MATH 2418: Linear Algebra

Assignment 7 (sections 3.3 and 3.4)

Due: March 13, 2019

Term: Spring, 2019

[First Name] [Last Name]	[Net ID]
--------------------------	----------

Suggested problems (do not turn in): Section 3.3: 1, 2, 3, 4, 5, 7, 16, 17, 25, 26, 27, 28, 29; Section 3.4: 1, 2, 3, 4, 5, 11, 12, 13, 15, 16, 17, 18, 24, 26, 27, 35. Note that solutions to these suggested problems are available at *math.mit.edu/linearalgebra*

- 1. [10 points] Given linear system $\begin{cases} x_2 + x_3 + 3x_4 + x_5 = 0\\ 2x_1 + 3x_2 + x_3 + x_4 = -1 \text{ corresponding to } A\mathbf{x} = \mathbf{b}.\\ 6x_1 + 2x_2 + 6x_4 + x_5 = 1 \end{cases}$
 - (a) Solve the system.

Solution: Writing the corresponding augmented matrix and applying elementary operations:

$$\begin{bmatrix} A \mid \mathbf{b} \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{bmatrix} 2 & 3 & 1 & 1 & 0 & | & -1 \\ 0 & 1 & 1 & 3 & 1 & | & 0 \\ 6 & 2 & 0 & 6 & 1 & | & 1 \end{bmatrix} \xrightarrow{R_3 - 3R_1} \begin{bmatrix} 2 & 3 & 1 & 1 & 0 & | & -1 \\ 0 & 1 & 1 & 3 & 1 & | & 0 \\ 0 & -7 & -3 & 3 & 1 & | & 4 \end{bmatrix} \xrightarrow{R_3 + 7R_2} \begin{bmatrix} 2 & 3 & 1 & 1 & 0 & | & -1 \\ 0 & 1 & 1 & 3 & 1 & | & 0 \\ 0 & 0 & 4 & 24 & 8 & | & 4 \end{bmatrix}$$

$$\xrightarrow{\frac{1}{4}R_3} \begin{bmatrix} 2 & 3 & 1 & 1 & 0 & | & -1 \\ 0 & 1 & 1 & 3 & 1 & | & 0 \\ 0 & 0 & 1 & 6 & 2 & | & 1 \end{bmatrix} \xrightarrow{R_1 - R_3} \begin{bmatrix} 2 & 3 & 0 - 5 - 2 & | & -2 \\ 0 & 1 & 0 - 3 - 1 & | & -1 \\ 0 & 0 & 1 & 6 & 2 & | & 0 \end{bmatrix} \xrightarrow{R_1 - 3R_2} \begin{bmatrix} 2 & 0 & 0 & 4 & 1 & | & 1 \\ 0 & 1 & 0 - 3 - 1 & | & -1 \\ 0 & 0 & 1 & 6 & 2 & | & 0 \end{bmatrix}$$

$$\xrightarrow{\frac{1}{2}R_1} \begin{bmatrix} 1 & 0 & 0 & 2 & 1/2 & | & 1/2 \\ 0 & 1 & 0 - 3 & -1 & | & -1 \\ 0 & 0 & 1 & 6 & 2 & | & 0 \end{bmatrix} = [R \mid \mathbf{d}] \Rightarrow \mathbf{x}_p = \begin{bmatrix} 1/2 \\ -1 \\ 2 \\ 0 \\ 0 \end{bmatrix}$$

