MATH 2418: Linear Algebra

Assignment# 2

Due : 01/30, Wednesday

 Term Spring 2019

[Last Name]	[First Name]	[Net ID]
Recommended Text	t Book Problems (do not turn in): [Sec 1.2: $#$	$\neq 1, 2, 3, 4, 7, 8, 12, 13, 17, 31$
Sec 1.3: 1, 2, 3, 5, 8, 9, 14		

1. Find all real values of 'm' so that angle between the vectors $\mathbf{u} = (m + 1, -m + 2, -3)$ and $\mathbf{v} = (-3, m + 1, -m + 2)$ is 120°.

- 2. Given vectors $\mathbf{u} = (1, 2, -3)$ and $\mathbf{v} = (-3, 1, 2)$ in \mathbb{R}^3 :
 - (a) Calculate the dot product: $\mathbf{u} \cdot \mathbf{v}$

(b) Find $\|\mathbf{u}\|$ and $\|\mathbf{v}\|$

(c) Find the angle θ between **u** and **v**

- (d) Find the unit vector $\hat{\mathbf{u}}$ in the direction of \mathbf{u} .
- (e) Write a vector \mathbf{a} of length 3 that is in the opposite direction of \mathbf{u} .

3. Let α, β, γ be the angles made by a vector (or a line) with positive x, y, and z-axis respectively. Then the numbers

$$l = \cos \alpha, \ m = \cos \beta, \ n = \cos \gamma$$

are called the **direction cosines** of the the vector (or the line).

(a) Find the direction cosines l, m, n of the vector $\mathbf{u} = (1, 2, 3)$

(b) Find the direction cosines l, m, n of the vector $\mathbf{u} = (a, b, c)$.

- 4. (a) Use the triangle inequality: $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$ to prove that

 - $\begin{array}{ll} (i) & \|\mathbf{u} \mathbf{v}\| \leq \|\mathbf{u}\| + \|\mathbf{v}\| \\ (ii) & \|\mathbf{u}\| \|\mathbf{v}\| \leq \|\mathbf{u} \mathbf{v}\| \end{array} \end{array}$

(b) If $\|\mathbf{u}\| = 19$ and $\|\mathbf{v}\| = 24$, what are the smallest and largest possible values of $\|\mathbf{u} - \mathbf{v}\|$ and $\|\mathbf{v} - \mathbf{u}\|$?

5. (a) Given any two nonzero vectors \mathbf{u} and \mathbf{v} , determine the scalar 'c' so that the vector $\mathbf{u} - c\mathbf{v}$ is perpendicular to \mathbf{v} .

(b) Let $\mathbf{v} = (4, 1, 3)$ and $\mathbf{u} = (1, 1, 1)$, use part (a) to find a non zero vector that is perpendicular to \mathbf{v} .

6. Given the 3 × 3 matrix
$$A = \begin{bmatrix} -3 & 2 & -3 \\ 2 & 3 & -8 \\ 3 & -2 & 3 \end{bmatrix}$$
 and the vector $\mathbf{x} = \begin{bmatrix} 3 \\ 8 \\ 1 \end{bmatrix}$ in \mathbb{R}^3 , calculate $A\mathbf{x}$

(a) as a linear combination of columns of ${\cal A}$

(b) with entries as dot products of rows of A and vector $\mathbf{x}.$

7. Let matrix
$$A = \begin{bmatrix} E1 & E2 & E3 \\ S1 & \begin{bmatrix} 70 & 80 & 90 \\ 90 & 90 & 80 \\ S3 & \begin{bmatrix} 50 & 90 & 90 \\ 90 & 90 & 80 \\ 50 & 70 & 100 \end{bmatrix}$$
 represent the Exam 1(E1), Exam 2(E2), and Exam 3(E3) scores

(out of 100 points each) of 3 students S_1 , S_2 , and S_3 . The vector $\mathbf{w} = \begin{bmatrix} 0.2 \\ 0.3 \\ 0.5 \end{bmatrix}$ represents the Exam 1, Exam 2, and Exam 3 weights (20%, 30%, and 50% respectively). Calculate and explain the meaning of $A\mathbf{w}$.

8. Given
$$A = \begin{bmatrix} -1 & 3 & 0 \\ 2 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$
, $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$

(a) Write the linear system corresponding to $A\mathbf{x} = \mathbf{b}$.

(b) Solve the linear system.

(c) Write your answer in the form of $\mathbf{x} = A^{-1}\mathbf{b}$. What is A^{-1} ?

9. (a) Prove that the vectors $\mathbf{u} = (-1, 2, 0)$, $\mathbf{v} = (3, 1, 1)$, $\mathbf{w} = (0, 1, 1)$ are linearly independent.

(b) Prove that the vectors $\mathbf{u} = (1, 2, 1)$, $\mathbf{v} = (3, 1, 1)$, $\mathbf{w} = (5, 5, 3)$ are linearly dependent.

- 10. True or False. Circle your answer.
 - (a) **T** F: If the set $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly independent, then the set $\{a\mathbf{u}, b\mathbf{v}, c\mathbf{w}\}$ is also linearly independent, where a, b, c are any non zero real numbers.
 - (b) **T F**: Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be three non zero vectors in \mathbb{R}^2 such that \mathbf{u} is perpendicular to \mathbf{v} and \mathbf{w} both, then \mathbf{v} and \mathbf{w} must be parallel to each other.
 - (c) **T F**: Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be three non zero vectors in \mathbb{R}^3 such that \mathbf{u} is perpendicular to \mathbf{v} and \mathbf{w} both, then \mathbf{v} and \mathbf{w} must be parallel to each other.
 - (d) **T F**: For fixed length vectors, **u** and **v**, the value of $\mathbf{u} \cdot \mathbf{v}$ is minimum when **u** and **v** are perpendicular to each other.
 - (e) **T F**: For fixed length vectors **u** and **v**, the value of $\mathbf{u} \cdot \mathbf{v}$ is maximum when **u** and **v** have the same direction.