
Assignment #5 - Spring/2019

Assignment 5 (sections 2.5, 2.6, 2.7, 3.1)

Due: February 27, 2019 Term: Spring, 2019

[First Name] [Last Name] [Net ID]

Suggested problems (do not turn in):
Section 2.5: 1, 5, 6, 7, 10, 11, 12, 13, 18, 22, 25, 27, 29, 44.
Section 2.6: 1, 3, 4, 6, 8, 9, 10, 13, 14, 17, 22, 23.
Section 2.7: 1,2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 20, 21, 22, 23.
Section 3.1: 1, 2, 5, 9, 10, 11,12, 19, 20, 24, 26.
Note that solutions to these suggested problems are available at math.mit.edu/linearalgebra

1. [10 points] Use the Gauss-Jordan method to find the inverse of A =

 1 −1 0
1 0 −1
−6 2 3

 .

Solution:

[A | I] =

 1 −1 0 1 0 0
1 0 −1 0 1 0
−6 2 3 0 0 1

 R2−R1−−−−−→
R3+6R1

1 −1 0 1 0 0
0 1 −1 −1 1 0
0 −4 3 6 0 1

 R3+4R2−−−−−→

1 −1 0 1 0 0
0 1 −1 −1 1 0
0 0 −1 2 4 1


R2−R3−−−−→

1 −1 0 1 0 0
0 1 0 −3 −3 −1
0 0 −1 2 4 1

 R1+R2−−−−→

1 0 0 −2 −3 −1
0 1 0 −3 −3 −1
0 0 −1 2 4 1



(−1)R3−−−−→

1 0 0 −2 −3 −1
0 1 0 −3 −3 −1
0 0 1 −2 −4 −1

⇒ A−1 =

−2 −3 −1
−3 −3 −1
−2 −4 −1


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2. [10 points] Consider A =

[
1 3
2 8

]
.

(a) (2 points). Use elementary row operations to reduce A in to I.[
1 3
2 8

]
R2−2R1−−−−−→

E21

[
1 3
0 2

]
R1− 3

2
R2−−−−−→

E12

[
1 0
0 2

]
R2−→ 1

2
R2

−−−−−−→
S2

[
1 0
0 1

]
(b) (2 points). List all corresponding elementary matrices.

E21 =

[
1 0
−2 1

]

E12 =

[
1 −3

2
0 1

]
S2 =

[
1 0
0 1

2

]
(c) (3 points). Find A−1 as a product of elementary matrices.

S2E12E21A = I =⇒ A−1 = S2E12E21

A−1 =

[
1 0
0 1

2

] [
1 −3

2
0 1

] [
1 0
−2 1

]
=

[
4 −3

2
−1 1

2

]
(d) (3 points). Express A as a product of elementary matrices.

S2E12E21A = I =⇒ A = E−1
21 E

−1
12 S

−1
2

A =

[
1 0
2 1

] [
1 3

2
0 1

] [
1 0
0 2

]
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3. [10 points] Solve the following problems and justify your answers by showing your work.

(a) (2 points). Give example of 2× 2 non-zero matrices A,B,C such that AB = AC but B 6= C.

Solution:

A =

[
1 0
0 0

]
, B =

[
1 2
3 4

]
, C =

[
1 2
1 2

]
, then AB = AC =

[
1 2
0 0

]
(b) (2 points). Write 2× 2 invertible matrices A and B such that A + B is not invertible.

Solution:

A =

[
1 0
0 1

]
, B =

[
−1 0
0 −1

]
, then A + B =

[
0 0
0 0

]
which is not invertible.

(c) (2 points). Write 3× 3 singular matrices A and B such that A−B is non-singular.

Solution:

A =

1 0 0
0 1 0
0 0 0

 , B =

0 0 0
0 0 0
0 0 −1

, then A−B =

1 0 0
0 1 0
0 0 1

 which is not singular.

(d) (2 points). T or F? (Circle your answer) If A and B are invertible matrices of same size,
then AB and BA are both invertible.

Solution:

True.
Let A−1, B−1 be the inverse matrices of A,B, then (B−1A−1)AB = I and (A−1B−1)BA = I,
thus AB and BA are both invertible.

