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Abstract

Elementary, but very useful lemma due to Biernacki and Krzyż (1955) asserts that the ratio of two
power series inherits monotonicity from that of the sequence of ratios of their corresponding coefficients.
Over the last two decades it has been realized that, under some additional assumptions, similar claims
hold for more general series ratios as well as for unimodality in place of monotonicity. This paper continues
this line of research: we consider ratios of general functional series and integral transforms and furnish
natural sufficient conditions for preservation of unimodality by such ratios. Numerous series and integral
transforms appearing in applications satisfy our sufficient conditions, including Dirichlet, factorial and
inverse factorial series, Laplace, Mellin and generalized Stieltjes transforms, among many others. Finally,
we illustrate our general results by exhibiting certain statements on monotonicity patterns for ratios of
some special functions. The key role in our considerations is played by the notion of sign regularity.
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1 Introduction

Beginning with the classical lemma due to Biernacki and Krzyż [1] there has been a stream of papers studying
the monotonicity pattern of the ratio of two power series

a(x)

b(x)
=

∑∞
k=0 akx

k∑∞
k=0 bkx

k
(1)

as the consequence of the corresponding monotonicity pattern of the sequence ak/bk. The original result
of Biernacki and Krzyż as well as its polynomial version, rediscovered many times, see, for instance, [16,
Lemma 1], [9, Theorem 4.4], states that for bk > 0, and assuming positive radius of convergence of both
series, the increasing/decreasing character of the sequence ak/bk is inherited by the function a(x)/b(x). This
result has been extended in three directions - (1) more complicated monotonicity pattern of ak/bk; (2) more
general functional series, i.e. replacing xk with some other sequence of functions ϕk(x); (3) replacing series
with an integral (Laplace transform or more general) . The first result we are aware of in the first direction is
given by Belzunce, Ortega and Ruiz in [3, Lemma 6.4] in connection with applications of probability theory
in insurance and finance. These authors stated that unimodality (=one change of monotonicity direction)
of the sequence ak/bk is also preserved by a(x)/b(x). They did not provide a detailed proof but indicated a
method based on the notion of total positivity. Their Lemma 6.4 also assumes infinite radii of convergence
of both series in (1). Their result was thereafter used in several papers sometimes assuming incorrectly that
it is valid in the same form for finite radii of convergence, see details in [28, Introduction]. The situation for
the power series was clarified by Yang, Chu and Wang in [28], where the authors introduced the function
Ha,b(x) = b2(x)(a(x)/b(x))′/b′(x) whose sign at the endpoints of the convergence interval is responsible for
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distinguishing the cases when a(x)/b(x) is monotonic or unimodal. More general ratio of functional series of
the form

A(x)

B(x)
=

∑∞
k=0 akφk(x)∑∞
k=0 bkφk(x)

(2)

has been considered in [17, Lemma 2.2]. Assuming absolute and uniform convergence of both series and
their term-wise derivatives on compact subsets of [0,∞) the authors show that monotonicity of ak/bk is
inherited by A(x)/B(x) if the sequence of logarithmic derivatives k → φ′

k(x)/φk(x) is increasing or reversed
if k → φ′

k(x)/φk(x) is decreasing. If fact, they prove more, namely, that the coefficients of the series
expansion of A′(x)B(x)−A(x)B′(x) in the functional sequence φk(x) are all of the same sign. We also note
that the same type of monotonicity rule has been independently established for both power series and more
general series by Jameson in [10] by using a clever induction argument.

The result for the ratio (2) has been generalized in the recent work [18] to the case when the sequence
ak/bk is unimodal. The key conditions for preservation of unimodality given in this work are monotonicity
of x→ φk(x) for all k together with monotonicity of k → φ′′

k(x)/φ′
k(x) for non-negative x in the convergence

domain. They also use the function HA,B(x) = B2(x)(A(x)/B(x))′/B′(x) whose sign at the endpoints of
the convergence interval determine whether the ratio A(x)/B(x) is truly unimodal or merely monotonic.

Finally, in a very recent preprint [19] the authors make one further step and consider the ratio (1), where
the sequence ak/bk changes monotonicity twice (for example, it increases, then decreases and then again
increases). They present conditions in terms of the functions HA,B and HA′,B′ for the ratio a(x)/b(x) to be
monotonic or to have one/two changes in monotonicity.

Note further that similar results for the ratios of the Laplace transforms have been given in [30] and
for general integral transforms in [22] and [18]. In yet another recent work [20] Mao and Tian give several
monotonicity rules for multiple integrals and integrals with variable limits of integration. In [29] the authors
consider a more general ratio of the form (P (x)+A(x))/(P (x)+B(x)), where A(x) and B(x) are power series
and in the recent preprint [21] A(x) and B(x) are integral transforms on time scales. Another approach
for studying monotonicity patterns of ratios by using derivatives is based on the so-called L’Hôspital’s
monotonicity rules [23] and can also be used to give yet another proof of the Biernacki-Krzyż lemma [7,
Theorem 7.3].

