9) |R1,N (λ, k)| ≤ λ(1− λ2)(2N − 1)!!

N2N+2(N + 1)!

[
λ2

β

]N+1

.

Remark 2.3. It is apparent from the error bound (9) that expansion (8) is convergent
for any fixed λ and k satisfying (7) and asymptotic when [(1− k)λ]/(1− λ) → 0 .

Remark 2.4. Expansion (8) also converges for complex λ and k satisfying |λ2/β| <
1.

Proof. Set k′2 = 1−k2. Expanding
[
1 + (k′2t2)/(1− t2)

]1/2
into the binomial series

and integrating term-wise, we have

E(λ, k) =

∫ λ

0

√
1− k2t2

1− t2
dt =

∫ λ

0

dt

(
1 +

k′2t2

1− t2

)1/2

=

∫ λ

0

dt

⎛
⎝ ∞∑

j=0

(−1)j
(−1/2)j

j!

k′2jt2j

(1− t2)j

⎞
⎠

=
N∑
j=0

(−1)j
(−1/2)j

j!
k′2j
∫ λ

0

t2jdt

(1− t2)j
+

∞∑
j=N+1

(−1)j
(−1/2)j

j!
k′2j
∫ λ

0

t2jdt

(1− t2)j
.

Writing the integral in the first sum as (5), we get (8) with the remainder given by

R1,N (λ, k) =
∞∑

j=N+1

(−1)j
(−1/2)j

j!
k′2j
∫ λ

0

t2jdt

(1− t2)j

= (−1)N+1
∞∑
j=0

(−1)j
(−1/2)N+j+1

(N + j + 1)!
k′2(N+j+1)

∫ λ

0

t2(N+j+1)dt

(1− t2)N+j+1

= (−1)N+1 (−a0 + a1 − a2 + · · · )︸ ︷︷ ︸
=S

,

where aj > 0 for all j, so that it is clearly an alternating series. The following
argument shows that each term is smaller in absolute value than the previous one:

(2j − 1)!!

2j+1(j + 1)!
(1− k2)j+1

∫ λ

0

t2j+2dt

(1− t2)j+1

=
2j − 1

2(j + 1)

(2j − 3)!!

2jj!
(1− k2)j

∫ λ

0

t2j

(1− t2)j
(1− k2)t2

1− t2
dt

≤ (2j − 3)!!

2jj!
(1− k2)j

∫ λ

0

t2j

(1− t2)j
(1− k2)λ2

1− λ2
dt

≤ (2j − 3)!!

2jj!
(1− k2)j

∫ λ

0

t2j

(1− t2)j
dt.

The last inequality follows from condition (7). Thus, by the alternating series test,
we see that the absolute value of the remainder |R1,N (λ, k)| is bounded by

a0 =
(2N − 1)!!

2N+1(N + 1)!
(1− k2)N+1

∫ λ

0

t2N+2dt

(1− t2)N+1
.
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Indeed, |R1,N (λ, k)| = |S| = −S and −a0 ≤ S ≤ 0. Next, we prove the following
asymptotically exact (as λ → 1) inequality

(10) f1(λ) :=

∫ λ

0

t2bdt

(1− t2)b
≤ f2(λ) :=

λ2b+1

2(b− 1)(1− λ2)b−1
,

which is valid for each λ ∈ (0, 1) and b > 1. Indeed, f1(0) = f2(0) = 0 and

f
′

1(λ)

f
′
2(λ)

=
2(b− 1)

1 + 2b− 3λ2
< 1, λ ∈ (0, 1).

It remains to note that inequality (10) immediately implies (9). �

Remark 2.5. In [4, page 301, 903.01], Byrd and Friedman presented the following
expansion

(11) E(φ, k) =

∞∑
m=0

(
1/2

m

)
k′2md2m(φ),

where λ = sin(φ), and d2m(φ)’s are given by a linear recurrence relation and initial
values. Since

d2m(φ) =

∫ sin(φ)

0

t2mdt

(1− t2)m
,

we see that (8) is an equivalent form of (11).

To derive the second expansion, we will need Lemma 2.6 from [15, Lemma 2].
The symbol 2F1 represents the Gauss hypergeometric function and Pn is Legendre’s
polynomial [21, section 14.7(i)].

Lemma 2.6.

(i) The function Fn(x) := 2F1(−n, 1/2; 1;x) is expressed in terms of Legendre’s
polynomials as:

(12) Fn(x) = (1− x)n/2Pn

(
2− x

2
√
1− x

)
.

(ii) For each n ≥ 0, the function Fn(x) is decreasing on [0, 1], so that

Fn(1) =
(1/2)n
n!

≤ Fn(x) ≤ Fn(0) = 1.

(iii) For x ∈ [1, 2], the function Fn(x) is monotone decreasing when n is an odd
and satisfies the following bounds

Fn(2) = 0 ≤ Fn(x) ≤ Fn(1) =
(1/2)n
n!

≤ 1.

If n is an even, then the function Fn(x) has a single minimum at xmin ∈
(1, 2), and satisfies the following bounds

0 < Fn(x) ≤ Fn(2) =
n!

2n(n/2)!2
≤ 1.

(iv) For x > 2, the function Fn(x) has the sign (−1)n and increases (decreases)
for even (odd) n, so that

(13) |Fn(x)| ≤ (x− 1)n.

We are now ready to present our second auxiliary expansion.
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Theorem 2.7. Suppose

(14) βk2 < 1,

where β is defined in (6). For each integer N ≥ 1, we have the following decompo-
sition:

(15) E(λ, k) = E(k)−
√
(1− λ2)(1− k2) ·

N−1∑
m=0

(
1

2m+ 1
+

βk2

2m+ 3

)
(1− λ2)m

· 2F1(−m, 1/2; 1; (1− k2)−1) +R2,N (λ, k)

= E(k)− (1− λ2) ·
N−1∑
m=0

(−1)m
(

k

2m+ 1
+

βk3

2m+ 3

)[
k2(1− λ2)

1− k2

]m−1/2

· 2F1(−m, 1/2; 1; 1/k2) +R2,N (λ, k),

where E(k) = E(1, k) is the complete EI of the second kind. The bound for the
remainder is given by

(16) |R2,N (λ, k)| ≤
(N + 1)

(
βk2
)N√

(1− λ2)(1− k2)

(N + 1/2)(N + 3/2)(1− βk2)

for 1/2 ≤ k2 < 1, and

(17) |R2,N (λ, k)| ≤ (N + 1)(1− λ2)N

λ2(N + 1/2)(N + 3/2)

√
(1− λ2)(1− k2)

for 0 < k2 ≤ 1/2.

Remark 2.8. It is clear from the error bounds (16) and (17) that expansion (15) is
convergent for any fixed λ and k satisfying (14) and is asymptotic as (1− λ)/(1−
k) → 0.

Remark 2.9. The set of points satisfying either condition (7) or condition (14)
covers the entire unit (k, λ) square ( see Figure 1).

