MATH 2418: Linear Algebra

Assignment# 4

Due : 02/13, Wednesday

Term : Spring 2019

[First Name]	[Last Name]	[Net ID]
[Recommended Problems (do not turn in): Sec 2.3: 1, 3, 4, 7, 8, 9, 18, 21, 25, 27, 28. Sec 2.4: 3, 6, 7, 10, 11, 12, 14, 17, 21, 26, 32]		
1. Let $A = \begin{bmatrix} 1 & 5 & 2 \\ 1 & 0 & 2 \\ 3 & -2 & 2 \end{bmatrix}$	$\begin{bmatrix} 2 & 0 & 3 \\ 0 & 5 & 1 \\ 13 & -2 & 0 \end{bmatrix}, \text{ find the products } AB$	and BA .

2. For the matrices $A = \begin{bmatrix} 1 & 5 & 2 \\ 1 & 0 & 1 \\ 3 & -2 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 0 & 3 \\ 0 & 5 & 1 \\ 13 & -2 & 0 \end{bmatrix}$, and $C = \begin{bmatrix} 1 & 2 \\ 3 & 2 \\ -1 & 3 \end{bmatrix}$, verify the associative property of the matrix multiplication: (AB)C = A(BC).

- 3. Consider the 3 × 3 matrix $A = \begin{bmatrix} 1 & 5 & 2 \\ 1 & 0 & 1 \\ 3 & -2 & 4 \end{bmatrix}$
 - (a) Perform the 3 elementary row operations to reduce the matrix A into an upper triangular matrix U.

(b) Write down the elementary matrices E_{21}, E_{31}, E_{32} corresponding to the row operations in part (a).

(c) Write down a single matrix M such that MA = U is upper triangular.

4. Consider the matrix A as in previous question and the vector $\mathbf{b} = (1, 2, 1)$, solve the system $A\mathbf{x} = \mathbf{b}$.

5. Given elementary matrices $E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}$, $E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$, $E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -4 \\ 0 & 0 & 1 \end{bmatrix}$, and $E_4 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{bmatrix}$, find the following products

(a)
$$E_1 E_2 =$$

(b) $E_2 E_1 =$

(c) $E_3 E_4 =$

(d)
$$E_4 E_3 =$$

6. Let
$$B = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 0 \\ 4 & 6 & 0 \end{bmatrix}$$
.

(a) For any 4×3 matrix A, what is the column 3 of AB? Explain your answer.

(b) For any 3×2 matrix C, what is the row 2 of BC? Explain your answer.

(c) Is it possible to find a 3×3 matrix D such that $DB = I_3$, the 3×3 identity matrix? Explain.

(d) Is it possible to find a 3×3 matrix F such that $BF = I_3$, the 3×3 identity matrix? Explain.

7. Let
$$A = \begin{bmatrix} 1 & 2 & -5 \\ -1 & 0 & 1 \\ 3 & -2 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} -3 & 10 \\ 1 & -2 \\ 2 & 1 \end{bmatrix}$, without calculating AB , A^2 and BA , calculate the following:

(a) the entry $(AB)_{32}$ of AB

(b) the entry $(BA)_{23}$ of BA

(c) row 1 of AB

(d) column 3 of A^2 .

8. Compute the following products:

(a)
$$\begin{bmatrix} a & 4 & 1 \\ 0 & b & 5 \\ 0 & 0 & c \end{bmatrix} \begin{bmatrix} d & 1 & 2 \\ 0 & e & 2 \\ 0 & 0 & f \end{bmatrix} =$$

(b)
$$\begin{bmatrix} a & 0 & 0 \\ 2 & b & 0 \\ 3 & 3 & c \end{bmatrix} \begin{bmatrix} d & 0 & 0 \\ 1 & e & 0 \\ 2 & 1 & f \end{bmatrix} =$$

(c)
$$\begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix} \begin{bmatrix} 3 & 5 & -7 \\ 2 & 4 & 1 \\ -9 & 2 & 6 \end{bmatrix} =$$

(d)
$$\begin{bmatrix} 3 & 5 & -7 \\ 2 & 4 & 1 \\ -9 & 2 & 6 \end{bmatrix} \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix} =$$

(e)
$$\begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix} \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix} =$$

9. Let
$$A = \begin{bmatrix} 1 & 5 & 2 \\ 1 & 0 & 1 \\ 3 & -2 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 0 & 3 \\ 0 & 5 & 1 \\ 13 & -2 & 0 \end{bmatrix}$, find the product AB as a sum of columns of A times rows of B .

- 10. Answer the following(you DO NOT need to show your work).
 - (a) Write down two 2×2 non-zero matrices A and B such that AB = 0, the 2×2 zero matrix.

Answer:
$$A = \begin{bmatrix} \\ \\ \end{bmatrix}, B = \begin{bmatrix} \\ \\ \end{bmatrix}$$

(b) Given $A = \begin{bmatrix} 3 & 4 \\ 1 & 2 \end{bmatrix}$ write down the elementary matrices E_1 and E_2 such that $E_1 A = \begin{bmatrix} 3 & 4 \\ 7 & 10 \end{bmatrix} \text{ and } E_2 A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$

Answer: $E_1 = \begin{bmatrix} \\ \\ \end{bmatrix}, \quad E_2 = \begin{bmatrix} \\ \\ \end{bmatrix}$

(c) Given $A = \begin{bmatrix} 3 & 4 \\ 1 & 2 \end{bmatrix}$ write down the matrices D_1 and D_2 such that $D_1 A = \begin{bmatrix} 30 & 40 \\ -3 & -6 \end{bmatrix} \text{ and } A D_2 = \begin{bmatrix} 30 & -12 \\ 10 & -6 \end{bmatrix}$

Answer:
$$D_1 = \begin{bmatrix} \\ \\ \end{bmatrix}, \quad D_2 = \begin{bmatrix} \\ \\ \end{bmatrix}$$

(d) For any two 2 × 2 matrices A and B, which of the following are guaranteed to be equal to (A + B)²?
(a) A² + 2AB + B²
(b) A² + AB + BA + B²
(c) A² + B²
(d) A² - 2AB + B²

(e) For any two 2×2 matrices A and B, which of the following are guaranteed to be equal to (A+B)(A-B)?

(a)
$$A^2 + B^2$$
 (b) $A^2 - AB + BA - B^2$ (c) $A^2 - B^2$ (d) $A^2 - 2AB + B^2$