This seemingly exhaustive treatment of this topic is nevertheless incomplete as some important classes
of series are excluded by conditions in [18] (at least when applied formally). Namely, factorial and inverse
factorial series and general Dirichlet series. Moreover, these authors require both the numerator coefficients
ak and the denominator coefficients bk in (2) to be non-negative, while we retain only the requirements on bk
letting the sign of ak to be arbitrary. We further remark that the underlying structure behind the conditions
in [18] is somewhat obscure. The goal of this paper is to present alternative conditions for unimodality for
the ratios of functional series and integral transforms and reveal that the notion of sign regularity is, in
fact, the key to the preservation of unimodality by both series and integral transform ratios. Furthermore,
in some sense our conditions are necessary and sufficient. This is done in the following Section 2. In
Section 3 we give a large list of examples of functional sequences and kernels for which our theory holds. In
Section 4 we illustrate some of the results by considering the ratios of generalized hypergeometric and basic
hypergeometric functions. Finally, at the end of the paper we included two appendices containing some of
the proofs which would distract the reader should they be included in the main text.

2 Main results

The key role in our considerations will be played by the notion of sign regularity defined as follows [14,
Definition 1.3, Chapter 2, §1].

Definition 2.1. Let X,Y be linearly ordered sets, in this paper - some subsets of R. A function (kernel)
K : X × Y → R is called sign regular of order r ∈ N (K ∈ SRr) if there is a sequence of signs ε1, ε2, . . . , εr,
each +1 or −1 such that

εm

∣∣∣∣∣∣∣∣∣
K(x1, y1) K(x1, y2) . . . K(x1, ym)
K(x2, y1) K(x2, y2) . . . K(x2, ym)

...
...

...
. . .

K(xm, y1) K(xm, y2) . . . K(xm, ym)

∣∣∣∣∣∣∣∣∣ ≥ 0 (3)
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for all m = 1, . . . , r and any points x1 < x2 < · · · < xm, y1 < y2 < · · · < ym, xi ∈ X, yj ∈ Y . If strict
inequality holds in the above inequality, the kernel K is called strictly sign regular of order r, K ∈ SSRr. If
ε1 = · · · = εr = 1, the kernel is totally positive of order r, K ∈ TPr or strictly totally positive (K ∈ STPr)
if all determinants above are strictly positive. We will write r = ∞ in any of the above notions, if the
corresponding property holds for all natural r.

Remark. Denote by I a convex subset of R containing more than one point (open or closed interval or
semi-interval, open or closed half-axis or the whole axis). Suppose the set X in the above definition is equal
to N0 and the set Y = I, so that the kernel K(x, y) represents a sequence of functions φn(y) = K(n, y),
n ∈ N0, y ∈ I. Assume further that each function φn(y) : I → R is (r−1)−times continuously differentiable,
Then a sufficient condition for K(n, y) = φn(y) ∈ SSRr is the following: there is sequence of signs ε1, . . . , εr
such that for all m, 1 ≤ m ≤ r and all sequences of indices 0 ≤ n1 < n2 < . . . < nm the Wronskians satisfy
εmW (φn1

, φn2
, . . . , φnm

)(x) > 0 for all x ∈ I. Sequences of functions satisfying this requirements are known
as Descartes’ sequences or sequences obeying the Descartes’ rule of signs [24, Chapter V, Problems 87, 90].
See details below.

Perhaps the most important property of a sign regular kernel is its variation diminishing property. Denote
by S−(λn)∞n=0 the number of sign changes of a real sequence (λn)∞n=0 ignoring zeros; for a continuous function
f(x) on an interval I define

S−(f(x))x∈I = supS−(f(xk))nk=1

where supremum is taken over all finite ordered sequences of points in I: x1 < x2 · · · < xn, xj ∈ I.
Our main tools are the following theorems, see [14, Chapter V, §3, Theorem 3.1] and [14, Chapter V, §1,

Theorem 1.5]

Theorem 2.2. Suppose for a sequence of real continuous functions (φn)∞n=0 defined on a convex subset I of
R containing more than one point, the kernel K(n, x) = φn(x) ∈ SRr on N0 × I for some r ≥ 2. Then for
every real sequence (cn)∞n=0 having not more that r − 1 sign changes and such that the series

f(x) =

∞∑
n=0

cnφn(x)

converges uniformly on all compact subsets of I we have

S−(f(x))x∈I ≤ S−(cn)∞n=0.

Moreover, if S−(f(x))x∈I = S−(cn)∞n=0 = k ≤ r − 1, then the sign patterns of f(x) and (cn)∞n=0 coincide if
εkεk+1 = 1 or are reverse to each other if εkεk+1 = −1. Here ε0 = 1 and εm det(ϕni

(xj))
m
i,j=1 ≥ 0 for any

finite sequences n1 < n2 · · · < nm, x1 < · · · < xm with m ≤ r.