Remark 2.10. Expansion (15) also holds for complex λ and k satisfying |((1 −
λ2)k2)/(1− k2)| < 1.

Proof. By [5, (3.1), (3.2)], we have the expansion around λ = k = 0:

E(λ, k) =
∞∑

m=0

kmPn

(
k + k−1

2

)
λ2m+1

[
1

2m+ 1
− k2λ2

2m+ 3

]
.

Applying item (i) of Lemma 2.6 to the above identity, we get

(18) E(λ, k) =
∞∑

m=0

λ2m+1
2F1(−m, 1/2; 1; 1− k2)

[
1

2m+ 1
− k2λ2

2m+ 3

]
,

which is valid for λ ∈ (0, 1) and |k| < 1/λ. Next, we will employ the reflection-type
relation

(19) E(λ, k) = E(k)−
√
1− k2 · E

(√
1− λ2,

√
−k2/(1− k2)

)
,

which can be verified by representing the second incomplete EI as the difference
of the second complete EI E(k) and the integral over the interval (λ, 1) and then
introducing the integration variable v2 = 1− t2. Substituting (18) into the second
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Figure 1. The set of points in the unit square satisfying (7)
or (14) covers the unit square. The deep blue region R comprises
the points satisfying both (7) and (14).

term on the right side of (19) and splitting the corresponding series, we derive (15),
which is valid for λ ∈ (0, 1) and ((1−λ2)k2)/(1−k2) < 1, with the remainder given
by

R2,N (λ, k) = −
√
(1− λ2)(1− k2)

∞∑
m=N

(
1

2m+ 1
+

βk2

2m+ 3

)
(1− λ2)m

· 2F1(−m, 1/2; 1; (1− k2)−1).

Using items (ii), (iii), (iv) of Lemma 2.6 and condition (14), we obtain

|R2,N (λ, k)| ≤
√
(1− λ2)(1− k2) ·

∞∑
m=N

4(m+ 1)

(2m+ 1)(2m+ 3)

(
βk2
)m

for 1/2 ≤ k2 < 1, and

|R2,N (λ, k)| ≤
√
(1− λ2)(1− k2)

∞∑
m=N

4(m+ 1)

(2m+ 1)(2m+ 3)
(1− λ2)m

for 0 < k2 ≤ 1/2. Applying the following inequality

∞∑
m=N

4(m+ 1)xm

(2m+ 1)(2m+ 3)
= xN

∞∑
s=0

4(N + s+ 1)xs

(2N + 2s+ 1)(2N + 2s+ 3)

≤ 4xN (N + 1)

(2N + 1)(2N + 3)

∞∑
s=0

xs =
4xN (N + 1)

(2N + 1)(2N + 3)(1− x)
,

which is valid for x ∈ (0, 1), we get (16) and (17). Finally, the second equality in
(15) follows on application of Pfaff’s transformation [21, 15.8.1]. �
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3. The first asymptotic expansion

For each n ≥ 0, set

(20) sn(x) =

∞∑
j=n+1

(−1/2)j(1/2− j)n
j!(1− j)n

(−x)j .

Making a change of the summation variable m = j − n− 1, we get
(21)

sn(x) =
(−1/2)n+1(3/2)n

(n+ 1)!n!
(−x)n+1

4F3

(
1, 1, 1/2 + n, 3/2 + n

3/2, 1 + n, 2 + n

∣∣∣∣∣− x

)
,

where 4F3 represents the generalized hypergeometric function. Note that this for-
mula implies that sn(x) is holomorphic in the cut x-plane C \ (−∞,−1]. In partic-
ular, it is holomorphic in the unit disk |x| < 1 with a branch point at x = −1.

Next, we present a linear recurrence relation for sn(x) obtained by the method
of creative telescoping [23] and the initial values in terms of elementary functions.

Lemma 3.1. The function sn(x) satisfies the following third-order linear inho-
mogenous recurrence relation

(22) 4(n+2)(n+3)sn+3(x) = an(x)sn+2(x)+ bn(x)sn+1(x)+ cn(x)sn(x)+dn(x),

where

an(x) = −(2n+ 3)(2nx+ 5x− 4n− 8),

bn(x) = (2n+ 3)(4nx+ 4x− 2n− 1),

cn(x) = −4n(1 + n)x,

dn(x) = −an(x)g(n+ 2, n+ 3)− bn(x)[g(n+ 1, n+ 2) + g(n+ 1, n+ 3)]

− cn(x)[g(n, n+ 1) + g(n, n+ 2) + g(n, n+ 3)]− h(n, n+ 4)

with

g(n, j) =
(−1/2)j(1/2− j)n

j!(1− j)n
(−x)j ,

h(n, n+ 4) = −7

4

(−1/2)n+4(−7/2− n)n
(n+ 2)!(−3− n)n

(−x)n+4

for each j, n ≥ 0. The initial values are given by

s0(x) =
√
1 + x− 1,

(23)

s1(x) =
1

4

[
−2 + 2

√
1 + x+ x

(
2 ln 2− 1− 2 ln(1 +

√
1 + x)

)]
,

(24)

s2(x) = − 3x2

16(1 +
√
1 + x)2(−1 +

√
1 + x)

[
−1

2
(x− 8

3
)(1 +

√
1 + x) ln(1 +

√
1 + x)

+
1

2
x(1 +

√
1 + x) ln(−1 +

√
1 + x)

+

(
(x− 4

3
) ln 2− 1

2
x lnx− 13

12
x+ 1

)√
1 + x+ (x− 4

3
) ln 2− 1

2
x lnx
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− x

12
− 1
]
.

(25)

Proof. Using Koutschan’s Mathematica package HolonomicFunctions.m [17] that
implements Chyzak’s algorithm [11], we derive the following linear recurrence rela-
tion for the generic term g(n, j) in (20):

(26) 4(n+ 2)(n+ 3)g(n+ 3, j)

= an(x)g(n+ 2, j) + bn(x)g(n+ 1, j) + cn(x)g(n, j) + Δj (h(n, j)) ,

where

h(n, j) = − 3(j − 1)j(2j − 2n− 1)

2(j − n− 3)(j − n− 2)(j − n− 1)
g(n, j),

Δj (h(n, j)) = h(n, j + 1)− h(n, j),

for j ≥ n+ 4. Taking sum in (20) with respect to j from n+ 4 to ∞, we get

(27)

4(n+2)(n+3)
∞∑

j=n+4

g(n+3, j) = an(x)
∞∑

j=n+4

g(n+2, j)+ bn(x)
∞∑

j=n+4

g(n+1, j)

+ cn(x)

∞∑
j=n+4

g(n, j) + lim
j→∞

h(n, j)− h(n, n+ 4).

