MATH 2418: Linear Algebra

Assignment 6 (sections 3.1 and 3.2)

Due: March 06, 2019

Term: Spring, 2019

[First Name]	[Last Name]	[Net ID]
Suggested problem	ns (do not turn in): Section 3.1: 1,	2, 5, 9, 10, 11, 12, 19, 20, 24, 26; Section
3.2: 1,2, 3, 4, 8, 12, 15,	, 18 , 31 . Note that solutions to the	hese suggested problems are available at
math.mit.edu/linearalgebr	ra	

1. [10 points] Find the nullspace of $A = \begin{bmatrix} 0 & 1 & 1 & 3 & 1 \\ 2 & 3 & 1 & 1 & 0 \\ 6 & 2 & 0 & 6 & 1 \end{bmatrix}$. What is rank of A? Also find the special solutions of $A\mathbf{x} = \mathbf{0}$.

2. [10 points] (a) Suppose matrix A reduces into echelon form U, prove that N(A) = N(U).

(b) Write a 2 × 2 matrix A such that $C(A) \neq C(U)$, where U is the echelon form of matrix A.

3. [10 points] (a) Determine if the vectors $\mathbf{v}_1 = (1, 2, -1), \ \mathbf{v}_2 = (3, 8, 0), \ \mathbf{v}_3 = (1, 1, 1) \text{ span } \mathbb{R}^3.$

(b) Determine if
$$\mathbf{b} = \begin{bmatrix} 3\\4\\2 \end{bmatrix}$$
 is in the column space of $A = \begin{bmatrix} 1 & 3 & 1\\2 & 8 & 1\\-1 & 0 & 1 \end{bmatrix}$. If yes, write \mathbf{b} as a linear combination of columns of A .

- 4. [10 points] Determine if the set consisting of
 - (a) (2 pts) all $(x, y, z) \in \mathbb{R}^3$ with x = -z is a subspace of \mathbb{R}^3
 - (b) (2 pts) all $(x, y, z) \in \mathbb{R}^3$ with x = -z 2 is a subspace of \mathbb{R}^3
 - (c) (3 pts) all vectors $\mathbf{x} \in \mathbb{R}^n$ satisfying $A\mathbf{x} = \mathbf{0}$ where A is an $n \times n$ real matrix, is a subspace of \mathbb{R}^n .
 - (d) (3 pts) $D_{2\times 2} = \left\{ \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} : a, b \in \mathbb{R} \right\}$ is a subspace of $M_{2\times 2}$, the vector space of all 2×2 real matrices.

5.	[10]	points	Determine	if	column	space	of	the	matrix	A	=
0.	110	pomos	Dettermine	11	corumn	space	OI	0110	mauna	1	_

vector
$$\mathbf{b} = \begin{bmatrix} 1 \\ 7 \\ 7 \\ 6 \end{bmatrix}$$
.

[2	2	2	1	1	1]	
0	0	0	9	9	8	contains the
1	1	1	6	7	1	contains the
2	8	9	9	0	2	

6. [10 points] Find reduced row echelon form of the matrix $A = \begin{bmatrix} 1 & 2 & -3 & 4 & -5 \\ 2 & 3 & -6 & 7 & 9 \\ -2 & 3 & 6 & -8 & 10 \\ 1 & 2 & -3 & 4 & 6 \end{bmatrix}$. Which variables are free?

7. [10 points] Given
$$A = \begin{bmatrix} 1 & -2 & 3 & -2 & -1 & 1 \\ 2 & -4 & 6 & -1 & 1 & 3 \\ 3 & -6 & 9 & -1 & 2 & 1 \\ -4 & 8 & -12 & 2 & -2 & -3 \end{bmatrix}$$

- (a) Find the nullspace N(A).
- (b) Find three special solutions of $A\mathbf{x} = \mathbf{0}$.
- (c) What is the rank of A?

8. [10 points] Is the vector
$$\begin{bmatrix} 3\\-1\\3 \end{bmatrix}$$
 a linear combination of $\begin{bmatrix} 1\\0\\1 \end{bmatrix}$, $\begin{bmatrix} 1\\1\\2 \end{bmatrix}$, $\begin{bmatrix} 1\\2\\8 \end{bmatrix}$? Explain your answer.

- 9. [10 points] Answer the followings(you do not need to show your work).
 - (a) Write 1×3 matrix A whose null space is the plane 4x 5y + 6z = 0
 - (b) Write down a matrix A such that N(A) is the set of all linear combinations of (2, 0, 1, 7) and (2, 0, 1, 8)
 - (c) Construct a matrix A whose column space contains (-3, 0, 3) and (1, 1, 1) and the nullspace contains (1, 2, 3).
 - (d) Construct a 2×2 matrix whose null space equals to its column space.

- 10. [10 points] True or False? Circle your answer and provide a justification for your choice.
 - (a) **T F**: Intersection of two planes in \mathbb{R}^3 is a subspace in \mathbb{R}^3 .
 - (b) **T F**: Set of all singular 2×2 matrices form a subspace in M_{22} .
 - (c) **T F**: An invertible matrix has no free variables.
 - (d) **T** F: Planes 2x + 3y z = 2018 and -4x 6y + 2z = 1 are parallel.

(e) **T F**: Matrices
$$\begin{bmatrix} 1 & 2 & 3 \\ -2 & -4 & -5 \\ -1 & -2 & -4 \end{bmatrix}$$
 and $\begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ have the same null space.