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Krattenthaler's problem

Conjecture: Let (ap)>0 and (b,)>0 be two P-recursive sequences
over the integers with leading coefficient n. Show that (nla,b,)>0
is also a P-recursive sequence over the integers with leading
coefficient n.
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Example for Krattenthaler's problem
Consider the following P-recursive sequences:

na, = (31n—6)ap—1+ (49n—110)a,—» + (9n — 225)a,_3
nb, = (4n+13)b,—1+ (69n — 122)b,_5 + (36n — 67)b,_3
The minimal recurrence for ¢, := nla,b, is:
ancy, = (- )cn—1+ ...+ (- )eno
where « € Z[n], deg,(a) = 20.
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Example for Krattenthaler's problem
Consider the following P-recursive sequences:

na, = (31n—6)ap—1+ (49n—110)a,—» + (9n — 225)a,_3
nby = (4n+13)by_1 + (69n — 122)by_2 + (360 — 67)by_3
The minimal recurrence for ¢, := nla,b, is:
ancy, = (- )cn—1+ ...+ (- )eno
where « € Z[n], deg,(a) = 20.

Known algorithms find:
pncy=(--)ep—1+ ...+ (- )en-10
where (3 is a 853-digit integer.
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Example for Krattenthaler's problem
Consider the following P-recursive sequences:

na, = (31n—6)ap—1+ (49n—110)a,—» + (9n — 225)a,_3
nby = (4n-+13)by_1 + (69n — 122)by_ + (360 — 67)by_3

The minimal recurrence for ¢, := nla,b, is:

ancy, = (- )cn—1+ ...+ (- )eno

where « € Z[n], deg,(a) = 20.

Known algorithms find:

pncy = (- )1+ ...

where (3 is a 853-digit integer.
Our algorithm finds:

Inch=(-")cn—1+...
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Ore algebra (shift case)

Consider the recurrence equation:
f(n+1)—(n+1)f(n) =0.
Using Z[n][0] with O e f(n) := f(n+ 1), ne f(n) :=n-f(n)
[0—(n+1)]ef=0.
» Lin Z[n][0] is called a recurrence operator of f if Le f = 0.

» Assume L =1ly+ ...+ /0", we call degy(L) := r the order of
L, lcp(L) := I, the leading coefficient of L.

» T is called a left multiple of L if T = PL, where P € Q(n)[0].
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Motivation

Example 1 Consider the recurrence operator of u(n):
L= (1+16n)20° — (224 +512n)d — (1 + n)(17 + 16n)?

Question: Assume u(0), u(1) € Z, whether or not u(n) € Z, for
each n € N?
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Motivation

Example 1 Consider the recurrence operator of u(n):
L= (1+16n)20° — (224 +512n)d — (1 + n)(17 + 16n)?

Question: Assume u(0), u(1) € Z, whether or not u(n) € Z, for
each n € N?

(Abramov, Bakatou, van Hoeij) Find a left multiple of L:

T :=(...)L =640 + lower terms € Z[n][0]
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Motivation

Example 1 Consider the recurrence operator of u(n):
L= (1+16n)20° — (224 +512n)d — (1 + n)(17 + 16n)?

Question: Assume u(0), u(1) € Z, whether or not u(n) € Z, for
each n € N?

(Abramov, Bakatou, van Hoeij) Find a left multiple of L:
T :=(...)L =640 + lower terms € Z[n][0]
Our algorithm finds another left multiple of L:
T :=10%+ lower terms & Z[n][0]

Answer: Yes, u(n) is an integer sequence.
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Desingularization

Given L € Z[n][0], degy(L) = r.
» Assume p|lcy(L). T € Z[n][0] is a p-removed operator for L
of order k if

» T is a left multiple of L, degy(T) = k.
b lca(T) = ag(n), where a € Z, g is primitive, such that
g 3 lca(L).
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Desingularization

Given L € Z[n][0], degy(L) = r.
» Assume p|lcy(L). T € Z[n][0] is a p-removed operator for L
of order k if

» T is a left multiple of L, degy(T) = k.
b lca(T) = ag(n), where a € Z, g is primitive, such that

g 3 lca(L).
» If deg(g) is minimal (...), we call T is weakly desingularized
operator (of order k).
» If deg(g) and a are minimal (...), we call T is strongly
desingularized operator (of order k).
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Desingularization

Example 1 (continued) Consider the recurrence operator:

L= (1+16n)%0° — (224 +512n)d — (1 + n)(17 + 16n)?

