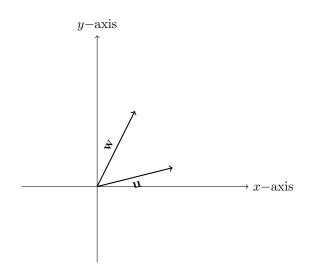
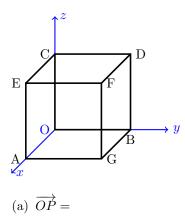
MATH 2418: Linear Algebra

Assignment# 1

Due : Wednesday, 01/23/2019


Term _:Spring 2019

[Last Name]	[First Name]	[Net ID]	[Lab Section]
Recommended Tex	xt Book Problems (do not turn in): [S	Sec 1.1: $\#$ 1, 2, 3, 5, 6, 9, 10,	11, 12, 13, 14,
18, 19, 27, 28]			


1. Let $\mathbf{u} = (2, 3, -1)$, $\mathbf{w} = (1, -1, 1)$, and $3\mathbf{u} - 2\mathbf{v} + 4\mathbf{w} = (-1, 2, 3)$. Find (a) \mathbf{v} (b) $-2\mathbf{u} + 3\mathbf{v} - 5\mathbf{w}$.

- 2. Given vectors **v** and **w** in diagram below, shade in all linear combinations $c\mathbf{u} + d\mathbf{w}$ for
 - (a) $0 \le c \le 1$ and $-1 \le d \le 0$
 - (b) $0 \le c \le 1$ and $1 \le d$
 - (c) $0 \le d \le 1$ and $c \ge 1$.

(You can use different shading styles in same picture for all three parts or can graph them separately in three different pictures)

3. Let $\mathbf{0} = (0,0,0)$, $\mathbf{i} = (1,0,0)$, $\mathbf{j} = (0,1,0)$, $\mathbf{k} = (0,0,1)$ be vectors in \mathbb{R}^3 . Let P, Q, R, S, T, U be the center of faces OAGB, OBDC, OAEC, GBDF, FECD, AGFE respectively of the unit cube in the figure below. Write down the following vectors as a linear combination of $\mathbf{i}, \mathbf{j}, \mathbf{k}$.

- (b) $\overrightarrow{OQ} =$
- (c) $\overrightarrow{OR} =$
- (d) $\overrightarrow{OS} =$
- (e) $\overrightarrow{OT} =$
- (f) $\overrightarrow{OU} =$

4. Consider the unit cube as in the previous question. The face OAGB can be described as a linear combination of $\mathbf{i}, \mathbf{j}, \mathbf{k}$ as

$$OAGB = \{c\mathbf{i} + d\mathbf{j} : 0 \le c \le 1, 0 \le d \le 1\}.$$

Geometrically describe the remaining five faces of the unit cube as a linear combination of $\mathbf{i}, \mathbf{j}, \mathbf{k}$.

(a) OBDC =

(b) OAEC =

(c) GBDF =

(d) FECD =

(e) AGFE =

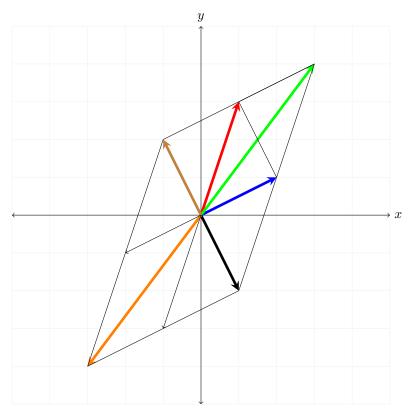
5. Given three vectors $\mathbf{u} = (1, 1), \mathbf{v} = (1, -1)$, and $\mathbf{b} = (2, 4)$ in \mathbb{R}^2 . Suppose \mathbf{b} can be written as linear combination of \mathbf{u} and \mathbf{v} as

$$c\mathbf{u} + d\mathbf{v} = \mathbf{b}$$

(a) Write two equations in c and d corresponding to the vector equation $c\mathbf{u} + d\mathbf{v} = \mathbf{b}$.

(b) Solve the equations in part (a) for c and d.

(c) Express \mathbf{b} as a linear combination of \mathbf{u} and \mathbf{v} .


6. Let u = (1,1), v = (1,-1), be 2 given vectors in ℝ². Let b = (p,q) be any vector in ℝ².
(a) Write two equations in c and d corresponding to the vector equation cu + dv = b.

(b) Solve the equations in part (a) for c and d.

(c) Express \mathbf{b} as a linear combination of \mathbf{u} and \mathbf{v} (if possible).

- 7. Let $\mathbf{u} + \mathbf{v} = (3, 4)$ and $\mathbf{u} \mathbf{v} = (1, -2)$.
 - (a) Find ${\bf u}$ and ${\bf v}$

(b) Use the vectors $\mathbf{u}, \mathbf{v}, -\mathbf{u}, -\mathbf{v}, \mathbf{u} + \mathbf{v}, (\mathbf{u} - \mathbf{v}), (-\mathbf{u} + \mathbf{v}), (-\mathbf{u} - \mathbf{v})$ to label the following figure.

- 8. Consider a clock of radius 2 unit.
 - (a) Write down the 12 vectors in the component form that go from the center of the clock to the hours

 $1:00, 2:00, \cdots, 12:00.$

(b) What is the sum of those 12 vectors? Explain.

- 9. Consider the same clock as in previous question.
 - (a) Write down the 12 vectors in component form that go from 3:00 on the right to the hours

 $1:00, 2:00, \cdots, 12:00.$

(b) What is the sum of the 12 vectors? Explain

10. For each set of vectors in \mathbb{R}^3 given below. Describe geometrically the set of all linear combinations (a line or plane or all of \mathbb{R}^3).

(a) $\{(0, 1, -3), (0, -2, 6), (4, 2, -6)\}$

(b) $\{(2,1,0), (1,1,1), (4,3,2)\}$

(c) $\{(2, -3, 1), (-4, 6, -2), (-10, 15, -5)\}$