Theorem 2.3. Suppose the kernel K(x, y) : I×J → R is SRr for some r ≥ 2, where I, J are convex subsets
of R containing more than one point. Then for any continuous function g : J → R having not more that
r − 1 sign changes and any positive weight w : J → (0,∞) such that the integral

f(x) =

∫
J

K(x, y)g(y)w(y)dy

converges uniformly on all compact subsets of I we have

S−(f(x))x∈I ≤ S−(g(y))y∈J .

Moreover, if S−(f(x))x∈I = S−(g(y))y∈J = k ≤ r − 1, then the sign patterns of f(x) and g(y) coincide if
εkεk+1 = 1 or are reverse to each other if εkεk+1 = −1. Here ε0 = 1 and εm det(K(xi, yj))

m
i,j=1 ≥ 0 for any

finite sequences y1 < y2 · · · < ym, x1 < · · · < xm with m ≤ r.

Remark. The most general form of the variation diminishing property can be found in [14, Chapter V,
Theorem 3.1] with both series and the integral above replaced by integration with respect to a general positive
measure. The above two theorems are its particular cases. However, to avoid unnecessary complications
related to the subtleties of the notions of ”relevant sign changes” and ”nodal zeros”, we prefer to present
the above two cases separately thus restricting our attention to sequences and continuous functions which
suffices for our purposes.
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Remark. The ultimate parts of the above theorems concerning the preservation or reversal of sign
patterns is only stated in [14, Chapter V, Theorem 3.1] for totally positive kernels. However, for the case
of matrices the required formulation is contained in [14, Chapter V, §1, Theorem 1.5] (beware of a typo in
indexing ε) and can be extended to general kernels repeating mutatis mutandis the proof of [14, Chapter V,
Theorem 3.1].

The application of the above theorems to the ratios of functional series and integral transforms is based
on the following key observation.

Lemma 2.4. Let g : I → R be a given continuous function. The function g is unimodal if and only if for
every λ ∈ R the function fλ(µ) = g(µ) − λ has no more than 2 sign changes on I, and for all λ such that
fλ(µ) has exactly 2 sign changes, the sign pattern of the function fλ(µ) remains fixed. In a similar fashion,
a real sequence (dk)∞k=0 is a unimodal if and only if for every λ ∈ R the sequence (dk − λ)∞k=0 has no more
than 2 sign changes and for all λ such that it has exactly 2 sign changes, the sign pattern of the sequence
(dk − λ)∞k=0 remains fixed.

Proof. We will prove the statement about unimodal functions, the statement about sequences could be
proved analogously.

Suppose that g is a unimodal continuous function. Then g has not more than 2 intervals of monotonicity.
If g is monotonic on I, then for all λ ∈ R the function fλ(µ) = g(µ) − λ has not more than 1 sign change
on I. Suppose that g has 2 intervals of monotonicity on I. Without loss of generality, we will assume
that there exists µ0 ∈ I such that g is increasing and non-constant on the set I ∩ (−∞, µ0], and g is
decreasing and non-constant on the set I ∩ [µ0,+∞). We denote by [c, g(µ0)] = g(I ∩ (−∞, µ0]), and by
[d, g(µ0)] = g(I ∩ [µ0,+∞)), where −∞ ≤ c < g(µ0), −∞ ≤ d < g(µ0) (here by X we denote the
closure of the set X). If λ ≤ min(c, d), or λ ≥ g(µ0), then the function fλ has no sign changes on I. If
λ ∈ (min(c, d),max(c, d)], then the function fλ has one sign change on I. If λ ∈ (max(c, d)), g(µ0)), then
the the function fλ has two sign changes on I. For every λ ∈ (max(c, d)), g(µ0)), the sign patterns of the
functions fλ are the same, namely, (−,+,−).

Suppose that for every λ ∈ R the function fλ has not more than 2 sign changes on I, and for all λ,
such that the function fλ has exactly 2 sign changes, the sign patterns of the functions fλ are the same.
Assume, for the contrary, that g is not a unimodal function. Then g has at least 3 intervals of monotonicity.
Without loss of generality, we will assume that there exist real numbers α, β, γ, δ ∈ I, α < β < γ < δ, such
that g is increasing on [α, β], decreasing on [β, γ], and increasing on [γ, δ], and g(α) < g(β), g(β) > g(γ),
g(γ) < g(δ). If g(δ) ≥ g(β), then for every λ ∈ (g(α), g(β)) the function fλ has at least 3 sign changes on
I. This contradicts our assumptions. Thus, g(δ) < g(β). Analogously, g(α) > g(γ). For λ ∈ (g(α), g(β)) the
function fλ has 2 sign changes on the interval (α, γ), so, by our assumption, it has 2 sign changes on I. For
such values of λ the sign patterns of the functions fλ are (−,+,−). For λ ∈ (g(γ), g(δ)) the function fλ has
2 sign changes on the interval (β, δ), so it has 2 sign changes on I. For such values of λ the sign patterns
of the functions fλ are (+,−,+). Different sign patterns contradict our assumption. So, the function g is
unimodal.