(Abramov, Bakatou, van Hoeij) Find a left multiple of L:

T:=(...)L =640 + lower terms € Z[n][0]

Our algorithm finds another left multiple of L:

T =10 + lower terms € Z[n][0]

T and T are weakly and strongly desingularized operator (of order
3), respectively.
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Contraction

Given L € Z[n][0], degy(L) = r.
Consider (L) := Q(n)[0]L, contraction of (L) to Z[n][J] is

Cont(L) := (L) N Z[n][0]
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Contraction

Given L € Z[n][0], degy(L) = r.
Consider (L) := Q(n)[0]L, contraction of (L) to Z[n][J] is

Cont(L) := (L) N Z[n][0]

» Cont(L) is a finitely generated left ideal of Z[n][0].
» Every desingularized operator of L belongs to Cont(L).

» Cont(L) contains Z[n][0]L, but in general more operators.

» Goal: compute a Z[n][0]-basis of Cont(L).
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Contraction

Given L € Z[n][0], degy(L) = r.
Consider (L) := Q(n)[0]L, contraction of (L) to Z[n][J] is

Cont(L) := (L) N Z[n][0]

» Cont(L) is a finitely generated left ideal of Z[n][0].

» Every desingularized operator of L belongs to Cont(L).

» Cont(L) contains Z[n][0]L, but in general more operators.
» Goal: compute a Z[n][0]-basis of Cont(L).

Example 1 (continued) Consider the recurrence operator:
L= (1+16n)20 — (224 + 512n)d — (1 4 n)(17 + 16n)?

Cont(L) is generated by {L, T}.
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Removability of polynomial factors

Given L € Z[n][0], degy(L) = r.
(Chen, Jaroschek, Kauers, Singer) Assume p | Icg(L), p is
primitive.
b If pis removable, then one can compute an upper bound k,
such that there exists a p-removed operator T of order k.

» Using Euclidean algorithm, one can compute an upper bound
for a weakly desingularized operator.
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Removability of constant factors

Given L € Z[n][0], degy(L) = r. Write it as
L= aofo(n) + a1fi(n)0+ -+ amfm(n)0™

where a; € Z, fi(n) is primitive.

If gcd(ap, ..., am) =1, then we call L contant-primitive.
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Removability of constant factors

Given L € Z[n][0], degy(L) = r. Write it as

L= aofo(n) + a1fi(n)0+ -+ amfm(n)0™
where a; € Z, fi(n) is primitive.
If gcd(ap, ..., am) =1, then we call L contant-primitive.

Lemma (Gauss's Lemma for Ore Algebra) Suppose L, P € Z[n][0].
If L and P are constant-primitive, then PL is also
constant-primitive.

Theorem 1 Suppose L € Z[n][0] is constant-primitive, a € Z,
a|lcg(L). Then ais non-removable.
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Removability of constant factors

Example 2 Consider

L = 3(n+2)(3n+4)(3n+5)(7n+3) (25n% +21n +2) & +
lower terms € Z[n][0]

which is a constant-primitive recurrence operator for a(*") + b3",
where a, b € Z. From Theorem 1, 3 is non-removable.
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Desingularization at a fixed order

Given L € Z[n][0], degy(L) = r.

Question (A): Given a fixed order k, how to find a strongly
desingularized operator T of order k?
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Desingularization at a fixed order

Given L € Z[n][0], degy(L) = r.

Question (A): Given a fixed order k, how to find a strongly
desingularized operator T of order k?

We define
M = {T| T € Cont(L), degy(T) < k}
Ik = {lcag(T)(n—k)| T € Cont(L), degy(T) = k} U {0}

If T is a strongly desingularized operator of order k, then
lcop(T)(n — k) € Ix. So, we consider

Question (B): Given a fixed order k, how to find a basis b of /x
and its corresponding operator B in M7
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Syzygy

Let V :={vi,..., v} be a finite set of Z[n|".

