
An Algorithm for Contraction
of an Ore Ideal

Yi Zhang

Institute for Algebra
Johannes Kepler University Linz, Austria



Krattenthaler’s problem

Conjecture: Let (an)≥0 and (bn)≥0 be two P-recursive sequences
over the integers with leading coefficient n. Show that (n!anbn)≥0
is also a P-recursive sequence over the integers with leading
coefficient n.
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Example for Krattenthaler’s problem
Consider the following P-recursive sequences:

nan = (31n − 6)an−1 + (49n − 110)an−2 + (9n − 225)an−3

nbn = (4n + 13)bn−1 + (69n − 122)bn−2 + (36n − 67)bn−3

The minimal recurrence for cn := n!anbn is:

αncn = (· · · )cn−1 + . . .+ (· · · )cn−9

where α ∈ Z[n], degn(α) = 20.

Known algorithms find:

βncn = (· · · )cn−1 + . . .+ (· · · )cn−10

where β is a 853-digit integer.

Our algorithm finds:

1ncn = (· · · )cn−1 + . . .+ (· · · )cn−14
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Ore algebra (shift case)

Consider the recurrence equation:

f (n + 1)− (n + 1)f (n) = 0.

Using Z[n][∂] with ∂ • f (n) := f (n + 1), n • f (n) := n · f (n)

[∂ − (n + 1)] • f = 0.

L in Z[n][∂] is called a recurrence operator of f if L • f = 0.

Assume L = l0 + . . .+ lr∂
r , we call deg∂(L) := r the order of

L, lc∂(L) := lr the leading coefficient of L.

T is called a left multiple of L if T = PL, where P ∈ Q(n)[∂].
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Motivation

Example 1 Consider the recurrence operator of u(n):

L = (1 + 16n)2∂2 − (224 + 512n)∂ − (1 + n)(17 + 16n)2

Question: Assume u(0), u(1) ∈ Z, whether or not u(n) ∈ Z, for
each n ∈ N?

(Abramov, Bakatou, van Hoeij) Find a left multiple of L:

T := (. . .)L = 64∂3 + lower terms ∈ Z[n][∂]

Our algorithm finds another left multiple of L:

T̄ := 1∂3 + lower terms ∈ Z[n][∂]

Answer: Yes, u(n) is an integer sequence.
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Desingularization

Given L ∈ Z[n][∂], deg∂(L) = r .

Assume p | lc∂(L). T ∈ Z[n][∂] is a p-removed operator for L
of order k if

T is a left multiple of L, deg∂(T ) = k .
lc∂(T ) = ag(n), where a ∈ Z, g is primitive, such that
g | 1

p lc∂(L).

If deg(g) is minimal (...), we call T is weakly desingularized
operator (of order k).

If deg(g) and a are minimal (...), we call T is strongly
desingularized operator (of order k).
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Desingularization

Example 1 (continued) Consider the recurrence operator:

L = (1 + 16n)2∂2 − (224 + 512n)∂ − (1 + n)(17 + 16n)2

(Abramov, Bakatou, van Hoeij) Find a left multiple of L:

T := (. . .)L = 64∂3 + lower terms ∈ Z[n][∂]

Our algorithm finds another left multiple of L:

T̄ := 1∂3 + lower terms ∈ Z[n][∂]

T and T̄ are weakly and strongly desingularized operator (of order
3), respectively.
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Contraction

Given L ∈ Z[n][∂], deg∂(L) = r .

Consider 〈L〉 := Q(n)[∂]L, contraction of 〈L〉 to Z[n][∂] is

Cont(L) := 〈L〉 ∩ Z[n][∂]

Cont(L) is a finitely generated left ideal of Z[n][∂].

Every desingularized operator of L belongs to Cont(L).

Cont(L) contains Z[n][∂]L, but in general more operators.

Goal: compute a Z[n][∂]-basis of Cont(L).

Example 1 (continued) Consider the recurrence operator:

L = (1 + 16n)2∂2 − (224 + 512n)∂ − (1 + n)(17 + 16n)2

Cont(L) is generated by {L, T̄}.
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Removability of polynomial factors

Given L ∈ Z[n][∂], deg∂(L) = r .

(Chen, Jaroschek, Kauers, Singer) Assume p | lc∂(L), p is
primitive.

If p is removable, then one can compute an upper bound k,
such that there exists a p-removed operator T of order k .

