MATH 2418: Linear Algebra

Assignment 9 (sections 4.1, 4.2, 4.3 and 4.4)

Due: April 10, 2019

Term: Spring, 2019

[First Name]	[Last Name]	[Net ID]
--------------	-------------	----------

Suggested problems (do not turn in):Section 4.1: 1, 2, 3, 5, 6, 7, 10, 11, 14, 16 20, 21, 22, 24, 25, 26, 28 29; Section 4.2: 1, 2, 3, 4, 5, 6, 7, 8, 11, 13, 16, 17, 21, 23, 24; Section 4.3: 1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 17, 18, 19, 21, 22; Section 4.4: 1, 3, 4, 5, 6, 9, 13, 15, 18, 19, 22, 24. Note that solutions to these suggested problems are available at *math.mit.edu/linearalgebra*

1. [10 points] Find a vector orthogonal to the null space of matrix A, where

(a) (5 pts)
$$A = \begin{bmatrix} 1\\ 2\\ -3\\ 4 \end{bmatrix} \begin{bmatrix} -2 & 3 & -3 \end{bmatrix}.$$

(b) (5 pts) $A = \begin{bmatrix} 2 & 4 & 6 & 8\\ -3 & -6 & -9 & -12\\ 3 & 6 & 9 & 12 \end{bmatrix}$

Solution:

(a)
$$A = \begin{bmatrix} 1\\ 2\\ -3\\ 4 \end{bmatrix} \begin{bmatrix} -2 & 3 & -3 \end{bmatrix} = \begin{bmatrix} 2 & 3 & -3\\ -4 & 6 & -6\\ 6 & -9 & -9\\ -8 & 12 & -12 \end{bmatrix}$$

The null space is $N(A) = span \left\{ (3, 2, 0), (-3, 0, 2) \right\}.$
Choose an orthogonal vector to be $v = (\frac{1}{3}, -\frac{1}{2}, \frac{1}{2}).$ Indeed:
 $\begin{bmatrix} 1\\ 3 & -\frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 3\\ 2\\ 0 \end{bmatrix} = 0, \quad \begin{bmatrix} 1\\ 3 & -\frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} -3\\ 0\\ 2 \end{bmatrix} = 0,$
(b) The null space is $N(A) = span \left\{ (-2, 1, 0, 0), (-3, 0, 1, 0), (-4, 0, 0, 1) \right\}.$

Again, by vector product, it is easy to see that vector orthogonal to N(A) is v = (1, 2, 3, 4).

2. [10 points] Find a basis for the orthogonal complement to the row space of the matrix

[2	2	-1	3	4	-5	6
6	3	-3	-8	12	-15	18
4	1	-2	0	8	-10	6
4	1	-2	0	8	-10	12

Solution:

Let,

	[2	-1	3	4	-5	6
1	6	-3	-8	12	-15	18
A =	4	-2	0	8	-10	6
	4	-2	0	8	-10	12

Since the row space and null space of the matrix A are orthogonal complement to each other. So we need to find the basis for null space of A. i.e we need to find solution of Ax = 0.

By performing row operations, we get the reduced form of A:

$$\begin{bmatrix} 2 & -1 & 3 & 4 & -5 & 6 \\ 0 & 0 & 2 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 0 & -6 \end{bmatrix}$$

There are three free variables x_2, x_4, x_5 , one basis for the orthogonal complement to the row space of the matrix A is $\{(1/2, 1, 0, 0, 0, 0), (-2, 0, 0, 1, 0, 0), (5/2, 0, 0, 0, 1, 0)\}$.

3. [10 points] Let P be the set of points $(x, y, z) \in \mathbb{R}^3$ satisfying the equation -2x + y - 3z = 0. Find a unit vector **n** orthogonal to P.

Solution:

The corresponding matrix is:
$$A = \begin{bmatrix} -2 & 1 & -3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

The null space is the set of points \vec{P} , and the orthogonal component is row space of A, which is $R(A) = t(-2, 1, -3), t \in \mathbb{R}$.