(e) (2 points). T or F? (Circle your answer) If A2 is not invertible, then A is not invertible.
Solution:

True.
The contrapositive is true since A is invertible, A−1A−1AA = I gives A2 is also invertible.
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4. [10 points] Find LDU decomposition of the matrix

A =

 1 −1 1
−1 3 −3
−2 −4 7


Solution:
Elimination process: 1 −1 1

−1 3 −3
−2 −4 7

 l21 = −1−−−−−→
l31 = −2

1 −1 1
0 2 −2
0 −6 9

 l32 = −3−−−−−→

1 −1 1
0 2 −2
0 0 3

 = U1

U1 = D · U =

1 0 0
0 2 0
0 0 3

 ·
1 −1 1

0 1 −1
0 0 1



(a) L =

 1 0 0
l21 1 0
l31 l32 1

 =

 1 0 0
−1 1 0
−2 −3 1



(b) D =

1 0 0
0 2 0
0 0 3



(c) U =

1 −1 1
0 1 −1
0 0 1


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5. [10 points] Solve the system Ax = b for

A =

 1 −1 −1
−2 3 1
3 −7 2

 , b =

 1
−1
1


using the following steps:

(a) (3 points). Compute factorization A = LU .
First, find upper triangular matrix U : 1 −1 −1

−2 3 1
3 −7 2

 R2 + 2R1, R3 − 3R1−−−−−−−−−−−−−→
R3 + 4R2, R3 + 4R2

=

1 −1 −1
0 1 −1
0 0 1

 = U

Multiplying LU produces A

A =

 1 −1 −1
−2 3 1
3 −7 2

 =

 1 0 0
−2 1 0
3 −4 1

1 −1 −1
0 1 −1
0 0 1

 = LU

(b) (3 points). Solve Ly = b by forward substitution. 1 0 0
−2 1 0
3 −4 1

y1y2
y3

 =

 1
−1
1

 −→

y1 = 1

−2y1 + y2 = −1

3y1 − 4y2 + y3 = 1

−→


y1 = 1

y2 = 1

y3 = 2

(c) (3 points). Solve Ux = y by backward substitution.1 −1 −1
0 1 −1
0 0 1

x1x2
x3]

 =

1
1
2

 −→

x1 − x2 − x3 = 1

x2 − x3 = 1

x3 = 2

−→


x1 = 6

x2 = 3

x3 = 2

(d) (1 point). What is the solution of Ax = b?
x1 = 6

x2 = 3

x3 = 2

from part (c) is the solution of both Ux = y and Ax = b.
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6. [10 points] Forward elimination changes Ax = b to the system Rx = d. If the process of elim-
ination subtracted 3 times row 1 from row 2 and then 5 times row 1 from row 3, what matrix
connects R and d to the original A and b? (That is, find E such that R = EA and Eb = d).
Solution:

Here, E21 =

 1 0 0
−3 1 0
0 0 1

 and E31 =

 1 0 0
0 1 0
−5 0 1



Hence, the matrix that connects R and d to the original A and b is E = E31E21 =

 1 0 0
−3 1 0
−5 0 1


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7. [10 points] Given matrix A =

 0 3 4
1 2 3
−3 −7 8

,

(a) (5 points). Show that A has no LU decomposition.
Solution:
The first pivot of the matrix A is 0 and hence A = LU decomposition fails as we require a
row interchange to create a nonzero pivot.

(b) (5 points). Find the decomposition PA = LU , where P is an elementary permutation matrix.
Solution:
P12 interchanges row R1 and R2

P12A =

0 1 0
1 0 0
0 0 1

 0 3 4
1 2 3
−3 −7 8

 =

 1 2 3
0 3 4
−3 −7 8


E31 adds 3 times R1 to R3

E31P12A =

1 0 0
0 1 0
3 0 1

 1 2 3
0 3 4
−3 −7 8

 =

1 2 3
0 3 4
0 −1 17


E32 adds 1

3 times R2 to R3

E32E31P12A =

1 0 0
0 1 0
0 1

3 1

1 2 3
0 3 4
0 −1 17

 =

1 2 3
0 3 4
0 0 47

3


Thus we have

PA = LU =

 1 0 0
0 1 0
−3 −1

3 1

1 2 3
0 3 4
0 0 47

3


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8. [10 points] Let S =

1 1 2
1 3 8
2 8 23

 be a symmetric matrix. Find the symmetric factorization of S

as S = LDLT.
Solution:
Since S is symmetric, we will find the multipliers and the pivots only. The upper triangular matrix
U is: 1 1 2

1 3 8
2 8 23

 R2 −R1−−−−−−→
R3 − 2R1

1 1 2
0 2 6
0 6 19

 R3 − 3R2−−−−−−−→

1 1 2
0 2 6
0 0 1

 = U

So, l21 = 1, l31 = 2 and l32 = 3. Also pivot1=1, pivot2=2 and pivot3=1. Then:

S = LDLT =

 1 0 0
l21 1 0
l31 l32 1

P1 0 0
0 P2 0
0 0 P3

 1 0 0
l21 1 0
l31 l32 1

T

=

1 0 0
1 1 0
2 3 1

1 0 0
0 2 0
0 0 1

1 1 2
0 1 3
0 0 1


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9. [10 points] (A) True or False. Circle your answer and justify it by showing your work (4 points).