Our main results are the following two theorems.

Theorem 2.5. Suppose for a sequence of real continuous functions (φn)∞n=0 defined on a convex interval
I ⊆ R, the kernel K(n, x) = φn(x) ∈ SR3 on N0×I. Suppose both series in the following definition converge
uniformly on compact subsets of I:

F (x) =

∑∞
k=0 akφk(x)∑∞
k=0 bkφk(x)

,

where ak ∈ R, bk > 0 for all k ∈ N0 and the denominator does not vanish for all x ∈ I. If the sequence of
quotients {ak/bk}∞k=0 is a unimodal sequence, then the function F (x) is a unimodal function of x. Moreover,
if F (x) is not monotonic, then it inherits the monotonicity pattern of the sequence {ak/bk}∞k=0 if ε2ε3 > 0
or reverses it if ε2ε3 < 0, where ε2, ε3 are defined in (3).

A companion theorem for integral transforms takes the form

Theorem 2.6. Suppose I, J ⊆ R are convex intervals. Let K(x, t) be a SR3 kernel on I × J → R and
w : J → (0,∞) be a positive weight. Suppose both integrals in the following definition converge uniformly on
compact subsets of I:

F (x) =

∫
J
K(x, t)A(t)w(t)dt∫

J
K(x, t)B(t)w(t)dt

,
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where A : J → R and B : J → (0,∞). If the function t → A(t)/B(t) is unimodal, then the function
x → F (x) is unimodal. Moreover, if F (x) is not monotonic, then it inherits the monotonicity pattern of
t→ A(t)/B(t) if ε2ε3 > 0 or reverses it if ε2ε3 < 0, where ε2, ε3 are defined in (3).

Remark. All possibilities present in the formulation of these theorems can be realized: F (x) maybe
increasing, decreasing or unimodal on I in the direction specified by the theorem. To verify which of the
possibilities is realized for a given sequences ak, bk, it suffices to verify the sign of the derivatives at the
endpoints of I: F ′(a+) and/or F ′(b−), where a = inf I, b = sup I.

We will only prove Theorem 2.5, the proof of Theorem 2.6 is almost identical.

Proof. Assume without loss of generality that ϕk(x) ≥ 0 on I (otherwise factor out −1). For each x ∈ I and
arbitrary real λ we have

F (x) − λ =

∑∞
k=0(ak − λbk)φk(x)∑∞

k=0 bkφk(x)
. (4)

The number of sign changes of F (x) − λ on I is equal to the number of sign changes of the function
G(x, λ) :=

∑∞
k=0(ak − λbk)φk(x) on I (as a function of x) due to the condition bk > 0. The function G is a

linear combination of a sequence of functions (φk(x))∞k=0 with coefficients

ck(λ) := (ak − λbk) =
(ak
bk

− λ
)
bk.

Clearly, sign(ck(λ)) = sign(ak/bk −λ) due to positivity of bk . By our assumptions, the sequence (ak/bk)
∞
k=0

is a unimodal sequence, so that by Lemma 2.4 S−((ck(λ))∞k=0) ≤ 2. Moreover, for all λ such that the sequence
of coefficients (ck(λ))∞k=0 has exactly 2 changes of signs its sign pattern remains fixed. Hence, we are in the
position to apply Theorem 2.2 yielding that the number of sign changes of F (x)−λ on I is less than or equal
to S−((ck(λ))∞k=0) ≤ 2. Moreover, by the same theorem for all λ such that the function F (x)−λ has exactly
2 sign changes, the sign pattern of the functions F (x) − λ coincides with that of the sequences (ck(λ))∞k=0 if
ε3ε2 = 1 or is reverse to it if ε3ε2 = −1. As ε3ε2 does not depend on λ, by Lemma 2.4, we conclude that
for every x ∈ I the function F (x) is a unimodal function of x possessing the monotonicity pattern stated in
the theorem.

3 Examples

1. K(x, y) = xy is well-known (and seen via Vandermonde determinant) to be STP∞ on (0,∞)×(−∞,∞).
This recovers the case of ratio of two power series and the ratio of Mellin transforms

F (y) =

∫∞
0
xy−1A(x)dx∫∞

0
xy−1B(x)dx

.

If A(x)/B(x) is unimodal, then so is F (y) and the monotonicity pattern of A(x)/B(x) is preserved by
F (y) when it is not monotonic.

2. The kernel K(x, y) = exp(xy) ∈ STP∞ on (−∞,∞) × (−∞,∞). Hence, our theorem is applicable to
the ratio of the Dirichlet series:

F (x) =

∑∞
k=0 ake

λkx∑∞
k=0 bke

λkx
,

where λ0 < λ1 < · · · If F (x) is not monotonic it inherits monotonicity pattern of {ak/bk}. In a similar
fashion, the ratios of two-sided and one-sided Laplace transforms (by restricting domain of integration
to (−∞, 0) and changing variable x→ −x)

F (y) =

∫∞
−∞ exyA(x)dx∫∞
−∞ exyB(x)dx

and G(y) =

∫∞
0
e−xyA(x)dx∫∞

0
e−xyB(x)dx

satisfy our theorem, thus recovering some of the results of [30]. Note that for the kernel K(x, y) = e−xy

has signature (+,−,−) so that monotonicity pattern of A(x)/B(x) is preserved by G(y) when it is not
monotonic.