Note that
∞∑

j=n+4

g(n+ 3, j) = sn+3(x),

∞∑
j=n+4

g(n+ 2, j) = sn+2(x)− g(n+ 2, n+ 3),

∞∑
j=n+4

g(n+ 1, j) = sn+1(x)− [g(n+ 1, n+ 2) + g(n+ 1, n+ 3)],

∞∑
j=n+4

g(n, j) = sn(x)− [g(n, n+ 1) + g(n, n+ 2) + g(n, n+ 3)],

lim
j→∞

h(n, j) = 0.

Thus, we see that (27) leads to (22).
By the Mathematica command “Sum”, it is straightforward to find the closed

formulae (23) and (24) for s0(x) and s1(x), respectively.
To derive a formula for s2(x) consider

s2(x) =

∞∑
j=3

(−1/2)j(1/2− j)(3/2− j)

j!(1− j)(2− j)
(−x)j

=
∞∑
j=3

(−1/2)j(1/2− j)

j!(1− j)
(−x)j − 1

2

∞∑
j=3

(−1/2)j(1/2− j)

j!(1− j)(2− j)
(−x)j
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= s1(x) +
3

16
x2 − 1

2

∞∑
j=3

(−1/2)j(1/2− j)

j!(1− j)(2− j)
(−x)j

= s1(x) +
3

16
x2 − x2

2

∞∑
j=3

(−1/2)j(1/2− j)

j!(1− j)(2− j)
(−x)j−2.

Set

f(x) =

∞∑
j=3

(−1/2)j(1/2− j)

j!(1− j)(2− j)
(−x)j−2.

Then s2(x) = s1(x) +
3
16x

2 − 1
2x

2f(x). Thus, in order to derive (25), we just need
a closed formula for f(x). Note that

(−x)3f ′(x) =
∞∑
j=3

(−1/2)j(1/2− j)

j!(1− j)
(−x)j

= s1(x) +
3

16
x2.

Thus, we have

f(x) =

∫ x

0

(
− 1

t3
s1(t)−

3

16t

)
dt.

Using the Maple command “int”, we obtain a closed formula for f(x), which leads
to (25). �

Next, we present the main result of this section.

Theorem 3.2. For each (λ, k) ∈ (0, 1) × (0, 1) and an integer N ≥ 1, the second
incomplete EI admits the following representation

E(λ, k) = λ

√
1 +

λ2

β
+ ln

(
1− λ

1 + λ

) N∑
j=1

(−1/2)j(1/2)j
j!(j − 1)!

(1− k2)j

− 1

λ

N−1∑
n=0

(
1− λ2

−λ2

)n

sn

(
λ2

β

)
+RN (λ, k),(28)

where β is defined in (6) and the function sn(x) is given in Lemma 3.1. Moreover,
the remainder RN (λ, k) is negative and satisfies

(29)

(1/2)N (1/2)N+1(1− k2)N

2N !(N + 1)!
fN+1(λ, k) < −RN (λ, k)

<
(1/2)N (1/2)N+1(1− k2)N

2N !(N + 1)!
fN (λ, k),

where the positive function
(30)

fN (λ, k) =
1

1− (1− k2)/θN

[
θN√

λ2 + βθN
ln

√
λ2 + βθN + λ√
λ2 + βθN − λ

+ (1− k2) ln
1− λ

1 + λ

]

with

(31) 1 < θN =
N(N + 1)

(N − 1/2)(N + 1/2)
≤ 8

3
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is strictly decreasing in N and bounded on each subset F of the unit (λ, k) square
such that

(32) sup
λ,k∈F

1− k

1− λ
< ∞.

Remark 3.3. The error bound (29) implies that expansion (28) is convergent at
any point in the open unit square and convergence is uniform on compact subsets.
Furthermore, it is asymptotic as k → 1 along any curve γ lying inside the unit
square with (32) satisfied, including those with the endpoint (1, 1).

Remark 3.4. Condition (32) is true for any trapezoid with vertices (0, 0), (α, 0),
(1, 1), (0, 1) for all 0 < α < 1. If condition (32) is violated but (1 − k)n/(1 − λ)
remains bounded, then the nth and higher order approximations are still asymp-
totic. In this case, however, it is much more efficient to employ expansion (49) from
Theorem 4.2.

Remark 3.5. Decomposition (28) together with inequalities (29) clearly imply a
sequence of asymptotically precise two-sided bounds for the second incomplete EI
in the form

EN (λ, k)− (1/2)N (1/2)N+1(1− k2)N

2N !(N + 1)!
fN (λ, k) ≤ E(λ, k)

≤ EN (λ, k)− (1/2)N (1/2)N+1(1− k2)N

2N !(N + 1)!
fN+1(λ, k),

where EN (λ, k) = E(λ, k)− RN (λ, k) in (28) and fN (λ, k) is defined in (30). Fur-
thermore, we can get a substantially more precise approximation than EN (λ, k) by
substituting RN (λ, k) in (28) with its approximate value read off (29). For instance,
we can take

(33) ÊN (λ, k) = EN (λ, k)− (1/2)N (1/2)N+1(1− k2)N

2N !(N + 1)!
fN+ε

with some ε ∈ (0, 1). Then it follows from (29) that the corresponding remainder

R̂N (λ, k) := E(λ, k)− ÊN (λ, k) satisfies

(34)
(1/2)N (1/2)N+1(1− k2)N

2N !(N + 1)!
(fN+ε(λ, k)− fN (λ, k)) < R̂N (λ, k)

<
(1/2)N (1/2)N+1(1− k2)N

2N !(N + 1)!
(fN+ε(λ, k)− fN+1(λ, k)) .

We use the value ε = 1/2 in Section 5 for numerical experiments. It seems to be an
interesting open problem to find the value of ε = ε(a) giving the best approximant
(33) in the uniform norm on the subset of the unit square of the form (a, 1)× (a, 1).

Proof. By Theorem 2.2, for λ and k satisfying (7), the incomplete EI of the second
kind has the following expansion

E(λ, k) = λ

√
1 +

(1− k2)λ2

1− λ2
+ ln

(
1− λ

1 + λ

) ∞∑
j=1

(−1/2)j(1/2)j
j!(j − 1)!

(1− k2)j

+
1

λ

∞∑
j=1

j−1∑
n=0

(−1)j+n−1 (−1/2)j(1/2− j)n
j!(1− j)n

(1− k2)j
(

λ2

1− λ2

)j−n

.
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Using the rearrangement rule

(35)
∞∑

j=N+1

j−1∑
n=N

bn,j =
∞∑

n=N

∞∑
j=n+1

bn,j

for N = 0, we get

E(λ, k) = λ

√
1 +

(1− k2)λ2

1− λ2
+ ln

(
1− λ

1 + λ

) ∞∑
j=1

(−1/2)j(1/2)j
j!(j − 1)!

(1− k2)j

+
1

λ

∞∑
n=0

∞∑
j=n+1

(−1)j+n−1 (−1/2)j(1/2− j)n
j!(1− j)n

(1− k2)j
(

λ2

1− λ2

)j−n

.(36)

Taking the Nth partial sum of the first series, the (N − 1)-th partial sum of the
second series in (36), and writing the rest as a remainder, we get (28) by Lemma 3.1.
Thereby, the reminder is given by

RN (λ, k) = ln

(
1− λ

1 + λ

) ∞∑
j=N+1

(−1/2)j(1/2)j
j!(j − 1)!