We call the set {(a1,...,am) € Z[n]™ | >, a; - v; = 0} the
module of syzygies of V.
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Syzygy

Let V :={vi,..., v} be a finite set of Z[n|".

We call the set {(a1,...,am) € Z[n]™ | >, a; - v; = 0} the
module of syzygies of V.
Given L € Z[n][0], degy(L) = r
Theorem 2 For a fixed order k, one can compute a finite set
V C Z[n]" such that My is isomorphic to the module of syzygies of
V' as Z[n]-module.
For T = Zf'(:o ci0' € Z[n][0], we use [0'] T := ¢; to refer the
coefficient of ' in T.
Proposition If B := {Bl, ..., Bt} is a basis of My, then

= (([0]B1)(n — k), . ([3"]Br)("— k))-
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An algorithm for desingularization

Algorithm 1 Input: L € Z[n][0],degy(L) = r and k > r. Output: a
basis b of /i, its corresponding operators B in M.
1. Compute rrem(&¥, L) := >°1_; ;071 0 < j < k. Let
U = (uy) € Q(n)™ ¢+,
2. Compute d; := the least common multiples of denominators
of i-th row vector of U. Let vjj :== diuj;, 1 <i<r,0<j < k.
Let vj := (vij,...,vy5)" € Z[n]" and V := {vo,..., vk}
3. Compute a basis B of the module of syzygies of V.
4. Let B:= {3k b | (bo,...,bx) € B} and
b := {([0¥]b)(n — k) | b € B}.
5. Qutput: b and B.
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Example for desingularization

Example 3 Consider the recurrence operator:
L=(2n—1)(n—1)0*+ (50— 1 —9n% +2n) 0 + n(1 + 2n)
Using Algorithm 1, we find
I =(3,n—4)
The corresponding operators are:

Fi = 39+ (20n—31)0* + (17n* — 76n+43) 9 +17n+9
F, = (n—1)2*+(n—1)(4n—9)9* + (3n* — 19n* +33n — 13) &
+3n%> —4n—3

Here, F1 is a strongly desingularized operator for L of order 3.
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Desingularization and Contraction

Question (C): Given L € Z[n][0], degy(L) = r, how to compute a
Z[n][0]-basis of Cont(L) := (L) N Z[n][0]?
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Desingularization and Contraction

Question (C): Given L € Z[n][0], degy(L) = r, how to compute a
Z[n][0]-basis of Cont(L) := (L) N Z[n][0]?

Idea: Find an order bound k > r,such that Cont(L) = Z[n][0] - M.
Lemma 1 Let L € Z[n][0], degy(L) = r. Then:
» Z[n][0] - Mk = Z[n][0] - Mk41 iff Ix = 41 for each k > r.

From Lemma 1, if Cont(L) = Z[n][0] - Mk, then {/;}?2, is a stable
chain.
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Desingularization and Contraction

Question (C): Given L € Z[n][0], degy(L) = r, how to compute a
Z[n][0]-basis of Cont(L) := (L) N Z[n][0]?

Idea: Find an order bound k > r,such that Cont(L) = Z[n][0] - M.
Lemma 1 Let L € Z[n][0], degy(L) = r. Then:

» Z[n][0] - Mk = Z[n][0] - Mk41 iff Ix = 41 for each k > r.
From Lemma 1, if Cont(L) = Z[n][0] - Mk, then {/;}?2, is a stable
chain.

We can compute an order bound k, such that My contains a
weakly desingularized operator T. However, this does not imply
that Cont(L) = Z[n][0] - M.
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Desingularization and Contraction
Example 4 Consider the following recurrence operator (Kauers,

Krattenthaler, Miiller):

L = (n+10)(n®+47n° +915n* + 9445n° + 54524n> 4 166908n
1+211696)0™° 4 lower terms

We can get a weakly desingularized operator at order 11. Using
Algorithm 1, we get the following table:

hi = (11104n,4n(n— 466), n(n> — 34n + 1336))
ho = {(4n,n(n— 24))

hs = (2n,n(n— 26))

ha = (In)

hs = (1n)
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Saturation

Example 4 (Continued) From Lemma 1, we can not conclude that
Cont(L) = Z[n][0] - M11. We will show Cont(L) = Z[n][0] - M1a.

