MATH 2418: Linear Algebra

Assignment# 1

Due: Wednesday, 01/23/2019 Term: Spring 2019

[Last Name] [First Name] [Net ID] [Lab Section] Recommended Text Book Problems (do not turn in): [Sec 1.1: #1, 2, 3, 5, 6, 9, 10, 11, 12, 13, 14, 18, 19, 27, 28]

1. Let $\mathbf{u} = (2, 3, -1)$, $\mathbf{w} = (1, -1, 1)$, and $3\mathbf{u} - 2\mathbf{v} + 4\mathbf{w} = (-1, 2, 3)$. Find (a) \mathbf{v} (b) $-2\mathbf{u} + 3\mathbf{v} - 5\mathbf{w}$.

Solution:

(a) Given

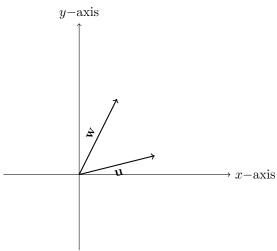
$$3\mathbf{u} - 2\mathbf{v} + 4\mathbf{w} = (-1, 2, 3) \Rightarrow \mathbf{v} = \frac{1}{2}[3\mathbf{u} + 4\mathbf{w} - (-1, 2, 3)]$$

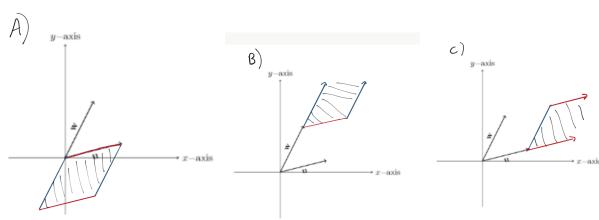
= $\frac{1}{2}[3(2, 3, -1) + 4(1, -1, 1) - (-1, 2, 3)]$
= $\frac{1}{2}(11, 3, -2)$

(b)
$$-2\mathbf{u} + 4\mathbf{v} - 5\mathbf{w} = (-4, -6, 2) + (22, 6, -4) - (5, -5, 5) = (13, 5, -7)$$

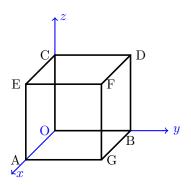
- 2. Given vectors ${\bf v}$ and ${\bf w}$ in diagram below, shade in all linear combinations $c{\bf u}+d{\bf w}$ for
 - (a) $0 \le c \le 1$ and $-1 \le d \le 0$
 - (b) $0 \le c \le 1$ and $1 \le d$
 - (c) $0 \le d \le 1$ and $c \ge 1$.

(You can use different shading styles in same picture for all three parts or can graph them separately in three different pictures)





3. Let $\mathbf{0} = (0,0,0)$, $\mathbf{i} = (1,0,0)$, $\mathbf{j} = (0,1,0)$, $\mathbf{k} = (0,0,1)$ be vectors in \mathbb{R}^3 . Let P,Q,R,S,T,U be the center of faces OAGB,OBDC,OAEC,GBDF,FECD,AGFE respectively of the unit cube in the figure below. Write down the following vectors as a linear combination of $\mathbf{i},\mathbf{j},\mathbf{k}$.



(a) $\overrightarrow{OP} =$

Solution: $\overrightarrow{OP} = \frac{1}{2}\overrightarrow{OG} = \frac{1}{2}(\overrightarrow{OA} + \overrightarrow{OB}) = \frac{1}{2}((1,0,0) + (0,1,0)) = \frac{1}{2}\mathbf{i} + \frac{1}{2}\mathbf{j}.$

(b) $\overrightarrow{OQ} =$

 $\textbf{Solution:} \quad \overrightarrow{OQ} = \tfrac{1}{2} \overrightarrow{OD} = \tfrac{1}{2} (\overrightarrow{OB} + \overrightarrow{OC}) = \tfrac{1}{2} ((0,1,0) + (0,0,1)) = \tfrac{1}{2} \mathbf{j} + \tfrac{1}{2} \mathbf{k}.$

(c) $\overrightarrow{OR} =$

 $\textbf{Solution:} \quad \overrightarrow{OR} = \tfrac{1}{2}\overrightarrow{OE} = \tfrac{1}{2}(\overrightarrow{OA} + \overrightarrow{OC}) = \tfrac{1}{2}((1,0,0) + (0,0,1)) = \tfrac{1}{2}\mathbf{i} + \tfrac{1}{2}\mathbf{k}.$