Using Euclidean algorithm, one can compute an upper bound
for a weakly desingularized operator.
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Removability of constant factors

Given L ∈ Z[n][∂], deg∂(L) = r . Write it as

L = a0f0(n) + a1f1(n)∂ + · · ·+ amfm(n)∂m

where ai ∈ Z, fi (n) is primitive.
If gcd(a0, . . . , am) = 1, then we call L contant-primitive.

Lemma (Gauss’s Lemma for Ore Algebra) Suppose L,P ∈ Z[n][∂].
If L and P are constant-primitive, then PL is also
constant-primitive.

Theorem 1 Suppose L ∈ Z[n][∂] is constant-primitive, a ∈ Z,
a | lc∂(L). Then a is non-removable.
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Removability of constant factors

Example 2 Consider

L = 3(n + 2)(3n + 4)(3n + 5)(7n + 3)
(
25n2 + 21n + 2

)
∂2 +

lower terms ∈ Z[n][∂]

which is a constant-primitive recurrence operator for a
(4n
n

)
+ b3n,

where a, b ∈ Z. From Theorem 1, 3 is non-removable.
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Desingularization at a fixed order

Given L ∈ Z[n][∂], deg∂(L) = r .

Question (A): Given a fixed order k , how to find a strongly
desingularized operator T of order k?

We define

Mk := {T | T ∈ Cont(L), deg∂(T ) ≤ k}
Ik := {lc∂(T )(n − k) | T ∈ Cont(L), deg∂(T ) = k} ∪ {0}

If T is a strongly desingularized operator of order k , then
lc∂(T )(n − k) ∈ Ik . So, we consider

Question (B): Given a fixed order k , how to find a basis b of Ik
and its corresponding operator B in Mk?
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Syzygy

Let V := {v1, . . . , vm} be a finite set of Z[n]r .

We call the set {(a1, . . . , am) ∈ Z[n]m |
∑m

i=1 ai · vi = 0} the
module of syzygies of V .

Given L ∈ Z[n][∂], deg∂(L) = r .

Theorem 2 For a fixed order k , one can compute a finite set
V ⊆ Z[n]r such that Mk is isomorphic to the module of syzygies of
V as Z[n]-module.

For T =
∑k

i=0 ci∂
i ∈ Z[n][∂], we use [∂ i ]T := ci to refer the

coefficient of ∂i in T .

Proposition If B := {B1, . . . ,Bt} is a basis of Mk , then
Ik = 〈([∂k ]B1)(n − k), . . . , ([∂k ]Bt)(n − k)〉.
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An algorithm for desingularization

Algorithm 1 Input: L ∈ Z[n][∂], deg∂(L) = r and k ≥ r . Output: a
basis b of Ik , its corresponding operators B in Mk .

1. Compute rrem(∂j , L) :=
∑r

i=1 uij∂
i−1, 0 ≤ j ≤ k . Let

U := (uij) ∈ Q(n)r×(k+1).

2. Compute di := the least common multiples of denominators
of i-th row vector of U. Let vij := diuij , 1 ≤ i ≤ r , 0 ≤ j ≤ k.
Let vj := (v1j , . . . , vrj)

T ∈ Z[n]r and V := {v0, . . . , vk}.
3. Compute a basis B of the module of syzygies of V .

4. Let B := {
∑k

i=0 bi∂
i | (b0, . . . , bk) ∈ B} and

b := {([∂k ]b)(n − k) | b ∈ B}.
5. Output: b and B.
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Example for desingularization

Example 3 Consider the recurrence operator:

L = (2n − 1)(n − 1)∂2 +
(
5n − 1− 9n2 + 2n3

)
∂ + n(1 + 2n)

Using Algorithm 1, we find

I3 = 〈3, n − 4〉

The corresponding operators are:

F1 = 3∂3 + (20n − 31)∂2 +
(
17n2 − 76n + 43

)
∂ + 17n + 9

F2 = (n − 1)∂3 + (n − 1)(4n − 9)∂2 +
(
3n3 − 19n2 + 33n − 13

)
∂

+3n2 − 4n − 3

Here, F1 is a strongly desingularized operator for L of order 3.
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Desingularization and Contraction

Question (C): Given L ∈ Z[n][∂], deg∂(L) = r , how to compute a
Z[n][∂]-basis of Cont(L) := 〈L〉 ∩ Z[n][∂]?