5



3. The kernel K(x, y) = (x + y)−α ∈ STP∞ on (0,∞) × (0,∞) for each α > 0 [5, (1.6)], so that our
theorem is applicable to the ratio of the following series

F (x) =

∑∞
k=0 ak(x+ k)−α∑∞
k=0 bk(x+ k)−α

and the ratio of generalized Stieltjes transforms

F (y) =

∫ ∞

0

A(x)dx

(x+ y)α

/∫ ∞

0

B(x)dx

(x+ y)α
.

4. The kernel K(x, y) = Γ(x + y) ∈ STP∞ on (0,∞) × (0,∞), see [8, Theorem 2.11] and Example 10
below. Hence, the kernel K̂(n, x) = (x)n = Γ(x + n)/Γ(x) ∈ STP∞ on N0 × (0,∞) and Theorem 2.5
is applicable to the ratio of factorial series:

F (x) =

∑∞
k=0 ak(x)k∑∞
k=0 bk(x)k

.

Monotonicity pattern of {ak/bk} is preserved by F (x) if it is not monotonic. Note that

b0F
′(0+) =

∞∑
k=1

bk(k − 1)!
(ak
bk

− a0
b0

)
.

and F (x + 1) − F (x) is eventually negative (positive) is {ak/bk} is eventually decreasing (increasing)
according to Lemma B.1 proved in Appendix B to this paper. As F (x) is unimodal if {ak/bk} is
unimodal by Theorem 2.5 it cannot oscillate and F (x+ 1)−F (x) < 0 (F (x+ 1)−F (x) > 0) for large
x implies that F (x) is decreasing (increasing) for large x. Hence, if {ak/bk} is first increasing and then
decreasing, then so is F (x) if F ′(0+) > 0 or F (x) is monotonically decreasing if F ′(0+) < 0. Similar
result holds if {ak/bk} is first decreasing and then increasing. The case F ′(0+) = 0 may require further
investigation.

5. The argument in [8, Theorem 2.11] for the gamma kernel in the previous example works just as well
for the incomplete gamma kernels K1(x, y) = γ(x+ y, α) and K2(x, y) = Γ(x+ y, α), α > 0, where

γ(z, α) =

∫ α

0

tz−1e−tdt, Γ(z, α) =

∫ ∞

α

tz−1e−tdt

are lower and upper incomplete gamma functions. Hence, Ki(x, y) ∈ STP∞ on (0,∞) × (0,∞) for
i = 1, 2. This implies that incomplete Pochhammer symbols [27] are also STP∞ on N0 × (0,∞):

K̂1(x, n) = (x, α)n =
γ(x+ n, α)

Γ(x)
and K̂2(x, n) = [x, α]n =

Γ(x+ n, α)

Γ(x)
,

and Theorem 2.5 is applicable to the ratio of ” incomplete factorial series”. Some interesting special
functions of communication theory like Nuttall and Marcum Q-functions can be defined using such
series [4].

6. It follows from [24, Part V, Chap. I, Problem 77] and [14, Chapter 3, Lemma 2.2] that the kernel
K̂(n, x) = 1/(x)n ∈ SSR∞ on N0 × (0,∞). We were unable to locate the more general fact in the
literature, which we believe (and verified numerically) to be true: the kernel K(x, y) = 1/Γ(x + y) ∈
SSR∞ on (0,∞) × (0,∞). The property required here is that K̂(n, x) is SSR3 with the signature
(+,−,−) can be proved directly by taking the limit q → 1 in Lemma A.2 proved in Appendix A.
Hence, Theorem 2.5 is applicable to the ratio of the inverse factorial series:

F (x) =

∑∞
k=0 ak/(x)k∑∞
k=0 bk/(x)k

.

Monotonicity pattern of {ak/bk} is preserved by F (x) if it is not monotonic. Note, further, that

b20F
′(x) =

b0b1
x2

(
a0
b0

− a1
b1

)
+O(1/x3) as x→ +∞
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and, after some calculation (see details in Lemma B.2 in Appendix B):( ∞∑
k=1

bk
(k − 1)!

)2

F ′(0+) =

∞∑
k=1

b0bk
(k − 1)!

(a0
b0

− ak
bk

)
+

∞∑
k=1

k−1∑
j=1

bkbj(Hj−1 −Hk−1)

(k − 1)!(j − 1)!

(ak
bk

− aj
bj

)
,

where Hn denotes the n-th harmonic number. Hence, if ak/bk is first increasing and eventually decreas-
ing, then F (x) is decreasing for large x and either monotonically decreasing on (0,∞) if F ′(0+) < 0 or
first increasing and then decreasing if F ′(0+) > 0. The case F ′(0+) = 0 requires further investigation.