(b) Write your solution as $\mathbf{x} = \mathbf{x}_p + \mathbf{x}_n$, where \mathbf{x}_p is the particular solution of $A\mathbf{x} = \mathbf{b}$ and \mathbf{x}_n is a linear combination of special solutions of $A\mathbf{x} = \mathbf{0}$. **Solution:** From $R = \operatorname{rref}(A)$, we see the number of special solutions are 5 - 3 = 2, hence we build the linear combination $\mathbf{x}_n = s\mathbf{S}_1 + t\mathbf{S}_2$, where $s, t \in \mathbb{R}$ and special solutions $\mathbf{S}_1, \mathbf{S}_2$ are :

$$\mathbf{S}_{1} = \begin{bmatrix} -2\\3\\-6\\1\\0 \end{bmatrix}, \ \mathbf{S}_{2} = \begin{bmatrix} -1/2\\1\\-2\\0\\1 \end{bmatrix}$$

And finally the complete solution is $\mathbf{x} = \begin{bmatrix} 1/2 \\ -1 \\ 2 \\ 0 \\ 0 \end{bmatrix} + s \begin{bmatrix} -2 \\ 3 \\ -6 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -1/2 \\ 1 \\ -2 \\ 0 \\ 1 \end{bmatrix}$, where $s, t \in \mathbb{R}$

(c) What is the rank of the coefficient matrix A?
Solution: From R = rref(A) we observe there are 3 pivots, therefore the rank of A is 3 2. [10 points] Let $A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 3 \\ 4 & 5 & 3 \end{bmatrix}$ and $U = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix}$. Which of the spaces C(A), C(U), $C(A^T)$, $C(U^T)$ are the same?

$$\begin{split} C(A) &= \operatorname{span}\{(1,1,4), (1,2,5), (0,3,3)\} = \operatorname{span}\{(1,1,4), (0,1,1)\} = \operatorname{span}\{(1,0,3), (0,1,1)\} \\ C(U) &= \operatorname{span}\{(1,0,0), (1,1,0), (0,3,0)\} = \operatorname{span}\{(1,0,0), (1,1,0)\} = \operatorname{span}\{(1,0,0), (0,1,0)\} \\ C(A^T) &= \operatorname{span}\{(1,1,0), (1,2,3), (4,5,3)\} = \operatorname{span}\{(1,1,0), (1,2,3)\} = \operatorname{span}\{(1,1,0), (0,1,3)\} \\ C(U^T) &= \operatorname{span}\{(1,1,0), (0,1,3), (0,0,0)\} = \operatorname{span}\{(1,1,0), (0,1,3)\} \\ \end{split}$$
 Thus we have that $C(A^T) = C(U^T)$.

3. [10 points] Find the LU factorization of A and the complete solution to $A\mathbf{x} = \mathbf{b}$.

$$A = \begin{bmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \\ -1 & 1 & 0 & 2 \end{bmatrix}, b = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

Solution:

Reduce the augmented system into RREF as:

$$\begin{bmatrix} A \mid \mathbf{b} \end{bmatrix} \xrightarrow{R_3 + R_1} \begin{bmatrix} 1 & 1 & 2 & 0 \mid 1 \\ 0 & 1 & 1 & 1 \mid 2 \\ 0 & 2 & 2 & 2 \mid 4 \end{bmatrix} \xrightarrow{R_3 - 2R_2} \begin{bmatrix} 1 & 1 & 2 & 0 \mid 1 \\ 0 & 1 & 1 & 1 \mid 2 \\ 0 & 0 & 0 & 0 \mid 0 \end{bmatrix} \xrightarrow{R_1 - R_2} \begin{bmatrix} 1 & 0 & 1 & -1 \mid -1 \\ 0 & 1 & 1 & 1 \mid 2 \\ 0 & 0 & 0 & 0 \mid 0 \end{bmatrix}$$

Thus *LU* factorization is: $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
 x_3, x_4 are free variables. The particular solution is $\begin{bmatrix} -1 \\ 2 \\ 0 \\ 0 \end{bmatrix}$.
The complete solution is: $\mathbf{x} = \begin{bmatrix} -1 \\ 2 \\ 0 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -1 \\ -1 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 1 \\ -1 \\ 0 \\ 1 \end{bmatrix}$