Idea: Find an order bound k ≥ r , such that Cont(L) = Z[n][∂] ·Mk .

Lemma 1 Let L ∈ Z[n][∂], deg∂(L) = r . Then:

Z[n][∂] ·Mk = Z[n][∂] ·Mk+1 iff Ik = Ik+1 for each k ≥ r .

From Lemma 1, if Cont(L) = Z[n][∂] ·Mk , then {Ij}∞j=k is a stable
chain.

We can compute an order bound k, such that Mk contains a
weakly desingularized operator T . However, this does not imply
that Cont(L) = Z[n][∂] ·Mk .
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Desingularization and Contraction

Example 4 Consider the following recurrence operator (Kauers,
Krattenthaler, Müller):

L = (n + 10)(n6 + 47n5 + 915n4 + 9445n3 + 54524n2 + 166908n

+211696)∂10 + lower terms

We can get a weakly desingularized operator at order 11. Using
Algorithm 1, we get the following table:

I11 = 〈11104n, 4n(n − 466), n(n2 − 34n + 1336)〉
I12 = 〈4n, n(n − 24)〉
I13 = 〈2n, n(n − 26)〉
I14 = 〈1n〉
I15 = 〈1n〉

...
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Saturation

Example 4 (Continued) From Lemma 1, we can not conclude that
Cont(L) = Z[n][∂] ·M11. We will show Cont(L) = Z[n][∂] ·M14.

Let I be a left ideal of Z[n][∂], a ∈ Z\{0}, we call

I : a∞ = {T ∈ Z[n][∂] | akT ∈ I , for some k ∈ N}

the saturation of I with respect to a.

Theorem 3 Let L ∈ Z[n][∂], deg∂(L) = r . Suppose that Mk

contains a weakly desingularized operator T , lc∂(T ) = ag , where
a ∈ Z, g is primitive. Then Cont(L) = (Z[n][∂] ·Mk) : a∞.
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An algorithm for contraction

Algorithm 2 Input: L ∈ Z[n][∂]. Output: a basis of Cont(L).

1. Derive an order bound k such that Mk contains a weakly
desingularized operator.

2. Compute a basis of Mk and a weakly desingularized operator
T by using Algorithm 1, where lc∂(T ) = ag , a ∈ Z, g is
primitive.

3. Compute a basis G of (Z[n][∂] ·Mk) : a∞ by using Gröbner
bases. Output: G
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Example for contraction

Example 1 (continued) Consider the recurrence operator:

L = (1 + 16n)2∂2 − (224 + 512n)∂ − (1 + n)(17 + 16n)2

M3 contains a weakly desingularized operator T̄ , such that
lc∂(T̄ ) = 1. From Theorem 3,

Cont(L) = (Z[n][∂] ·M3) : 1∞ = Z[n][∂] ·M3.

By Algorithm 2, Cont(L) is generated by {L, T̄}.

Yi Zhang, JKU 20/23



Krattenthaler’s problem

Conjecture: Let (an)≥0 and (bn)≥0 be two P-recursive sequences
over the integers with leading coefficient n. Show that (n!anbn)≥0
is also a P-recursive sequence over the integers with leading
coefficient n.

Given two recurrence equations

nan = α1an−1 + . . .+ αsan−s

nbn = β1bn−1 + . . .+ βtbn−t

We construct a minimal recurrence operator L for cn := n!anbn.
Task: Find a strongly desingularized operator for L.

Algorithm 2 can be used to search for counterexamples. However,
results of experiments suggest that this conjecture might be true!
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Special cases

Case 1: Consider the recurrence equations:

nan = αan−1

nbn = β1bn−1 + . . .+ βtbn−t

where α, βi ∈ Z[n]. Then cn := n!anbn satisfies

ncn = γ1cn−1 + . . .+ γtcn−t

where γi := βi
∏i−1

j=0 α(n − j)
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Special cases

Case 2: Consider the recurrence equations:

nan = α1an−1 + α2an−2

nbn = β1bn−1 + β2bn−2 + β3bn−3

where αi , βj are parameters. Then cn := n!anbn satisfies

ncn = γ1cn−1 + . . .+ γ9cn−9

where γi ∈ Z[α1, α2, β1, β2, β3, n].

Thanks!
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