(1− k2)j

+
1

λ

∞∑
n=N

∞∑
j=n+1

(−1)j+n−1 (−1/2)j(1/2− j)n
j!(1− j)n

(1− k2)j
(

λ2

1− λ2

)j−n

.(37)

Applying rule (35) to the second term in (37), we have

RN (λ, k) = ln

(
1− λ

1 + λ

) ∞∑
j=N+1

(−1/2)j(1/2)j
j!(j − 1)!

(1− k2)j

− 1

λ

∞∑
j=N+1

(−1)j
(−1/2)j

j!

[
(1− k2)λ2

1− λ2

]j j−1∑
n=N

(1/2− j)n
(1− j)n

(
1− λ2

−λ2

)n

.(38)

By the argument from [15, page 197], we have that

(39)

j−1∑
n=N

(1/2− j)n
(1− j)n

(
1− λ2

−λ2

)n

=
(1/2)j
(j − 1)!

(
1− λ2

−λ2

)j
[
λ ln

(
1− λ

1 + λ

)

+

∫ λ2

1−λ2

0

(−u)j−Ndu

(1 + u)
√
1− u(1− λ2)/λ2

]
.

Substituting (39) into (38) and interchanging the summation and integration, we
get

(40) RN (λ, k)

=
(−1)N+1

λ

∫ λ2

1−λ2

0

(
1− u(1− λ2)/λ2

)−1/2

uN (1 + u)
du

∞∑
j=N+1

(−1/2)j(1/2)j
j!(j − 1)!

[−(1−k2)u]j .

Using the Mathematica command “Sum”, we find that

(41)
∞∑

j=N+1

(−1/2)j(1/2)j
j!(j − 1)!

(−x)j =
(−1/2)N+1(1/2)N+1

N !(N + 1)!
(−x)N+1

· 3F2(1, N + 1/2, N + 3/2;N + 1, N + 2;−x).
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Substituting (41) into (40), we have

(42) RN (λ, k) =
(1− k2)N+1(−1/2)N+1(1/2)N+1

λN !(N + 1)!

·
∫ λ2

1−λ2

0

3F2

(
1, N + 1/2, N + 3/2;N + 1, N + 2;−(1− k2)u

)
udu

(1 + u) (1− u(1− λ2)/λ2)
1/2

.

Applying the following inequality [16, Theorem 2]

1

1 + (N+1/2)(N+3/2)
(N+1)(N+2) x

< 3F2(1, N + 1/2, N + 3/2;N + 1, N + 2;−x)

<
1

1 + (N−1/2)(N+1/2)
N(N+1) x

for each x > 0

to (42), we see that RN (λ, k) < 0 and

(1/2)N (1/2)N+1(1− k2)N

2N !(N + 1)!
g(θN+1, λ, k) < −RN (λ, k)

<
(1/2)N (1/2)N+1(1− k2)N

2N !(N + 1)!
g(θN , λ, k),

where θN is defined in (31) and

(43) g(θ, λ, k) =
1− k2

λ

∫ λ2

1−λ2

0

udu

[1 + (1− k2)u/θ](1 + u)(1− u(1− λ2)/λ2)1/2

=
θ

θ − (1− k2)

[
θ√

λ2 + βθ
· ln
√
λ2 + βθ + λ√
λ2 + βθ − λ

− (1− k2) ln

(
1 + λ

1− λ

)]

with β from (6). Set

fN (λ, k) = g(θN , λ, k).

Then we get the error bound (29). The boundedness of fN (λ, k) under condi-
tion (32) can be deduced from the second representation of g(θ, λ, k) in (43) while
the monotonicity of fN (λ, k) in N follows from the first representation of g(θ, λ, k)
in (43).

We will now remove condition (7) and show that expansion (28) is true in the
entire unit square in the (λ, k) plane. Indeed, as we remarked in Section 1 the func-
tion E(λ, k) is holomorphic in the bi-disk |λ| < 1, |k| < 1 of C2. The same is true for
the terms on the right hand side preceding RN (λ, k). Indeed, the hypergeometric

representation (21) implies that sn

(
(1−k2)λ2

1−λ2

)
has singularity at

(1− k2)λ2

1− λ2
= −1 ⇔ k2λ2 = 1,

so that sn in (28) is also holomorphic in the bi-disk. Finally, the apparent singular-
ity at λ = 0 is removable because of (−x)n+1 in front of 4F3 in (21). On the other
hand, the remainder RN (λ, k) is holomorphic in the same bi-disk due to represen-
tation (42). Hence, the difference of E(λ, k) and the terms on the right hand side of
(28) preceding RN (λ, k) coincides with RN (λ, k) under condition (7). The principle
of analytic continuation implies that they coincide in the entire bi-disk. �
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Remark 3.6. By the above proof, we see that expansion (28) also holds for complex
λ and k in the bi-disk.

By (28), we obtain the following first order approximation for the incomplete EI
of the second kind (see details in Section 5)

E1(λ, k) = (λ− 1/λ)
√
1 + λ2/β − 1− k2

4
ln

(
1− λ

1 + λ

)
+ 1/λ,

which is not only the correct asymptotic approximation for E(λ, k) as k → 1 but
also as λ → 0 including the case when both λ, k → 0 along any curve inside the
unit square. In fact, it is straightforward to see that

E1(λ, k) = λ+
1

24
(7− 10k2 + 3k4)λ3 +O(λ5), λ → 0.

On the other hand, we have

E(λ, k) = λ+
1

6
(1− k2)λ3 +O(λ5), λ → 0.

Thus, we get

E(λ, k)− E1(λ, k) = O(λ3), λ → 0.

In other words, E1(λ, k) is indeed an approximation for two sides of the unit square
(including endpoints), i.e., the side λ = 0, k ∈ [0, 1] and the other side k = 1, λ ∈
[0, 1]. The same phenomenon happens for higher order approximations but the
asymptotic order for λ → 0 does not increase with N .

Approximation (33) with ε = 1/2 takes the form:

Ê1(λ, k) = E1(λ, k)−
3(1− k2)

32
f3/2(λ, k),

f3/2(λ, k)=
15

15−8(1−k2)

[
15

8
√
λ2+15β/8

ln

√
λ2 + 15β/8+λ√
λ2 + 15β/8−λ

−(1−k2) ln
1 + λ

1− λ

]
.