- 4. [10 points] Determine if the given vectors form a basis for the vector space specified.
 - (a) $V = M_{22}$ (the vector space of all 2×2 matrices), given set of vectors

$$\begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 2 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 2 & 1 \end{bmatrix}.$$

Solution:

The linear combination of these vectors is

$$c_{1}\begin{bmatrix} -1 & 0\\ 0 & 0 \end{bmatrix} + c_{2}\begin{bmatrix} 2 & 0\\ 1 & 0 \end{bmatrix} + c_{3}\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} + c_{4}\begin{bmatrix} 0 & 0\\ 2 & 1 \end{bmatrix} = \begin{bmatrix} -c_{1} + 2c_{2} + c_{3} & 0\\ c_{2} + 2c_{4} & c_{3} + c_{4} \end{bmatrix}$$

where $c_1, c_2, c_3, c_4 \in \mathbb{R}$.

Notice that the upper right corner component is always zero, which means the given set of vectors cannot span the vector space M_{22} , therefore the given set is not a basis.

(b) $V = M_{22}$ (the vector space of all 2×2 matrices), given set of vectors

$$\begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 2 & 0 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Solution:

The linear combination of these vectors is

$$c_{1}\begin{bmatrix}2 & 0\\1 & 1\end{bmatrix} + c_{2}\begin{bmatrix}1 & -1\\2 & 0\end{bmatrix} + c_{3}\begin{bmatrix}1 & -1\\1 & 1\end{bmatrix} + c_{4}\begin{bmatrix}1 & 0\\0 & 1\end{bmatrix} = \begin{bmatrix}2c_{1} + c_{2} + c_{3} + c_{4} & -c_{2} - c_{3}\\c_{1} + 2c_{2} + c_{3} & c_{1} + c_{3} + c_{4}\end{bmatrix}$$

where $c_1, c_2, c_3, c_4 \in \mathbb{R}$.

To check the linear independence of these vectors, we let the combination equals to zero and we have

$$\begin{cases} 2c_1 + c_2 + c_3 + c_4 = 0\\ -c_2 - c_3 = 0\\ c_1 + 2c_2 + c_3 = 0\\ c_1 + c_3 + c_4 = 0 \end{cases} \Rightarrow \begin{cases} c_1 = 1\\ c_2 = -1\\ c_3 = 1\\ c_4 = -2 \end{cases}$$

The nonzero solution implies that the given vectors are **not** linearly independent, so the given set is not a basis.

(c) $V = P_2$ (the vector space of all polynomials of degree ≤ 2), given set of vectors

$$4+x, x^2-x-1, x^2+x-3.$$

Solution:

The linear combination of these vectors is

$$c_1(4+x) + c_2(x^2 - x - 1) + c_3(x^2 + x - 3) = (c_2 + c_3)x^2 + (c_1 - c_2 + c_3)x + (4c_1 - c_2 - 3c_3)x + (4$$

where $c_1, c_2, c_3 \in \mathbb{R}$.

To check the linear independence of these vectors, we let the combination equals to zero and we have

$$\begin{cases} c_2 + c_3 = 0\\ c_1 - c_2 + c_3 = 0\\ 4c_1 - c_2 - 3c_3 = 0 \end{cases} \Rightarrow \begin{cases} c_1 = 0\\ c_2 = 0\\ c_3 = 0 \end{cases}$$

Hence, these vectors are linearly independent. Since c_1, c_2, c_3 can be any real numbers, these vectors also span the vector space P_2 . Therefore, the given set is a basis.

5. [10 points] Let $\mathbf{v}_1 = (-2, -7, 2)$, $\mathbf{v}_2 = (5, 1, -5)$, $\mathbf{v}_3 = (-4, -9, 4)$, $\mathbf{v}_4 = (-3, -6, 3)$, $\mathbf{v}_5 = (1, 2, -1)$. Find a subset of $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_5\}$ that forms a basis for the subspace of \mathbb{R}^3 spanned by those five vectors. Express each non-basis vector as a linear combination of basis vectors.