A unit vector **n** in
$$R(A)$$
 is $\frac{(-2,1,-3)}{\sqrt{(-2)^2 + 1^2 + (-3)^2}} = \left(\frac{-\sqrt{14}}{7}, \frac{\sqrt{14}}{14}, \frac{-3\sqrt{14}}{14}\right)$

- 4. [10 points] For the projection onto the vector $\mathbf{a} = \begin{bmatrix} -3 \\ 1 \\ 2 \end{bmatrix}$
 - (a) (3 points) Find the projection matrix P.

Solution:

$$P = \frac{\mathbf{a}\mathbf{a}^{T}}{\mathbf{a}^{T}\mathbf{a}} = \frac{\begin{bmatrix} -3\\1\\2 \end{bmatrix} \begin{bmatrix} -3 & 1 & 2 \end{bmatrix}}{\begin{bmatrix} -3 & 1 & 2 \end{bmatrix}}$$
$$\begin{bmatrix} -3\\1\\2 \end{bmatrix}$$
$$\frac{1}{14} \begin{bmatrix} 9 & -3 & -6\\-3 & 1 & 2\\-6 & 2 & 4 \end{bmatrix}$$

(b) (3 points) Project the vectors
$$\mathbf{b}_1 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$
 and $\mathbf{b}_2 = \begin{bmatrix} 2\\1\\3 \end{bmatrix}$

Solution:

$$P\mathbf{b}_{1} = \frac{1}{14} \begin{bmatrix} 9 & -3 & -6 \\ -3 & 1 & 2 \\ -6 & 2 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
$$P\mathbf{b}_{2} = \frac{1}{14} \begin{bmatrix} 9 & -3 & -6 \\ -3 & 1 & 2 \\ -6 & 2 & 4 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} = \frac{1}{14} \begin{bmatrix} -3 \\ 1 \\ 2 \end{bmatrix}$$

(c) (1 point) Find the errors $\mathbf{e}_1 = \mathbf{b}_1 - P\mathbf{b}_1$ and $\mathbf{e}_2 = \mathbf{b}_2 - P\mathbf{b}_2$

Solution:

$$\mathbf{e}_1 = \mathbf{b}_1 - P\mathbf{b}_1 = \mathbf{b}_1$$
$$\mathbf{e}_2 = \mathbf{b}_2 - P\mathbf{b}_2 = \begin{bmatrix} 2\\1\\3 \end{bmatrix} - \frac{1}{14} \begin{bmatrix} -3\\1\\2 \end{bmatrix} = \frac{1}{14} \begin{bmatrix} 31\\13\\40 \end{bmatrix}$$

5. [10 points] Find the minimal distance from the point $\mathbf{b} = \begin{bmatrix} 1 \\ -3 \\ 1 \\ 5 \end{bmatrix}$ to the space of all linear

combinations of the vectors
$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix}$$
, $\mathbf{a}_2 = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \end{bmatrix}$ and $\mathbf{a}_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ -1 \end{bmatrix}$

Solution:

Form the linear system $A\mathbf{x} = \mathbf{b}$ where

$$A = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} 1 \\ -3 \\ 1 \\ 5 \end{bmatrix}$$

To find the minimal distance, we need to solve the normal equation $A^T A \hat{x} = A^T \mathbf{b}$.

$$A^{T}A = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 1 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$
$$A^{T}\mathbf{b} = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 1 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \\ 1 \\ 5 \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \\ -4 \end{bmatrix}$$
$$(A^{T}A)^{-1} = \begin{bmatrix} 3/4 & -1/4 & -1/4 \\ -1/4 & 3/4 & -1/4 \\ -1/4 & -1/4 & 3/4 \end{bmatrix}$$