7. Define the q-gamma function for 0 < q < 1 by [11, (21.16)]

Γq(z) = (1 − q)1−z (q; q)∞
(qz; q)∞

, (a; q)n =

n−1∏
j=0

(1 − aqj).

We conjecture that K(x, y) = Γq(x + y) ∈ STP∞. This probably can be proved using the repre-
sentation [11, (21.6)] but we will not pursue this in this paper. It is sufficient for our purposes that
K̂(n, x) = (qx; q)n ∈ STP3 on N0×(0,∞) which is demonstrated in Lemma A.1 in Appendix A. Hence,
Theorem 2.5 is applicable to the ratio of q-factorial series:

F (x) =

∑∞
k=0 ak(qx; q)k∑∞
k=0 bk(qx; q)k

.

If F (x) is not monotonic it inherits the monotonicity pattern of {ak/bk}.

8. We further conjecture that K(x, y) = 1/Γq(x + y) ∈ SSR∞, 0 < q < 1. The claim sufficient for the

purposes of this paper, namely that K̂(n, x) = 1/(qx; q)n ∈ SSR3 on N0× (0,∞) with the sign pattern
(+,−,−) is proved in Lemma A.2 in Appendix A. Hence, Theorem 2.5 is applicable to the ratio of the
inverse q-factorial series:

F (x) =

∑∞
k=0 ak/(q

x; q)k∑∞
k=0 bk/(q

x; q)k
.

If F (x) is not monotonic it inherits the monotonicity pattern of {ak/bk}.

9. According to [15, (11)] we have

p∏
i=1

Γ(x+ ci)

Γ(x+ di)
=

1∫
0

tx
{
Gp,0

p,p

(
t

d
c

)
+ δ1I{µ=0}

}
dt

t
,

where µ =
∑p

i=1(di − ci) ≥ 0, δ1 denotes the unit mass concentrated at 1 and I{µ=0} = 1 if µ = 0 and
I{µ=0} = 0 otherwise. Here Gp,0

p,p stands for a particular case of Meijer’s G function which we prefer
to call the Meijer-Nørlund function, see [15, p.139] for a definition. For current purposes we only need
one property of this function [15, section 2]:

if v(t) =

p∑
j=1

(tcj − tdj ) ≥ 0 for t ∈ (0, 1), then Gp,0
p,p

(
t

d
c

)
≥ 0 for t ∈ (0, 1). (5)

Furthermore, convenient sufficient conditions for v(t) ≥ 0 are the following:

0 ≤ c1 ≤ c2 ≤ · · · ≤ cp, 0 ≤ d1 ≤ d2 ≤ · · · ≤ dp,

and

k∑
i=1

ci ≤
k∑

i=1

di for k = 1, 2 . . . , p.
(6)

These and other conditions for non-negativity of Gp,0
p,p above can be found in [15, section 2]. Assuming

G function is the integrand is non-negative we can write

K(x, y) =

p∏
i=1

Γ(x+ y + ci)

Γ(x+ y + di)
=

1∫
0

K1(x, t)K2(t, y)dσ(t),

7



where K1(x, t) = tx, K2(t, y) = ty and dσ(t) is a non-negative measure supported on [0, 1]. Hence,
by the basic composition formula [14, Lemma 1.1, Chapter 3, §1], the kernel K(x, y) is STP∞ on
(0,∞) × (0,∞), so that the kernel

K(n, x) =

p∏
i=1

(x+ ci)n
(x+ di)n

∈ STP∞ on N0 × (0,∞).

Hence, Theorem 2.5 is applicable to the ratio

F (x) =

∞∑
k=0

ak
p∏

i=1

[(ci + x)k/(di + x)k]

∞∑
k=0

bk
p∏

i=1

[(ci + x)k/(di + x)k]

,

and if F (x) is not monotonic it inherits monotonicity pattern of {ak/bk}.

10. We can extend the previous example as follows. Suppose p ≥ 0 and q ≥ 1. Consider

K(x, y) =

p∏
i=1

Γ(x+ y + ci)

Γ(x+ y + di)

q∏
j=1

Γ(hj + x+ y).

By the previous example if
∑p

i=1(di − ci) > 0, then

p∏
i=1

Γ(x+ y + ci)

Γ(x+ y + di)
= M(ρ(t))(x+ y)

where M is the Mellin transform and

ρ(t) = I[0,1](t)G
p,0
p,p

(
t

d
c

)
.

Hence,
K(x, y) = M(ρ(t) ∗ γ1(t) ∗ · · · ∗ γq(t))(x+ y), γj(t) = thje−t,

where ∗ is the Mellin convolution:

h ∗ g(x) =

∫ ∞

0

h(t)g
(x
t

)dt
t
.