Let / be a left ideal of Z[n][0], a € Z\{0}, we call
I:a® ={T € Z[n)[d] | a¥T € I, for some k € N}

the saturation of | with respect to a.
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Saturation

Example 4 (Continued) From Lemma 1, we can not conclude that
Cont(L) = Z[n][0] - M11. We will show Cont(L) = Z[n][0] - M1a.

Let / be a left ideal of Z[n][0], a € Z\{0}, we call
I:a® ={T € Z[n)[d] | a¥T € I, for some k € N}

the saturation of | with respect to a.

Theorem 3 Let L € Z[n][0], degy(L) = r. Suppose that M
contains a weakly desingularized operator T, Icy(T) = ag, where
a€Z, gis primitive. Then Cont(L) = (Z[n][9] - Mk) : a*>.
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An algorithm for contraction

Algorithm 2 Input: L € Z[n][0]. Output: a basis of Cont(L).

1. Derive an order bound k such that M, contains a weakly
desingularized operator.

2. Compute a basis of My and a weakly desingularized operator
T by using Algorithm 1, where Icg(T) = ag, a€ Z, g is
primitive.

3. Compute a basis G of (Z[n][0] - M) : a> by using Grobner
bases. Output: G

Yi Zhang, JKU
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Example for contraction

Example 1 (continued) Consider the recurrence operator:
L= (1+16n)20° — (224 + 512n)d — (1 4 n)(17 + 16n)?

M3 contains a weakly desingularized operator T, such that
lcsg(T) = 1. From Theorem 3,

Cont(L) = (Z[n][9] - M3) : 1°° = Z][n][0] - M5.

By Algorithm 2, Cont(L) is generated by {L, T}.
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Krattenthaler's problem

Conjecture: Let (ap)>0 and (b,)>0 be two P-recursive sequences
over the integers with leading coefficient n. Show that (n!a,b,)>0
is also a P-recursive sequence over the integers with leading
coefficient n.
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Krattenthaler's problem

Conjecture: Let (ap)>0 and (b,)>0 be two P-recursive sequences
over the integers with leading coefficient n. Show that (n!a,b,)>0
is also a P-recursive sequence over the integers with leading
coefficient n.

Given two recurrence equations

na, = ian—-1-+...+ Qsap—s
nb, = pibp_1+ ...+ Beby_t

We construct a minimal recurrence operator L for ¢, := nla,b,.
Task: Find a strongly desingularized operator for L.
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Krattenthaler's problem

Conjecture: Let (ap)>0 and (b,)>0 be two P-recursive sequences
over the integers with leading coefficient n. Show that (n!a,b,)>0
is also a P-recursive sequence over the integers with leading
coefficient n.

Given two recurrence equations

na, = ian—-1-+...+ Qsap—s
nb, = PBibp—1+ ...+ Btbn—t

We construct a minimal recurrence operator L for ¢, := nla,b,.
Task: Find a strongly desingularized operator for L.

Algorithm 2 can be used to search for counterexamples. However,
results of experiments suggest that this conjecture might be true!
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Special cases

Case 1: Consider the recurrence equations:

na, = aan_1
nb, = pBibp_1+ ...+ Beba_¢

where a, 8; € Z[n]. Then ¢, := nla,b, satisfies
nc, = Y1Cp—1+ ...+ YtCn—t

where v; == f3; Hji;(l) a(n—J)
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Special cases

Case 2: Consider the recurrence equations:

na, = iap—1+ Q2ap-2
nbn = Blbnfl + ﬁ2bn72 + ,83bn73

where «;, B are parameters. Then ¢, := nla,b, satisfies
nc, = Y1Cp—1 + ...+ Y9Ch—9

where ; € Z[aq, az, B1, B2, £3, ).

Yi Zhang, JKU 23/23



Special cases

Case 2: Consider the recurrence equations:

na, = iap—1+ Q2ap-2
nbn = Blbnfl + ﬁ2bnf2 + ,83bn73

where «;, B are parameters. Then ¢, := nla,b, satisfies
nc, = Y1Cp—1 + ...+ Y9Ch—9
where ; € Z[aq, az, B1, B2, £3, ).

Thanks!

Yi Zhang, JKU 23/23