Solution of the normal equation:

$$\hat{x} = (A^T A)^{-1} A^T \mathbf{b} = \begin{bmatrix} 3/4 & -1/4 & -1/4 \\ -1/4 & 3/4 & -1/4 \\ -1/4 & -1/4 & 3/4 \end{bmatrix} \begin{bmatrix} 4 \\ 0 \\ -4 \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \\ -4 \end{bmatrix}$$
$$A\hat{x} - b = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 4 \\ 0 \\ -4 \end{bmatrix} - \begin{bmatrix} 1 \\ -3 \\ 1 \\ 5 \end{bmatrix} = \begin{bmatrix} -1 \\ -7 \\ -1 \\ -1 \end{bmatrix}$$

Therefore the required minimum distance:

$$\sqrt{(\|A\hat{x} - b\|)^2} = \sqrt{(-1)^2 + (-7)^2 + (-1)^2 + (-1)^2} = \sqrt{52}$$

6. [10 points] Find the best line q(t) = At + B approximating the data set b at the times t = 0, 1, 2, 3, 4.

- (a) (5 points) b = -1, -1, 2, 0, 0
- (b) (5 points) b = -1, 0, 2, 0, 1

Solution:

Let

$$M = \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 2 & 1 \\ 3 & 1 \\ 4 & 1 \end{bmatrix}$$

and b be the given vector of values in the data set corresponding to times t. In order to find the best line approximating the given data set, one needs to minimize $||Mx - b||^2$ where $x = [A B]^T$. The latter is equivalent to solving the *normal* equation:

$$M^T M x = M^T b$$

Computing $M^T M$ yields

$$M^T M = \begin{bmatrix} 30 & 10\\ 10 & 5 \end{bmatrix}$$

In part (a), vector $b = \begin{bmatrix} -1 & -1 & 2 & 0 & 0 \end{bmatrix}^T$. Hence, $M^T b = \begin{bmatrix} 3 & 0 \end{bmatrix}^T$, and normal equation is

30	10]	$\left[A\right]$	[3]
10	5	$\lfloor B \rfloor =$	

The solution to the equation above is A = 3/10 and B = -3/5. Therefore, the answer is

$$q(t)=\frac{3}{10}t-\frac{3}{5}$$

Similarly, in part (b), vector $b = [-1 \ 0 \ 2 \ 0 \ 1]^T$. Hence, $M^T b = [8 \ 2]^T$, and normal equation is

$$\begin{bmatrix} 30 & 10\\ 10 & 5 \end{bmatrix} \begin{bmatrix} A\\ B \end{bmatrix} = \begin{bmatrix} 8\\ 2 \end{bmatrix}.$$

The solution to the equation above is A = 2/5 and B = -2/5. Therefore, the answer is

$$q(t) = \frac{2}{5}t - \frac{2}{5}$$

7. [10 points] Find the closest parabola $q(t) = At^2 + Bt + C$ approximating the data set

time	t	-1	0	1	2	3
data	q	5	2	1	2	5

Solution:

Form the linear system $M\mathbf{x} = \mathbf{q}$ where

$$M = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \\ 4 & 2 & 1 \\ 9 & 3 & 1 \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} A \\ B \\ C \end{bmatrix} \quad \mathbf{q} = \begin{bmatrix} 5 \\ 2 \\ 1 \\ 2 \\ 5 \end{bmatrix}$$

To find the closest parabola, we need to solve the normal equation $M^T M \mathbf{x} = M^T \mathbf{q}$.

$$M^{T}M = \begin{bmatrix} 1 & 0 & 1 & 4 & 9 \\ -1 & 0 & 1 & 2 & 3 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \\ 4 & 2 & 1 \\ 9 & 3 & 1 \end{bmatrix} = \begin{bmatrix} 99 & 35 & 15 \\ 35 & 15 & 5 \\ 15 & 5 & 5 \end{bmatrix}$$
$$M^{T}\mathbf{q} = \begin{bmatrix} 1 & 0 & 1 & 4 & 9 \\ -1 & 0 & 1 & 2 & 3 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 2 \\ 1 \\ 2 \\ 5 \end{bmatrix} = \begin{bmatrix} 59 \\ 15 \\ 15 \end{bmatrix}$$