Hence, if v(t) =
∑p

j=1(tcj − tdj ) ≥ 0 on (0, 1) and hj ≥ 0, K(x, y) = M(f)(x+ y), where the function
f(t) = ρ(t)∗γ1(t)∗ · · · ∗γq(t) ≥ 0 on (0,∞), so that K(x, y) ∈ STP∞ by the basic composition formula
as in the previous example. In particular, the kernel

K(x, y) =

q∏
i=1

Γ(x+ y + hi) ∈ STP∞

for any hi ≥ 0 and any natural q and so is K(n, x) =
∏q

i=1(hi + x)n on N0 × (0,∞).

11. Numerical experiments suggest that the kernel

K(x, y) =
Γ(c+ x+ y)

Γ(d+ x+ y)

is also SR∞ when c > d. In particular, it is SR3 with the signature (+,−,−). The sign regularity of
the above kernel would follow from the validity of the following conjecture:

Conjecture 1. Suppose Ki(x, y) = Fi(x+ y), i = 1, 2, are SR∞ on (0,∞) × (0,∞). Then the kernel
K(x, y) = K1(x, y)K2(x, y) is also SR∞ on (0,∞) × (0,∞).

Apoorva Khare informed us that he has a method for proving this conjecture. We postpone the details
to another publication.
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12. Suppose a > 0 and m = (m1,m2, . . . ,mp) comprises non-negative integers. Then, according to [25,
Theorem 3.2], the kernel

K1(x, y) = pFp

(
a

a + m
xy

)
∈ STP∞ on R2.

Note also that for any positive a, b the kernel

K2(x, y) = pFq

(
a
b

xy

)
∈ STP∞ on (0,∞) × (0,∞)

due to [14, p.101, below (1.9) in Chapter 3]. This implies that Theorem 2.6 is applicable to the ratios
of the integral transforms

F (x) =

∫∞
−∞K1(x, t)A(t)w(t)dt∫∞
−∞K1(x, t)B(t)w(t)dt

and G(x) =

∫∞
0
K2(x, t)A(t)w(t)dt∫∞

0
K2(x, t)B(t)w(t)dt

and the monotonicity pattern of A(x)/B(x) is preserved both by F (x) and G(x) when they are not
monotonic.

4 Applications

Given a vector c = (c1, . . . , cm), we will use the shorthand notation (c+µ)k =
∏m

i=1(ci+µ)k and the product
is understood to be 1 is the vector c is empty vector (that is m = 0). Define

F (µ) :=
pFq

(
c + µ,a1
d + µ,b1

x

)
sFt

(
c + µ,b2

d + µ,a2
x

) =

∞∑
k=0

fk(c + µ)k/(d + µ)k

∞∑
k=0

gk(c + µ)k/(d + µ)k

, (7)

where c or d can be an empty vector. By writing a = (a1,a2), b = (b1, b2) we will have

fk
gk

=
(a1)k(a2)k
(b1)k(b2)k

=
(a)k
(b)k

.

The following fact is well-known and is straightforward to verify: both log-concavity and log-convexity of a
sequence imply its unimodality (and if a log-concave sequence is not monotone, then it first increases and
then decreases while for log-convex sequence it is reverse).

Log-concavity of {fk/gk} reduces to the inequality (similarly for log-convexity)

(a + k − 1)

(b + k − 1)
≥ (a + k)

(b + k)
for k = 1, 2, . . .

Sufficient condition for the above inequality to hold is the decrease of the rational function

Rm,n(x) =
(a + x)

(b + x)
=

∏m
k=1(ak + x)∏n
k=1(bk + x)

on (0,∞). Here m, n denote the number of components in a and b, respectively. Let ej(a) = ej(a1, . . . , am)
be the j-th elementary symmetric polynomial. We have a slight extension of Biernaki–Krzyż lemma as
follows [12, Lemmas 3,4]:

Lemma 4.1. If m ≤ n and

en(b)

em(a)
≤ en−1(b)

em−1(a)
≤ · · · ≤ en−m+1(b)

e1(a)
≤ en−m(b),

then the function Rm,n(x) is monotone decreasing on (0,∞). These inequalities hold, in particular, if

0 < a1 ≤ a2 ≤ · · · ≤ am, 0 < b1 ≤ b2 ≤ · · · ≤ bm and
∑k

j=1 aj ≤
∑k

j=1 bj for k = 1, . . . ,m.

9



Remark. Clearly, we can apply the above lemma to 1/Rm,n(x) and get conditions for Rm,n to be
increasing and hence for {fk/gk} to be log-convex (and still unimodal).

Theorem 4.2. Suppose the kernel

K(µ, n) =
(c + µ)n
(d + µ)n

∈ SR3 on (0,∞) × N0

and a = (a1,a2), b = (b1,b2) satisfy the conditions of Lemma 4.1. Then the function F (µ) defined in (7)
is unimodal on (0,∞). In particular, this is true if the kernel K(µ, n) is one of those given in Examples 4,
6, 9, 10 and (assuming Conjecture 1) 11.