4. The second asymptotic expansion

For n ∈ N and (λ, k) ∈ [0, 1]× [0, 1), set

An(x) =

∞∑
j=0

(
n+ j

j

)
(−1)j(1/2)j

(2(n+ j) + 1)j!
xj ,

Bn(x) =

∞∑
j=0

(
n+ j

j

)
(−1)j(1/2)j

(2(n+ j) + 3)j!
xj ,

Cn(x) = An(x) +
(1− λ2)k2

1− k2
Bn(x).(44)

We give two representations for An(x), Bn(x) in Lemma 4.1. The first one in
terms of elementary functions serves as an ingredient of our second expansion. The
second one in terms of the Gauss hypergeometric function is needed for the error
estimation in Theorem 4.2.
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Lemma 4.1. For n ∈ N and (λ, k) ∈ [0, 1]× [0, 1), we have the following identities
for An(x) and Bn(x):

An(x) =
1

n!
Dn

x

⎡
⎣(−1)n

(1/2)n
n!
√
x

ln(
√
1 + x+

√
x)+

√
1 + x

2nx

n−1∑
j=0

(−1)j
(1/2− n)j
(1− n)j

xn−j

⎤
⎦

(45a)

=
1

2xn+1/2

∫ x

0

tn−1/2

√
1 + t

2F1

(
−n, 1/2; 1;

t

1 + t

)
dt,

(45b)

where Dx is the usual differentiation with respect to x and the second term in the
first bracket equals zero when n = 0; and

Bn(x)

=
1

n!
Dn

x

[
(−1)n+1(1/2)n+1

(n+ 1)!x3/2
ln(

√
1 + x+

√
x)+

√
1 + x

2(n+1)x2

n∑
j=0

(−1/2− n)j
(−1)j(−n)j

xn+1−j

](45c)

=
1

2xn+3/2

∫ x

0

tn+1/2

√
1 + t

2F1

(
−n, 1/2; 1;

t

1 + t

)
dt.

(45d)

Proof. Identities (45a) and (45b) for An(x) are given in [15, Lemma 4]. Hence, we
only need to derive the expressions for Bn(x).

On account of 1/
√
1 + x =

∑∞
j=0(−1)j(1/2)j/j!x

j , we see that

Bn(x) =
∞∑
j=0

(
n+ j

j

)
(−1)j(1/2)j

(2(n+ j) + 3)j!
xj =

1

2n!
Dn

xx
−3/2

∫ x

0

tn+1/2

√
1 + t

dt.(46)

For the integral on the right side of (46), we make a change of variables by y2 =
t/(1 + t) and then get

(47)

∫ x

0

tn+1/2

√
1 + t

dt = 2

∫ √
x/(1+x)

0

y2(n+1)dy

(1− y2)n+2
.

By (46), (47), and [15, Lemma 1 and 4], we derive (45c).
Alternatively, we set t = ux on the right hand side of (46) and get∫ x

0

tn+1/2

√
1 + t

dt = xn+3/2

∫ 1

0

un+1/2du√
1 + ux

.

Thus, we have

Bn(x) =
1

2n!
Dn

xx
−3/2

∫ x

0

tn+1/2

√
1 + t

dt =
1

2n!
Dn

xx
n

∫ 1

0

un+1/2du√
1 + ux

=
1

2n!

∫ 1

0

un+1/2

[
Dn

x

xn

√
1 + ux

]
du

=
1

2

∫ 1

0

un+1/2

√
1 + ux

2F1

(
−n, 1/2; 1;

ux

1 + ux

)
du.
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Finally, substituting back t = ux, we obtain

(48) Bn(x) =
1

2xn+3/2

∫ x

0

tn+1/2

√
1 + t

2F1

(
−n, 1/2; 1;

t

1 + t

)
dt.

Therefore, it follows from (48) and [15, Lemma 1 and 4] that (45d) holds. �
Theorem 4.2. For each (λ, k) ∈ (0, 1) × (0, 1) and an integer N ≥ 1, the second
incomplete EI can be decomposed as follows:

(49) E(λ, k) = E(k)−
√
(1− λ2)(1− k2)

N−1∑
n=0

(1− λ2)nCn (β) + R̃N (λ, k),

where β = (1 − λ2)/(1 − k2) as before and the function Cn(x) is defined in (44)
and computed in Lemma 4.1. The remainder is negative and satisfies the following
inequalities:

(50)
(1− λ2)N+1(λ2 + β +N−1)(1/2)N

2β2(N + 1)!

[√
β (1 + β)− arcsinh

(√
β
) ]

≤ −R̃N (λ, k) ≤ (1− λ2)N+1(λ2 + β +N−1)

2(N + 1)λ2
√
β(1 + β)

.

Remark 4.3. The error bound (50) implies that expansion (49) is convergent for
any fixed (λ, k) in the open unit square and convergence is uniform on compact
subsets. Furthermore, it is asymptotic as λ → 1 along any curve lying entirely
inside the unit square, including those with the endpoint (1, 1).

Remark 4.4. Decomposition (49) together with inequalities (50) clearly implies a
sequence of asymptotically precise two-sided bounds for the second incomplete EI
in the form

ẼN (λ, k)− (1− λ2)N+1(λ2 + β +N−1)

2(N + 1)λ2
√
β(1 + β)

≤ E(λ, k)

≤ ẼN (λ, k)− (1− λ2)N+1(λ2 + β +N−1)(1/2)N
2β2(N + 1)!

[√
β (1 + β)−arcsinh

(√
β
) ]

,

where ẼN (λ, k) = E(λ, k)− R̃N (λ, k) in (49). Furthermore, we can get a substan-

tially more precise approximation than ẼN (λ, k) by substituting R̃N (λ, k) in (49)
with its approximate value. For instance, we can take the weighted average

(51) ĒN (λ, k) = ẼN (λ, k)− (1− λ2)N+1(λ2 + β +N−1)

2(N + 1)

(
δ

λ2
√
β(1 + β)

+(1− δ)
(1/2)N

[√
β(1 + β)− arcsinh

(√
β
)]

β2N !

⎞
⎠ ,

with 0 < δ < 1. Numerical experiments in Section 5 give the optimal value of
δ = 67

187 . Set

(52) Δ̄N

=
(1−λ2)N+1(λ2+β+N−1)

2(N + 1)E(λ, k)

⎛
⎝ 1

λ2
√
β(1+β)

−
(1/2)N

[√
β(1+β)−arcsinh

(√
β
)]

β2N !

⎞
⎠.
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Then it follows from (50) that the corresponding remainder R̄N (λ, k) := E(λ, k)−
ĒN (λ, k) satisfies

(53) −(1− δ)Δ̄N · E(λ, k) ≤ R̄N (λ, k) ≤ δΔ̄N · E(λ, k).

Proof. By Theorem 2.7 for (λ, k) satisfying (14), we have
(54)
E(λ, k) = E(k)

−
√
(1−λ2)(1−k2)

∞∑
m=0

(1−λ2)m
(

1

2m+1
+

βk2

2m+3

)
2F1

(
−m, 1/2

1

∣∣∣∣ 1

1−k2

)

= E(k)−
∞∑

m=0

(1− λ2)m+1/2

(
1

2m+ 1
+

βk2

2m+ 3

) m∑
j=0

(
m

j

)
(−1)j(1/2)j

j!(1− k2)j−1/2
.