(d) $\overrightarrow{OS} =$

Solution: $\overrightarrow{OS} = \overrightarrow{OB} + \frac{1}{2}\overrightarrow{BF} = \overrightarrow{OB} + \frac{1}{2}(\overrightarrow{BG} + \overrightarrow{BD}) = (0, 1, 0) + \frac{1}{2}((1, 0, 0) + (0, 0, 1)) = \frac{1}{2}\mathbf{i} + \mathbf{j} + \frac{1}{2}\mathbf{k}.$

(e) $\overrightarrow{OT} =$

Solution: $\overrightarrow{OT} = \overrightarrow{OC} + \frac{1}{2}\overrightarrow{CF} = \overrightarrow{OC} + \frac{1}{2}(\overrightarrow{CD} + \overrightarrow{CE}) = (0,0,1) + \frac{1}{2}((0,1,0) + (1,0,0)) = \frac{1}{2}\mathbf{i} + \frac{1}{2}\mathbf{j} + \mathbf{k}.$

(f) $\overrightarrow{OU} =$

4. Consider the unit cube as in the previous question. The face OAGB can be described as a linear combination of $\mathbf{i}, \mathbf{j}, \mathbf{k}$ as

$$OAGB = \{c\mathbf{i} + d\mathbf{j} : 0 \le c \le 1, 0 \le d \le 1\}.$$

Geometrically describe the remaining five faces of the unit cube as a linear combination of $\mathbf{i}, \mathbf{j}, \mathbf{k}$.

(a) OBDC =

Solution: $OBDC = \{c\mathbf{j} + d\mathbf{k} : 0 \le c \le 1, 0 \le d \le 1\}.$

(b) OAEC =

Solution: $OAEC = \{c\mathbf{i} + d\mathbf{k} : 0 \le c \le 1, 0 \le d \le 1\}.$

(c) GBDF =

Solution: $GBDF = \{c\mathbf{i} + \mathbf{j} + d\mathbf{k} : 0 \le c \le 1, 0 \le d \le 1\}.$

(d) FECD =

Solution: $FECD = \{c\mathbf{i} + d\mathbf{j} + \mathbf{k} : 0 \le c \le 1, 0 \le d \le 1\}.$

(e) AGFE =

Solution: $AGFE = \{ \mathbf{i} + c\mathbf{j} + d\mathbf{k} : 0 \le c \le 1, 0 \le d \le 1 \}.$

5. Given three vectors $\mathbf{u}=(1,1), \mathbf{v}=(1,-1),$ and $\mathbf{b}=(2,4)$ in \mathbb{R}^2 . Suppose \mathbf{b} can be written as linear combination of \mathbf{u} and \mathbf{v} as

$$c\mathbf{u} + d\mathbf{v} = \mathbf{b}$$

(a) Write two equations in c and d corresponding to the vector equation $c\mathbf{u} + d\mathbf{v} = \mathbf{b}$.

Solution:

$$c \begin{bmatrix} 1 \\ 1 \end{bmatrix} + d \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix},$$
$$\begin{cases} c + d = 2 \\ c - d = 4 \end{cases}$$

(b) Solve the equations in part (a) for c and d.

Solution:

$$\begin{cases} c = 3 \\ d = -1 \end{cases}$$

(c) Express \mathbf{b} as a linear combination of \mathbf{u} and \mathbf{v} .

Solution:

$$\mathbf{b} = 3\mathbf{u} - \mathbf{v}, \quad or \quad \mathbf{b} = 3\begin{bmatrix} 1\\1 \end{bmatrix} - \begin{bmatrix} 1\\-1 \end{bmatrix}$$

6. Let $\mathbf{u} = (1,1), \ \mathbf{v} = (1,-1),$ be 2 given vectors in \mathbb{R}^2 . Let $\mathbf{b} = (p,q)$ be any vector in \mathbb{R}^2 .

(a) Write two equations in c and d corresponding to the vector equation $c\mathbf{u} + d\mathbf{v} = \mathbf{b}$.

Solution:

$$c\mathbf{u} + d\mathbf{v} = \mathbf{b}$$

$$\implies c(1,1) + d(1,-1) = (p,q)$$

$$\implies (c+d,c-d) = (p,q)$$

$$\implies c+d=p \text{ and } c-d=q$$

The 2 equations are
$$\begin{cases} c+d=p & (i) \\ c-d=q & (ii) \end{cases}$$

(b) Solve the equations in part (a) for c and d.

Solution: Adding (i) and (ii),
$$2c = p + q \Rightarrow c = \frac{p+q}{2}$$

Subtracting (ii) from (i), $2d = p - q \Rightarrow d = \frac{p-q}{2}$
Therefore $c = \frac{p+q}{2}$ and $d = \frac{p-q}{2}$

(c) Express \mathbf{b} as a linear combination of \mathbf{u} and \mathbf{v} (if possible).