Solution. Consider a matrix $A = [\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3 \ \mathbf{v}_4 \ \mathbf{v}_5]$. We need to find a basis in the column space C(A). In the reduced row echelon form A becomes

$$A_{rref} = \begin{bmatrix} 1 & 0 & \frac{41}{33} & \frac{9}{11} & -\frac{3}{11} \\ 0 & 1 & -\frac{10}{33} & -\frac{3}{11} & \frac{1}{11} \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

Two pivots are in the first and the second columns. Thus, vectors $\mathbf{v}_1, \mathbf{v}_2$ form a basis in C(A). Clearly,

$$\mathbf{v}_3 = \frac{41}{33}\mathbf{v}_1 - \frac{10}{33}\mathbf{v}_2, \tag{1}$$

$$\mathbf{v}_4 = \frac{9}{11}\mathbf{v}_1 + \frac{3}{11}\mathbf{v}_2, \tag{2}$$

$$\mathbf{v}_5 = -\frac{3}{11}\mathbf{v}_1 + \frac{1}{11}\mathbf{v}_2. \tag{3}$$

- 6. [10 points] Let \mathbf{v}_1 , \mathbf{v}_2 and \mathbf{v}_3 be three linearly independent vectors in \mathbb{R}^3 .
 - (a) Find the rank of the matrix $A = [(\mathbf{v}_1 \mathbf{v}_2) \ (\mathbf{v}_2 \mathbf{v}_3) \ (\mathbf{v}_3 \mathbf{v}_1)].$
 - (b) Find the rank of the matrix $B = [(\mathbf{v}_1 + \mathbf{v}_2) \ (\mathbf{v}_2 + \mathbf{v}_3) \ (\mathbf{v}_3 + \mathbf{v}_1)].$

Solution(a):

Since $(v_1 - v_2) + (v_2 - v_3) + (v_3 - v_1) = v_1 + v_2 + v_3 - v_1 - v_2 - v_3 = 0$ So the vectors $(v_1 - v_2), (v_2 - v_3)$ and $(v_3 - v_1)$ are linearly dependent. Also $(v_1 - v_2) + (v_2 - v_3) = (v_3 - v_1)$ implies that the vector $(v_3 - v_1)$ lies on the same plane as $(v_1 - v_2), (v_2 - v_3)$ Moreover, the vectors $(v_1 - v_2), (v_2 - v_3)$ are linearly independent. Therefore, the matrix A

Moreover, the vectors $(v_1 - v_2), (v_2 - v_3)$ are linearly independent. Therefore, the matrix A has two independent columns. So the rank of A = 2.

Solution(b):

Here, $c_1(v_1 + v_2) + c_2(v_2 + v_3) + c_3(v_3 + v_1) = 0$ where $c_1, c_2, c_3 \in \mathbb{R}$ $\implies (c_1 + c_3)v_1 + (c_1 + c_2)v_2 + (c_2 + c_3)v_3 = 0$ $\implies (c_1 + c_3) = (c_1 + c_2) = (c_2 + c_3) = 0$, since v_1, v_2, v_3 are linearly independent vectors. $\implies (c_1 + c_3) = 0$ or, $c_1 = -c_3$ and $(c_1 + c_2) = 0$ or, $c_1 = -c_2 \implies c_2 = c_3$ Also $(c_2 + c_3) = 0 \implies c_2 = c_3 = 0 \implies c_1 = 0$ Which implies the linear independence of the vectors $(v_1 + v_2), (v_2 + v_3), (v_3 + v_1)$ Hence, rank of the matrix B = 3 7. [10 points] Prove that $B = \left\{ \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} \right\}$ is a basis for $U_{2\times 2}$, the vector space of all 2×2 upper triangular real matrices.