Applying the rule

∞∑
m=0

m∑
j=0

bm,j =
∞∑
n=0

∞∑
j=0

bn+j,j

to (54), we get

E(λ, k)=E(k)−
√
(1−λ2)(1−k2)

∞∑
n=0

(1−λ2)n

×
∞∑
j=0

βj

(
n+ j

j

)
(−1)j(1/2)j

j!

(
1

2(n+ j) + 1
+

βk2

2(n+ j) + 3

)
,(55)

which, in view of (44), can be split as follows:

E(λ, k) = E(k)−
√
(1−λ2)(1−k2)

N−1∑
n=0

(1− λ2)nCn (β) + R̃N (λ, k),

where the remainder is

(56) R̃N (λ, k) = −
√
(1−λ2)(1−k2)

∞∑
n=N

(1− λ2)nCn (β) .

In (55), the inner sum does not converge unless k < λ. Nevertheless, it follows
from (45) that the function Cn(x) is an elementary function with no singularities
in the unit square (λ, k) ∈ [0, 1] × [0, 1), which furnishes analytic continuation of
the inner sum to this domain. Next, we prove that the outer sum of (55) converges
for each (λ, k) in the unit square. For this purpose, substituting (45b) and (45d)
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into (56) and applying the upper bound from item (ii) of Lemma 2.6, we get
(57)

−R̃N (λ, k) =
1

2

∞∑
n=N

(1− k2)n+1

∫ 1−λ2

1−k2

0

tn√
t(1 + t)

2F1

(
−n, 1/2; 1;

t

1 + t

)
dt

+
k2

2

∞∑
n=N

(1− k2)n+1

∫ 1−λ2

1−k2

0

tn
√

t

1 + t
2F1

(
−n, 1/2; 1;

t

1 + t

)
dt

≤ 1

2

∞∑
n=N

(1− k2)n+1

∫ 1−λ2

1−k2

0

tndt√
t(1 + t)

+
k2

2

∞∑
n=N

(1− k2)n+1

∫ 1−λ2

1−k2

0

tn
√

t

1 + t
dt

=
1− k2

2

∫ 1−λ2

1−k2

0

dt√
t(1 + t)

∞∑
n=N

[(1− k2)t]n

+
(1− k2)k2

2

∫ 1−λ2

1−k2

0

√
t

1 + t
dt

∞∑
n=N

[(1− k2)t]n

=
(1− k2)N+1

2

∫ 1−λ2

1−k2

0

tNdt√
t(1 + t)[1− (1− k2)t]

+
(1− k2)N+1k2

2

∫ 1−λ2

1−k2

0

tN+1/2dt√
1 + t[1− (1− k2)t]

≤ (1− k2)N+1

2λ2

∫ 1−λ2

1−k2

0

tNdt√
t(1 + t)

+
(1− k2)N+1k2

2λ2

∫ 1−λ2

1−k2

0

tN+1/2dt√
1 + t

=
(1− k2)N+1

λ2

∫ √
1−λ2

2−k2−λ2

0

y2Ndy

(1− y2)N+1

+
(1− k2)N+1k2

λ2

∫ √
1−λ2

2−k2−λ2

0

y2(N+1)dy

(1− y2)N+2
,

where the last equality is derived from (47). On the other hand, it follows from [15,
formula 16] that

(58)

∫ x

0

t2adt

(1− t2)a+1
≤ x2a+1

2a(1− x2)a
for x ∈ (0, 1), a > 0.

By setting x = (1 − λ2)/(2 − k2 − λ2) and a = N,N + 1 in (57), we obtain the
upper bound in (50) by an application of (58).

To derive a lower bound, we apply the lower bound from item (ii) of Lemma 2.6
to representation (56) with Cn expressed from Lemma 4.1 to get:

−R̃N (λ, k) ≥ 1

2

∞∑
n=N

(1− k2)n+1

∫ 1−λ2

1−k2

0

tn√
t(1 + t)

(1/2)n
n!

dt
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+
k2

2

∞∑
n=N

(1− k2)n+1

∫ 1−λ2

1−k2

0

tn+1/2

√
1 + t

(1/2)n
n!

dt

=
1− k2

2

∫ 1−λ2

1−k2

0

dt√
t(1 + t)

∞∑
n=N

(1/2)n
n!

[(1− k2)t]n

+
(1− k2)k2

2

∫ 1−λ2

1−k2

0

√
t

1 + t
dt

∞∑
n=N

(1/2)n
n!

[(1− k2)t]n

=
(1−k2)N+1(1/2)N

2N !

∫ 1−λ2

1−k2

0

tN√
t(1+t)

2F1(N+1/2, 1;N+1; (1−k2)t)dt

+
k2(1−k2)N+1(1/2)N

2N !

∫ 1−λ2

1−k2

0

tN+1/2

√
1+t

2F1(N+1/2, 1;N+1; (1−k2)t)dt.

Moreover, it follows from [22, Theorem 1.10] that

2F1(N + 1/2, 1;N + 1; y) ≥ 1√
1− y

for y ∈ (0, 1).

Therefore, we have

−R̃N (λ, k) ≥ (1− k2)N+1(1/2)N
2N !

∫ 1−λ2

1−k2

0

tN−1/2√
(1 + t)(1− (1− k2)t)

dt

+
k2(1− k2)N+1(1/2)N

2N !

∫ 1−λ2

1−k2

0

tN+1/2√
(1 + t)(1− (1− k2)t)

dt

≥ (1− k2)N+1(1/2)N
2N !

∫ 1−λ2

1−k2

0

tN−1

√
t

1 + t
dt

+
k2(1− k2)N+1(1/2)N

2N !

∫ 1−λ2

1−k2

0

tN
√

t

1 + t
dt.

Using the Chebyshev inequality [20, formula IX(1.2)], we get

−R̃N (λ, k) ≥ (1− k2)N+2(1/2)N
2(1− λ2)N !

∫ 1−λ2

1−k2

0

tN−1dt

∫ 1−λ2

1−k2

0

√
t

1 + t
dt

+
k2(1− k2)N+2(1/2)N

2(1− λ2)N !

∫ 1−λ2

1−k2

0

tNdt

∫ 1−λ2

1−k2

0

√
t

1 + t
dt

=
(1− k2)N+2(1/2)N

2(1− λ2)N !

[
1

N

(
1− λ2

1− k2

)N

+
k2

N + 1

(
1− λ2

1− k2

)N+1
]

∫ 1−λ2

1−k2

0

√
t

1 + t
dt

=
(1− k2)(1− λ2)N−1(1/2)N

2N(N + 1)!

[
1− k2 +N(1− k2λ2)

]
[√

1− λ2

1− k2

(
1 +

1− λ2

1− k2

)
− arcsinh

(√
1− λ2

1− k2

)]



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

CONVERGENT EXPANSIONS OF SECOND ELLIPTIC INTEGRALS 2789

=
(1− λ2)N+1(1/2)N

2β2(N + 1)!