Solution:
$$\mathbf{b} = \left(\frac{p+q}{2}\right)\mathbf{u} + \left(\frac{p-q}{2}\right)\mathbf{v}$$

- 7. Let $\mathbf{u} + \mathbf{v} = (3, 4)$ and $\mathbf{u} \mathbf{v} = (1, -2)$.
 - (a) Find \mathbf{u} and \mathbf{v} Solution

$$\mathbf{u} = \frac{1}{2}[(\mathbf{u} + \mathbf{v}) + (\mathbf{u} - \mathbf{v})]$$

$$= \frac{1}{2}[(3, 4) + (1, -2)] = \frac{1}{2}(4, 2)$$

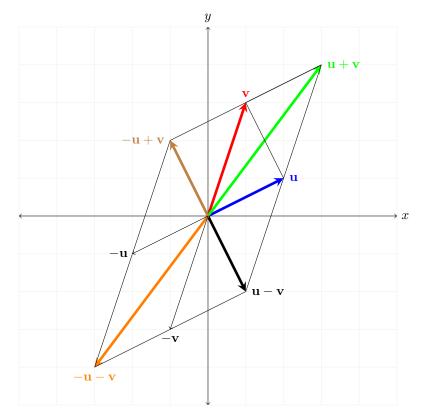
$$= (2, 1) \text{ and}$$

$$\mathbf{v} = \frac{1}{2}[(\mathbf{u} + \mathbf{v}) - (\mathbf{u} - \mathbf{v})]$$

$$= \frac{1}{2}[(3, 4) - (1, -2)] = \frac{1}{2}(2, 6)$$

$$= (1, 3)$$

(b) Use the vectors \mathbf{u} , \mathbf{v} , $-\mathbf{u}$, $-\mathbf{v}$, \mathbf{u} + \mathbf{v} , $(\mathbf{u} - \mathbf{v})$, $(-\mathbf{u} + \mathbf{v})$, $(-\mathbf{u} - \mathbf{v})$ to label the following figure. Solution



- 8. Consider a clock of radius 2 unit.
 - (a) Write down the 12 vectors in the component form that go from the center of the clock to the hours

$$1:00,2:00,\cdots,12:00.$$

Solution:

Let r = 2 and :

 \mathbf{v}_1 denote to 1:00 with angle $\theta = \frac{\pi}{3}$ \mathbf{v}_2 denote to 2:00 with angle $\theta = \frac{\pi}{6}$

 \mathbf{v}_3 denote to 3:00 with angle $\theta = 0$

 \mathbf{v}_4 denote to 4:00 with angle $\theta = \frac{11\pi}{c}$

 \mathbf{v}_5 denote to 5:00 with angle $\theta = \frac{10\pi}{6}$

 \mathbf{v}_6 denote to 6:00 with angle $\theta = \frac{3\pi}{2}$

 \mathbf{v}_7 denote to 7:00 with angle $\theta = \frac{8\pi}{6}$

 \mathbf{v}_8 denote to 8:00 with angle $\theta = \frac{7\pi}{6}$

 \mathbf{v}_9 denote to 9:00 with angle $\theta = \pi$

 \mathbf{v}_9 denote to 9:00 with angle $\theta = \pi$ \mathbf{v}_{10} denote to 10:00 with angle $\theta = \frac{5\pi}{6}$ \mathbf{v}_{11} denote to 11:00 with angle $\theta = \frac{2\pi}{3}$

 \mathbf{v}_{12} denote to 12:00 with angle $\theta = \frac{\pi}{2}$ Then we can write those vectors in polar coordinates form $\mathbf{v} = (r\cos\theta, r\sin\theta)$ as follows:

$$\mathbf{v}_{1} = (2\cos\frac{\pi}{3}, 2\sin\frac{\pi}{3}) = (1, \sqrt{3}) \qquad \mathbf{v}_{2} = (2\cos\frac{\pi}{6}, 2\sin\frac{\pi}{6}) = (\sqrt{3}, 1)$$

$$\mathbf{v}_{3} = (2\cos 0, 2\sin 0) = (2, 0) \qquad \mathbf{v}_{4} = (2\cos\frac{11\pi}{6}, 2\sin\frac{11\pi}{6}) = (\sqrt{3}, -1)$$

$$\mathbf{v}_{5} = (2\cos\frac{10\pi}{6}, 2\sin\frac{10\pi}{6}) = (1, -\sqrt{3}) \qquad \mathbf{v}_{6} = (2\cos\frac{0\pi}{6}, 2\sin\frac{9\pi}{6}) = (0, -2)$$