Solution: Linear independence

$$x \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} + y \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} + z \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
$$\begin{bmatrix} x + y + z & x + 2y + z \\ 0 & x + 2z \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
$$\Rightarrow x + 2z = 0 \Leftrightarrow x = -2z$$
$$\Rightarrow x + y + z = y - z = 0 \text{ and } x + 2y + z = 2y - z = 0$$
$$\Rightarrow y = z = 0 \Rightarrow x = 0$$

Thus the set B consist of a linearly independent matrices. Span

Let $\begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$ be any upper triangular real matrix. Then

$$\begin{aligned} x \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} + y \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} + z \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \\ \begin{bmatrix} x + y + z & x + 2y + z \\ 0 & x + 2z \end{bmatrix} = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \\ \Rightarrow x + 2z = c \Leftrightarrow x = c - 2z \\ \Rightarrow x + y + z = c + y - z = a \text{ and } x + 2y + z = c + 2y - z = y + a = b \\ \Rightarrow y = b - a \Rightarrow z = c + b - 2a \text{ and } x = 4a - 2b - c \end{aligned}$$

Thus for any upper triangular 2×2 real matrix there exists scalars such that the upper triangular matrix is a linear combinations of the matrices in B. Thus the set B spans the set of all 2×2 upper triangular real matrices

Therefore, the set B is a basis.

8. [10 points] Find a basis for the subspace of \mathbb{R}^3 spanned by the vectors $\mathbf{v_1} = (0, 2, 6)$, $\mathbf{v_2} = (1, 3, 2)$, $\mathbf{v_3} = (4, 1, 4)$, $\mathbf{v_4} = (3, 1, 6)$, $\mathbf{v_5} = (1, 0, 1)$. Express each non-basis vector as a linear combination of basis vectors. Solution:

Let
$$A = \begin{bmatrix} \mathbf{v_1} & \mathbf{v_2} & \mathbf{v_3} & \mathbf{v_4} & \mathbf{v_5} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 4 & 3 & 1 \\ 2 & 3 & 1 & 1 & 0 \\ 6 & 2 & 4 & 6 & 1 \end{bmatrix}$$
. The pivot columns of A are a basis for its

column space.

The ref(A) it's given by:

[0	1	4	3	1]	D D	$\lceil 2 \rceil$	3	1	1	0]		[2	3	1	1	0	D . 5D	[2	3	1	1	0
2	3	1	1	0	$\xrightarrow{R_1 \leftrightarrow R_2}$	0	1	4	3	1	$\xrightarrow{R_3-3R_1}$	0	1	4	3	1	$\xrightarrow{R_3+7R_2}$	0	1	4	3	1
6	2	4	6	1		6	2	4	6	1	$\xrightarrow{R_3-3R_1}$	0	-7	1	3	1		0	0	29	24	8

The first 3 columns are the pivot columns. Then the corresponding three columns from A: $\mathbf{v_1} = (0, 2, 6), \ \mathbf{v_2} = (1, 3, 2), \ \text{and} \ \mathbf{v_3} = (4, 1, 4)$ are the elements of the basis for the subspace of \mathbb{R}^3 .

Now, $\mathbf{v_4}$ and $\mathbf{v_5}$ are the non-basis vectors, to express them as a linear combination of basis vector, we do back substitution form the $\mathbf{ref}(A)$:

For $\mathbf{v_4}$, we have 29z = 24, so $z = \frac{24}{29}$, y + 4x = 3, so $y = 3 - 4z = -\frac{9}{29}$, and 2x + 3y + x = 1, so $x = \frac{16}{29}$. Then $\mathbf{v_4} = \mathbf{x} \ \mathbf{v_1} + \mathbf{y}\mathbf{v_2} + \mathbf{z}\mathbf{v_3} = \frac{16}{29}\mathbf{v_1} - \frac{9}{29}\mathbf{v_2} + \frac{24}{29}\mathbf{v_3}$