(
λ2 + β +N−1

) [√
β (1 + β)− arcsinh

(√
β
) ]

.

As expansion (49) holds for (λ, k) satisfying (14) and both sides are holomorphic
for each (λ, k) in the bi-disk |λ| < 1, |k| < 1 of C2. It follows from the principle of
analytic continuation that expansion (49) holds in the entire bi-disk. �

Remark 4.5. By the above proof, we see that expansion (49) also holds for complex
λ and k in the bi-disk.

5. Numerical experiments

In this section we will give several numerical examples of computations with
the asymptotic expansions derived in Sections 3 and 4. First, we consider expan-
sion (28). By (23) and (24), we have (β = (1− λ2)/(1− k2)):

s0

(
λ2

β

)
=
√
1 + λ2/β − 1,

s1

(
λ2

β

)
=

1

2

√
1 + λ2/β − λ2

4β

[
2 ln

1 +
√
1 + λ2/β

2
+ 1
]
− 1

2
.

Therefore, the first and the second order approximations are:

E1(λ, k) = (λ− 1/λ)
√
1 + λ2/β − 1− k2

4
ln

(
1− λ

1 + λ

)
+ 1/λ,(59)

E2(λ, k) = E1(λ, k)−
3

32
(1− k2)2 ln

(
1− λ

1 + λ

)
+

1− λ2

2λ3

[√
1 + λ2/β − 1

]
− 1− k2

4λ

[
2 ln

1 +
√
1 + λ2/β

2
+ 1
]
.(60)

The refined approximations (33) with ε = 1/2 take the form

(61) Ê1(λ, k) = E1(λ, k)−
3(1− k2)

32
f3/2,

(62) Ê2(λ, k) = E2(λ, k)−
15(1− k2)2

256
f5/2,

where fN = fN (λ, k) is defined in (30).
Denote by ΔN the range for the relative error defined as the difference between

the upper and the lower bounds in (29) divided by E(λ, k):

(63) ΔN =
(1/2)N (1/2)N+1(1− k2)N

2N !(N + 1)!E(λ, k)
(fN (λ, k)− fN+1(λ, k)).

Approximation (61) together with (34) places the value of E(λ, k) within an
interval of length Δ1 ·E(λ, k), while (62) places E(λ, k) within an interval of length
Δ2 ·E(λ, k). The results of numerical computations are presented in Table 1. The
exact values of E(λ, k) shown in Table 1 are computed using Mathematica with the
required number of precise digits guaranteed.

Next, we consider expansion (49). By (45a) and (45c) we have

C0(x) =
1√
x
ln(

√
1 + x+

√
x) +

βk2

2x3/2

(√
x(1 + x)− ln(

√
1 + x+

√
x)
)
,
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Table 1. Numerical examples for approximations (59), (61), (60)

and (62) derived from expansion (33). The numbers ei and êi are the rel-

ative errors (E(λ, k)−Ei(λ, k))/E(λ, k) and (E(λ, k)−Êi(λ, k))/E(λ, k),

respectively, i = 1, 2. The numbers Δ1,Δ2 are given in (63).

λ k E(λ, k) First order First order Relative Relative Relative error
approx. (59) approx. (61) error e1 error ê1 range Δ1

.8 .8 .8501 .8714 .8496 −.02504 .6011× 10−3 .002446

.9 .9 .9504 .9669 .9500 −.01734 .4455× 10−3 .001972

.95 .95 .9900 1.0003 .9897 −.01044 .2712× 10−3 .001250

.99 .99 1.0056 1.0081 1.0055 −.002531 .6475× 10−4 .3072× 10−3

.95 .99 .9586 .9591 .9586 −.5674× 10−3 .5651× 10−7 .1743× 10−4

.99 .999 .9916 .9916 .9916 −.3417× 10−4 .1902× 10−8 .5445× 10−8

λ k E(λ, k) Second order Second order Relative Relative Relative error
approx. (60) approx. (62) error e2 error ê2 range Δ2

.8 .8 .8501 .8547 .8501 −.005413 .4975× 10−4 .1990× 10−3

.9 .9 .9504 .9523 .9504 −.001966 .1837× 10−4 .8270× 10−4

.95 .95 .9900 .9906 .9900 −.6056× 10−3 .5978× 10−7 .2661× 10−4

.99 .99 1.0056 1.0056 1.0056 −.2995× 10−4 .2667× 10−8 .1324× 10−7

.95 .99 .9586 .9586 .9586 −.6968× 10−7 .3090× 10−10 .8609× 10−9

.99 .999 .9916 .9916 .9916 −.4240× 10−9 .1081× 10−11 .2810× 10−11

C1(x) =
1

4x

(
1√
x
ln(

√
1 + x+

√
x)− 1− x√

1 + x

)

+
βk2

16x2

(
−9√
x
ln(

√
1 + x+

√
x) +

9 + 3x+ 2x2

√
1 + x

)
.(64)

Hence, the first and the second order approximation obtained from (49) are:

Ẽ1(λ, k) = E(k)− 2− 3k2 + k4

2
ln
(√

1 + β +
√
β
)
− k2(1− k2)

2

√
β(1 + β),

(65)

Ẽ2(λ, k) = Ẽ1(λ, k)− (1− λ2)3/2
√
1 + k · C1(β),

(66)

where the function C1(x) is given in (64). The refined approximations (51) take
the form

Ē1(λ, k) = Ẽ1(λ, k)−
(1− λ2)2(λ2 + β + 1)

4

(
67

187

1

λ2
√
β(1 + β)

+
60

187

√
β(1 + β)− arcsinh

(√
β
)

β2

)
,(67)

Ē2(λ, k) = Ẽ2(λ, k)−
(1− λ2)3(λ2 + β + 1/2)

6

(
67

187

1

λ2
√
β(1 + β)

+
45

187

√
β(1 + β)− arcsinh

(√
β
)

β2

)
.(68)

Let Δ̄N be the number given in (52). Then approximation (67) together with (53)
puts E(λ, k) within an interval of length Δ̄1 ·E(λ, k), while (68) puts E(λ, k) within



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

CONVERGENT EXPANSIONS OF SECOND ELLIPTIC INTEGRALS 2791

an interval of length Δ̄2 · E(λ, k). The results of numerical computation are pre-
sented in Table 2.

Table 2. Numerical examples for approximations (65), (67), (66)

and (68) derived from expansion (51). The numbers ẽi and ēi are the rel-

ative errors (E(λ, k)−Ẽi(λ, k))/E(λ, k) and (E(λ, k)−Ēi(λ, k))/E(λ, k),

respectively, i = 1, 2. The numbers Δ̄1, Δ̄2 are given in (52).