Do Gaussian elimination to the augmented matrix:

So the solution is

$$\mathbf{x} = \begin{bmatrix} A \\ B \\ C \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix}$$

and this gives us the equation of the closest parabola

$$q(t) = t^2 - 2t + 2$$

8. [10 points] Let
$$\mathbf{e}_1 = \begin{bmatrix} 1\\0\\0 \end{bmatrix}$$
 and $\mathbf{e}_2 = \begin{bmatrix} 0\\-3/5\\4/5 \end{bmatrix}$.

(a) (5 points) Find vector \mathbf{e}_3 such that $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ form an orthonormal basis in \mathbb{R}^3 .

Solution:

Let $e_3 = (k_1, k_2, k_3)$, then we have that $e_1 \cdot e_3 = 0$ and $e_2 \cdot e_3 = 0$, so:

$$e_1 \cdot e_3 = k_1 + 0 + 0 = k_1 = 0$$
$$e_2 \cdot e_3 = -\frac{3}{5}k_2 + \frac{4}{5}k_3 = 0 \Rightarrow k_2 = \frac{4}{3}k_3$$

But since we have that e_3 is a unit vector, we have that:

$$||e_3|| = 1 \Rightarrow \frac{16}{9}k_3^2 + k_3^2 = 1$$
$$\Rightarrow \frac{25}{9}k_3^2 = 1 \Rightarrow k_3^2 = \frac{9}{25}$$

Thus we have two solutions: $k_3 = \pm \frac{3}{5}$, thus taking the positive solution, we get the vector:

$$e_3 = \begin{bmatrix} 0\\4/5\\3/5\end{bmatrix}$$

Clearly e_1, e_2 , and e_3 are orthonormal.

(b) (1 point)In how many different ways can you choose e_3 ?

Solution:

Note that we could have also chosen $k_3 = -\frac{3}{5}$, which would have given us the other solution:

$$e_3 = \begin{bmatrix} 0\\ -4/5\\ -3/5 \end{bmatrix}$$

So there are only two ways of choosing e_3 .

(c) (4 points) Express vector $\mathbf{b} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$ as a linear combination of vectors $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$.

Solution:

$$\begin{bmatrix} 1\\1\\1 \end{bmatrix} = c_1 \begin{bmatrix} 1\\0\\0 \end{bmatrix} + c_2 \begin{bmatrix} 0\\-3/5\\4/5 \end{bmatrix} + c_3 \begin{bmatrix} 0\\4/5\\3/5 \end{bmatrix}$$
$$\Rightarrow c_1 = 1, c_2 = 1/5, c_3 = 7/5$$

9. [10 points] Find orthogonal vectors \mathbf{A}, \mathbf{B} and \mathbf{C} by Gram-Schmidt from the vectors $\mathbf{a} = (1, -2, 2, 0)$, $\mathbf{b} = (-2, 2, 0, 1)$ and $\mathbf{c} = (-2, 0, 1, 2)$.

Solution:

Note first that $\mathbf{a} \perp \mathbf{b}$ and $\mathbf{a} \perp \mathbf{c}$. Thus we may take $\mathbf{A} = \mathbf{a}$ and $\mathbf{B} = \mathbf{b}$. To obtain \mathbf{C} , we let $\mathbf{C} = \mathbf{c} - proj_{\mathbf{c}}(\mathbf{a}) - proj_{\mathbf{c}}(\mathbf{b})$, where

$$proj_{\mathbf{v}}(\mathbf{u}) := rac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}||^2}\mathbf{u}$$

So $\mathbf{C} = \frac{1}{3}(-2, -4, 3, 4)$

- 10. [10 points] True or False? Circle your answer and provide a justification for your choice.
 - (a) **T** (**F**): Row space and column space of the square matrix coincide.