For
$$\mathbf{v_5}$$
:
 $29z = 8$, so $z = \frac{8}{29}$, $y + 4x = 1$, so $y = 1 - 4z = -\frac{3}{29}$, and $2x + 3y + x = 0$, so $x = \frac{1}{58}$. Then
 $\mathbf{v_5} = \mathbf{xv_1} + \mathbf{yv_2} + \mathbf{zv_3} = \frac{1}{58}\mathbf{v_1} - \frac{3}{29}\mathbf{v_2} + \frac{8}{29}\mathbf{v_3}$

- 9. [10 points] (a) Determine if the vectors $2 x^2$, 1 + x, 1 + 2x form a basis for P_2 (the vector space of all polynomials of degree ≤ 2). **Solution**: Observe that (1 + 2x) - (1 + x) = x, 2(1 + x) - (1 + 2x) = 1, and $-(2 - x^2) + 4(1 + x) - 2(1 + 2x) = x^2$, so $1, x, x^2 \in span\{1 + x, 1 + 2x, 2 - x^2\}$. Since $\{1, x, x^2\}$ is a basis of P_2 and $\{1 + x, 1 + 2x, 2 - x^2\}$ is a set of three polynomials whose span contains the basis of P_2 , we may conclude that $\{1 + x, 1 + 2x, 2 - x^2\}$ forms a basis for P_2 .
 - (b) Determine if the vectors (1,3,2), (0,2,6), (4,1,4) form a basis for \mathbb{R}^3 .

Solution: Let $A = \begin{bmatrix} 1 & 3 & 2 \\ 0 & 2 & 6 \\ 4 & 1 & 4 \end{bmatrix}$. If we row reduce A to an upper triangular matrix with three

pivots, then the rows (and columns) of A will be linearly independent and will hence form a basis of \mathbb{R}^3 . Else, they will be dependent and so will not form a basis.

$$A = \begin{bmatrix} 1 & 3 & 2 \\ 0 & 2 & 6 \\ 4 & 1 & 4 \end{bmatrix} \xrightarrow{r_3 - 4r_1} \begin{bmatrix} 1 & 3 & 2 \\ 0 & 2 & 6 \\ 0 & -11 & -4 \end{bmatrix} \xrightarrow{r_3 + 11/2r_2} \begin{bmatrix} 1 & 3 & 2 \\ 0 & 2 & 6 \\ 0 & 0 & 29 \end{bmatrix}, \text{ which has three pivots, showing}$$

that our three vectors form a basis of \mathbb{R}^3 .

- 10. [10 points] Consider the plane P represented by the equation 2x + 3y 2z = 0.
 - (a) Find a basis for P.
 - (b) Find a basis for the intersection of P with yz-plane.

Solution

(a) Note that P is the null-space of matrix $A = \begin{bmatrix} 2 & 3 & -2 \end{bmatrix}$. Treating y and z as free variables and solving 2x + 3y - 2z = 0 for x yields,

$$v \in N(A) \quad \iff \quad v = \begin{bmatrix} -\frac{3}{2}y + z \\ y \\ z \end{bmatrix} = y \begin{bmatrix} -\frac{3}{2} \\ 1 \\ 0 \end{bmatrix} + z \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \quad y, z \in \mathbb{R}.$$

Therefore, a basis for P is $\left\{ \begin{bmatrix} -3/2 & 1 & 0 \end{bmatrix}^T, \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^T \right\}$.

(b) Intersection of P with yz-plane is defined by the following system of equations

In other words. we need to find null-space of matrix

$$B = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 3 & -2 \end{bmatrix}.$$

Note that,

$$u \in N(B) \iff u = t \begin{bmatrix} 0\\2\\3 \end{bmatrix}, \quad t \in \mathbb{R}.$$

Thus, a basis for the intersection of P with yz-plane is $\{\begin{bmatrix} 0 & 2 & 3 \end{bmatrix}^T\}$.