(a) T F: Let A be any square matrix, then ATA, AAT, and A + AT are all symmetric.
Solution: True. To check for symmetry, take the transpose:
(ATA)T = AT (AT )T = ATA, where we used the fact that a transpose of a product is the
reversed product of the transpose and the fact that transposing twice does nothing to A.
(AAT )T = (AT )TAT = AAT

(A+AT )T = AT +(AT )T = AT +A = A+AT , where we have used the fact that matrices
commute under addition.
Thus, each of these matrices is symmetric as they equal their respective transposes.

(b) T F: If S is invertible, then ST is also invertible.
Solution: True. If we can come up with an inverse for ST , then this will show ST is
invertible. But notice that since S is invertible, SS−1 = S−1S = In (the n × n identity
matrix), and so we may transpose these two equations to give us: (SS−1)T = (In)T

and (S−1S)T = (In)T , but this means (S−1)TST = In and ST (S−1)T = In (since In is
symmetric, (In)T = In), and this demonstrates that the matrix (S−1)T is a left and right
(and hence the) inverse for ST , from which we may conclude that ST is invertible.

(c) T F: If a row exchange is required to reduce matrix A into upper triangular form U ,
then A can not be factored as A = LU .
Solution: True. If we obtained U by using a row exchange, then in constructing L we
must apply the inverse row exchange. However, this will result in an L that is not lower
triangular, and hence A is not of the form A = LU with L lower triangular. (However, as
mentioned in the textbook, any matrix can be factored as PA = LU for some appropriate
exchange matrix P applied to A prior to factorization)

(d) T F: Suppose A reduces to upper triangular U but U has a 0 in pivot position, then
A has no LDU factorization.
Solution: False. If we write A = LU , but U contains a 0 pivot, we will be able to place
any real number we want in the corresponding diagonal entry to obtain a valid LDU
factorization. However, this factorization will not in general be unique.
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(B) Solve the following problems showing your work (6 points).

(a) A symmetric matrix S reduces to

[
3 9
0 7

]
after performing row operations(except permu-

tations), write the LDU decomposition of S.
Solution: Since S is symmetric and a single row operation reduced it to the above, we
see that this operation must have turned a lower-left 9 into a 0. This corresponds to
three times the first row. Hence, to undo the process we add three times the first row to
obtain:

Answer: S =

[
3 9
9 16

]
(b) Let A and B be two symmetric matrices of same size. Which of the followings are sym-

metric? A + B, A−B, A2, AB, ABA, ABAB, ABABA.
Solution: In general, sums, differences, powers, and palendromes (reads the same for-
wards as backwards) of symmetric matrices are symmetric. Hence, A + B, A − B, A2,
ABA, and ABABA are symmetric when A and B are. However, (AB)T = BTAT = BA
and (ABAB)T = BTATBTAT = BABA, so AB and ABAB are not symmetric in gen-
eral.

(c) Write the inverse of the permutation matrix P =

0 1 0
0 0 1
1 0 0

.

Solution: P places row 1 in row 3, row 3 in row 2, and row 2 in row 1. Hence, we
need P−1 to place row 3 in row 1, row 2 in row 3, and row 1 in row 2. This matrix is:

Answer: P−1 =

0 0 1
1 0 0
0 1 0

.
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10. [10 points] Determine if the set consisting of

(a) all (x, y, z) ∈ R3 with x = y + z is a subspace of R3

(b) all (x, y, z) ∈ R3 with x + z = 2018 is a subspace of R3

(c) all 2× 2 symmetric matrices is a subspace of M22. (Here M22 is the vector space of all 2× 2
matrices.)

(d) all polynomials of degree exactly 3 is a subspace of P5. (Here P5 is the vector space of all
polynomials a5x

5 + a4x
4 + a3x

3 + a2x
2 + a1x + a0 of degree less than or equal to 5.)

Solution.

(a) Yes. a + b
a
b

+

c + d
c
d

 =

(a + c) + (b + d)
(a + c)
(b + d)

 ,

r

a + b
a
b

 =

ra + rb
ra
rb

 , for any r ∈ R.

(b) No, because the zero vector does not belong to the given set.

(c) Yes. [
a b
b c

]
+

[
d f
f g

]
=

[
a + d b + f
b + f c + g

]
is a symmetric matrix. Also, for any r ∈ R

r

[
a b
b c

]
=

[
ra rb
rb rc

]
is a symmetric matrix.

(d) No. All polynomials of degree exactly 3 is not a linear space. For instance, take q = x3 + x
and p = −x3, then q + p = x is a polynomial of degree 1.
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