Solution:

Consider the counterexample $A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$, it's readily seen $C(A) \neq R(A)$

(b) **T** (\mathbf{F}) : If vector **a** belongs to the null-space of some matrix A then any **b** orthogonal to **a** belongs to the row space of A.

Solution:

Consider the counterexample $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, it's readily seen R(A) is spanned by $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$, $\mathbf{a} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^T$ belongs to N(A), $\mathbf{b} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$ is orthogonal to \mathbf{a} , but $\mathbf{b} \notin R(A)$

(c) $\mathbf{T} \bigoplus$: If vectors **b** and **a** are orthogonal then projection of **b** onto line through **a** has no errors.

Solution:

Taking any $\mathbf{b} \neq \mathbf{0}$ and a line l passing through $\mathbf{0}$ and \mathbf{a} , the projection of \mathbf{b} onto l is $\mathbf{0}$ and the error is $\mathbf{b} \neq \mathbf{0}$

(d) **T** (**F**): If matrix A is a square matrix then $A(A^T A)^{-1}A^T = I$.

Solution:

Taking any size *n* square matrix *A* such that $\operatorname{rank}(A) < n$, since $\operatorname{rank}(A^T A) = \operatorname{rank}(A)$, $A^T A$ will be singular and there is no inverse $(A^T A)^{-1}$.

(e) **T** (**F**): Least square approximation finds the line passing through all points in the data set.

Solution:

If the least square approximation is supposed to fit in a line, for example in a affine function, and the given points are not on the same line, then the least square approximation can not pass through all points.

(f) T **F**: If P is a projection matrix then $P^3 = P$.

Solution:

If P is a projection matrix, then $P^2 = P$, therefore $P^3 = PP^2 = PP = P^2 = P$.

(g) (T) **F**: Projection of the vector onto the subspace minimizes the length of the error vector.

Solution:

Let **p** be the (orthogonal) projection of a vector **b** onto a subspace *S*. Setting $\hat{\mathbf{e}} = \mathbf{b} - \mathbf{p}$, by condition we have $\hat{\mathbf{e}}$ orthogonal to any vector on *S*, therefore given any $\mathbf{v} \in S$, we have $\mathbf{p} - \mathbf{v} \in S$ and $\|\mathbf{b} - \mathbf{v}\|^2 = \|\hat{\mathbf{e}} + \mathbf{p} - \mathbf{v}\|^2 = \|\hat{\mathbf{e}}\|^2 + \|\mathbf{p} - \mathbf{v}\|^2 \ge \|\hat{\mathbf{e}}\|^2$, hence $\|\mathbf{b} - \mathbf{v}\| \ge \|\hat{\mathbf{e}}\|$ for any $\mathbf{v} \in S$, therefore the projection vector **p** minimizes the length of the error vector. (h) (T) **F**: If Q is square orthogonal matrix such that $Q^{2019} = I$ then $Q^{2018} = Q^T$.

Solution:

By condition, $Q^T Q = Q Q^T = I$, i.e., $Q^{-1} = Q^T$, therefore $Q^{2019} = I \Rightarrow Q^{2018}Q = I$, hence by uniqueness of the inverse $Q^{2018} = Q^{-1} = Q^T$.

(i) (T) **F**: If three vectors in \mathbb{R}^3 are orthonormal then they form a basis in \mathbb{R}^3 .

Solution:

Since dim $\mathbb{R}^3 = 3$, any linearly independent set of three vectors will be a basis for \mathbb{R}^3 , and if three vectors are orthonormal, then they will form linearly independent set, therefore a basis for \mathbb{R}^3 .

(j) \mathbf{T} (**F**): If columns of matrix A are orthogonal then rows of A are independent.

Solution:

Consider the counterexample $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, where is readily seen the columns are orthogonal, but the rows are not linearly independent.