$$\mathbf{v}_{7} = (2\cos\frac{8\pi}{6}, 2\sin\frac{8\pi}{6}) = (-1, -\sqrt{3}) \qquad \mathbf{v}_{8} = (2\cos\frac{7\pi}{6}, 2\sin\frac{7\pi}{6}) = (-\sqrt{3}, -1)$$

$$\mathbf{v}_{9} = (2\cos\pi, 2\sin\pi) = (-2, 0) \qquad \mathbf{v}_{10} = (2\cos\frac{5\pi}{6}, 2\sin\frac{5\pi}{6}) = (-\sqrt{3}, 1)$$

$$\mathbf{v}_{11} = (2\cos\frac{4\pi}{6}, 2\sin\frac{4\pi}{6}) = (-1, \sqrt{3}) \qquad \mathbf{v}_{12} = (2\cos\frac{\pi}{2}, 2\sin\frac{\pi}{2}) = (0, 2)$$

(b) What is the sum of those 12 vectors? Explain.

Solution:

The sum of those 12 vectors is zero vector, because 6 of them are the opposite of the others, for example \mathbf{v}_1 and \mathbf{v}_7 they have the same length but in the opposite direction so $\mathbf{v}_1 + \mathbf{v}_7 = 0$, and so on. Also it's clear if we add the components of the 12 vectors will will be the **zero vector** $\mathbf{0} = (0,0)$.

- 9. Consider the same clock as in previous question.
 - (a) Write down the 12 vectors in component form that go from 3:00 on the right to the hours

$$1:00,2:00,\cdots,12:00.$$

Solution: If the vectors start form 3:00 on the right instead of the center of the clock, the first components will be less by 2 and the second components will remain same (because shifting origin to the 2 unit right does not change the y-coordinate but x-coordinate will be less by 2. So from Q.N.#8, the 12 vectors will be follows:

$$\mathbf{v}_1 = (-1, \sqrt{3}) \qquad \mathbf{v}_2 = (\sqrt{3} - 2, 1)$$

$$\mathbf{v}_3 = (0, 0) \qquad \mathbf{v}_4 = (\sqrt{3} - 2, -1)$$

$$\mathbf{v}_5 = (-1, -\sqrt{3}) \qquad \mathbf{v}_6 = (-2, -2)$$

$$\mathbf{v}_7 = (-3, -\sqrt{3}) \qquad \mathbf{v}_8 = (-\sqrt{3} - 2, -1)$$

$$\mathbf{v}_9 = (-4, 0) \qquad \mathbf{v}_{10} = (-\sqrt{3} - 2, 1)$$

$$\mathbf{v}_{11} = (-3, \sqrt{3}) \qquad \mathbf{v}_{12} = (-2, 2)$$

(b) What is the sum of the 12 vectors? Explain

Solution: Since the second components have not changed from Q.N.#8 and the first component have become less by 2 for all 12 vectors, the sum has to be (-24,0).

10. For each set of vectors in \mathbb{R}^3 given below. Describe geometrically the set of all linear combinations (a line or plane or all of \mathbb{R}^3).

(a)
$$\{(0,1,-3),(0,-2,6),(4,2,-6)\}$$

Solution: Denote $\mathbf{u} = (0, 1, -3)$, $\mathbf{v} = (0, -2, 6)$, $\mathbf{w} = (4, 2, -6)$. Note that $\mathbf{v} = -2\mathbf{u}$ and \mathbf{u}, \mathbf{w} are linearly independent (not parallel to each other), thus the set of all linear combination of $\mathbf{u}, \mathbf{v}, \mathbf{w}$ is two-dimensional, *i.e.* a plane.

(b) $\{(2,1,0),(1,1,1),(4,3,2)\}$

Solution: Denote $\mathbf{u} = (2, 1, 0)$, $\mathbf{v} = (1, 1, 1)$, $\mathbf{w} = (4, 3, 2)$. It is easy to see that $\mathbf{w} = \mathbf{u} + 2\mathbf{v}$ and \mathbf{u}, \mathbf{v} are linearly independent (not parallel to each other), hence the set of all linear combination of $\mathbf{u}, \mathbf{v}, \mathbf{w}$ is two-dimensional, *i.e.* a plane.

(c) $\{(2,-3,1), (-4,6,-2), (-10,15,-5)\}$

Solution: Denote $\mathbf{u} = (2, -3, 1)$, $\mathbf{v} = (-4, 6, -2)$, $\mathbf{w} = (-10, 15, -5)$. Note that $\mathbf{v} = -2\mathbf{u}$ and $\mathbf{w} = -5\mathbf{u}$, thus the set of all linear combination of $\mathbf{u}, \mathbf{v}, \mathbf{w}$ is one-dimensional, *i.e.* a line.