λ k E(λ, k) First order First order Relative Relative Relative error
approx. (65) approx. (67) error ẽ1 error ē1 range Δ̄1

.8 .8 .8501 .8976 .8491 −.05586 .001162 .08435

.9 .9 .9504 .9532 .9509 −.01343 −.5311× 10−3 .01618

.95 .95 .9900 .9933 .9909 −.003344 −.9083× 10−3 .003602

.99 .95 1.0572 1.0574 1.0572 −.2771× 10−3 −.3481× 10−4 .2784× 10−3

.99 .99 1.0056 1.0057 1.0056 −.1355× 10−3 −.3648× 10−4 .1335× 10−3

.999 .99 1.0220 1.0220 1.0220 −.4114× 10−7 −.5547× 10−8 .4085× 10−7

λ k E(λ, k) Second order Second order Relative Relative Relative error
approx. (66) approx. (68) error ẽ2 error ē2 range Δ̄2

.8 .8 .8501 .8589 .8501 −.01028 −.2378× 10−4 .01771

.9 .9 .9504 .9516 .9505 −.001286 −.6168× 10−4 .001870

.95 .95 .9900 .9901 .9900 −.1633× 10−3 −.1004× 10−4 .2188× 10−3

.99 .95 1.0572 1.0572 1.0572 −.3110× 10−7 −.8657× 10−8 .3212× 10−7

.99 .99 1.0056 1.0056 1.0056 −.1345× 10−7 −.9252× 10−9 .1689× 10−7

.999 .99 1.0220 1.0220 1.0220 −.4774× 10−10 −.1502× 10−10 .4679× 10−10

We conclude by comparing the above results with the asymptotic approxima-
tion (4) from [10,18] with the error bounds (72) and (73), respectively. We denote
Δ∗

1 to be the difference between the upper and the lower bound in (72) divided by
E(λ, k), i.e.,

(69) Δ∗
1 = (rhs of (72) − lhr of (72))/E(λ, k).

Similarly, Let Δ∗
2 be the difference between the upper and the lower bound in (73)

divided by E(λ, k), i.e.,

(70) Δ∗
2 = (rhs of (73) − lhr of (73))/E(λ, k).

The results of numerical computation are given in Table 3.

Table 3. Numerical examples for approximation (4) (=(71)) due to

Carlson-Gustafson and López. The fifth column equals the relative error

r1 in (4) (=(71)) divided by E(λ, k). The numbers Δ∗
1 and Δ∗

2 are given

in (69) and (70), respectively.

λ k E(λ, k) First order Relative Relative error Relative error
approx. (4) error range Δ∗

1 range Δ∗
2

.8 .8 .8501 .8343 .01864 .78055 .23538

.9 .9 .9504 1.0127 −.06551 .66727 .17444

.95 .95 .9900 1.0704 −.08121 .44780 .12025

.99 .95 1.0572 1.1178 −.05736 .27546 .105

.99 .99 1.0056 1.0472 −.04136 .15715 .03994

.999 .99 1.0220 1.0434 −.02088 .07386 .03581

.999 .999 1.0017 1.0094 −.007712 .02327 .006137
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Appendix. Approximations of Carlson-Gustafson and López

In this appendix we will convert the asymptotic approximations for symmetric
elliptic integrals RF and RD due to López [18] and Carlson-Gustafson [10] and their
error bounds into the corresponding results for the Legendre’s second incomplete
EI E(λ, k) defined in (1). As

E(λ, k) = λRF (1− λ2, 1− k2λ2, 1)− 1

3
k2λ3RD(1− λ2, 1− k2λ2, 1)

by [7, (4.2)], we need the asymptotic approximations for RF (a, b, 1) and RD(a, b, 1)
as a, b → 0. In view of the easily verifiable relations

RF (x, y, z) = z−1/2RF (x/z, y/z, 1), RD(x, y, z) = z−3/2RD(x/z, y/z, 1),

it suffices to use the asymptotics of RF (x, y, z) and RD(x, y, z) as z → ∞ while
x and y remain fixed. The first approximations from [18, (3.1)] after simple re-
arrangement are given by (under the assumption 0 ≤ x < y ≤ z)

RF (x/z, y/z, 1) = ln

(
2√

x/z +
√
y/z

)
+ (ψ(1)− ψ(1/2))/2 +RF

1

with the error bound [18, (3.5)] (we used the identity ψ(2) = ψ(1) + 1):

0 < RF
1 ≤ |x+ y|

8z

(
ln

(
1 +

2z

|x+ y|

)
+ 2

)
,

0 < RF
1 ≤ max(2, |x+ y|)√

z
.

Further, by [18, (3.14)] (also under the assumption 0 ≤ x < y ≤ z)

RD(x/z, y/z, 1) = 3 ln

(
2√

x/z +
√
y/z

)
+

3

2
(ψ(1)− ψ(3/2)) +RD

1

with

0 < RD
1 ≤ 9|x+ y|

8z

(
ln

(
1 +

2z

|x+ y|

)
+ 2

)
,

0 < RD
1 ≤ 2max(2, |x+ y|)√

z
.

Hence, if we set 1− k2λ2 = x/z and 1−λ2 = y/z we ensure that 0 ≤ x < y and we
arrive at (in view of ψ(3/2) = ψ(1/2) + 2):

E(λ, k)=λ(1−k2λ2)

[
ln

(
2√

1− k2λ2 +
√
1− λ2

)
+

1

2
(ψ(1)− ψ(1/2))

]
+k2λ3+r1.

Finally, due to
∑m

r=1 ψ(r/m) = mψ(1)−m ln(m) form = 2 we have ψ(1)−ψ(1/2) =
ln(4) and the approximation takes the form

(71) E(λ, k) = λ(1− k2λ2) ln

(
4√

1− k2λ2 +
√
1− λ2

)
+ k2λ3 + r1

reproduced in (4) with the error bounds

(72)

− 3k2λ3(2− λ2 − k2λ2)

8

[
ln

4− λ2 − k2λ2

2− λ2 − k2λ2
+ 2

]

≤ r1 ≤ λ(2− λ2 − k2λ2)

8

[
ln

4− λ2 − k2λ2

2− λ2 − k2λ2
+ 2

]
.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

CONVERGENT EXPANSIONS OF SECOND ELLIPTIC INTEGRALS 2793

Combining [10, (26)] and [10, (34)] we again obtain approximation (71). How-
ever, the bounds for remainder term differ from those above and take the form
(73)⎛
⎝ λ

√
(1− λ2)(1− k2λ2)

2
(
1−
√

(1−λ2)(1−k2λ2)
)− 3k2λ3(2− λ2(1 + k2))

2λ2(1 + k2)

⎞
⎠ ln

2√
1− λ2 +

√
1− k2λ2

< r1

<
λ(2− λ2(1 + k2))

2 + λ2(1 + k2)
ln

4√
1− λ2 +

√
1− k2λ2

− k2λ3
√
(1− λ2)(1− k2λ2)

1−
√
(1− λ2)(1− k2λ2)

ln
2√

1− λ2 +
√
1− k2λ2

.

Table 3 shows that these error bounds are more precise than (72) at the price of
being substantially more complicated.
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