In some particular cases of the above theorem we can say more. Take a = (a1,a2), b = (b1,b2) satisfying
Lemma 4.1 and consider

F1(µ) = pFq

(
µ,a1
b1

x

)/
sFt

(
µ,b2

a2
x

)
,

so that we are in the framework of Example 4. We conclude that F1(µ) is decreasing for large µ by Lemma B.1
while the sign of F ′(0) coincides, by an easy calculation, with that of

(a)1
(b)1

p+1Fq+1

(
1,a1 + 1
2,b1 + 1

x

)
− (b2)1

(a2)1
s+1Ft+1

(
1,b2 + 1
2,a2 + 1

x

)
.

Hence, if this quantity is negative, then F1(µ) is monotone decreasing on (0,∞). If it is positive, F1(µ) is
first increasing and then decreasing. On the other hand, taking

F2(µ) = pFq

(
a1
µ,b1

x

)/
sFt

(
b2

µ,a2
x

)
we get a particular case of Example 6. Thus we conclude that F2(µ) is eventually decreasing by the asymptotic
formula given in Example 6 (still assuming that a, b satisfy Lemma 4.1). The derivative F ′

2(0+) can be
computed by Lemma B.2.

In a similar fashion, by employing Examples 7 and 8 we get conditions for unimodality of the q-
hypergeometric ratios

µ→ pφq

(
qµ, qa1

qb1
q;x

)/
sφt

(
qµ, qb2

qa2
q;x

)
µ→ pφq

(
qa1

qµ, qb1
q;x

)/
sφt

(
qb2

qµ, qa2
q;x

)
.

Note, however, that for the q case the vectors a and b in Lemma 4.1 should replaced by the vectors:

â = (q−a1 − 1, q−a2 − 1, . . . , q−am − 1), b̂ = (q−b1 − 1, q−b2 − 1, . . . , q−bm − 1)

as explained in [13, Theorem 1].
As another example consider the Nuttall Q-function [4] which generalizes Marcum Q-function and plays

a role in communication theory. It is defined by

Qµ,ν(a, b) =

∫ ∞

b

xµe−(x2+a2)/2Iν(ax)dx (8)

with a > 0, b ≥ 0, ν > −1, µ > 0 and Iν standing for the modified Bessel function of the first kind. Fix
ν1 > ν2 and a1 ≤ a2. Using the standard power series expansion of Iν [20, p.217] we have

Iν1
(a1x)

Iν2(a2x)
= 2ν2−ν2aν1

1 a
−ν2
2 xν1−ν2

∑∞
k=0 a

2k
1 x

2k/[4kk!Γ(k + ν1 + 1)]∑∞
k=0 a

2k
2 x

2k/[4kk!Γ(k + ν2 + 1)]
.

First we will show that this ratio is a unimodal function of x on (0,∞) if ν1 − ν2 = 2ℓ, where ℓ ∈ N (if
ℓ = 0 this ratio is immediately seen to be decreasing). Indeed, in this case the power series in the numerator
becomes ∑∞

n=ℓ
a
2(n−ℓ)
1 x2n/[4n−ℓ(n− ℓ)!Γ(n− ℓ+ ν1 + 1)]
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and the sequence of ratios of the power series coefficients at x2k for k = 0, 1, . . . takes the form

0, . . . , 0︸ ︷︷ ︸
ℓ times

,
4ℓℓ!Γ(ℓ+ ν2 + 1)

a2ℓ2 Γ(2ℓ+ ν2 + 1)
, . . . , 4ℓa−2ℓ

(a1
a2

)2k Γ(k + 1)Γ(k + ν2 + 1)

Γ(k − ℓ+ 1)Γ(k + ℓ+ ν2 + 1)
, . . .

It follows from the p = 2 case of the integral representation in Example 9 (see also [15, Introduction]) that

k → Γ(k + 1)Γ(k + ν2 + 1)

Γ(k − ℓ+ 1)Γ(k + ℓ+ ν2 + 1)

is decreasing for k ≥ ℓ, so that the ratios of the coefficients at x2k, k = 0, 1, . . . form a sequence which first
increases and then decreases. By Theorem 2.5 or [28, Corollary 2.3] we conclude that the same is true for
the ratio Iν1

(a1x)/Iν2
(a2x). Hence, considering the definition (8) as the (truncated) Mellin transform in the

variable µ we get the following statement:

Theorem 4.3. Suppose b ≥ 0, ν1 − ν2 = 2ℓ ∈ N and 0 < a1 ≤ a2. Then the ratio

µ→ Qµ,ν1
(a1, b)

Qµ,ν2
(a2, b)

is unimodal on (0,∞).

In view of the reduction formula [4, p.39]

Qµ,ν(a, 0) = 2(µ−ν−1)/2aνe−a2/2 Γ((µ+ ν + 1)/2)

Γ(ν + 1)
1F1

(
(µ+ ν + 1)/2

ν + 1

a2

2

)
,

we obtain the corresponding statement for the ratio of the Kummer functions. Furthermore, based on nu-
merical evidence, we believe that the above ratio of the modified Bessel functions is unimodal not only if
ν1− ν2 = 2ℓ but for all ν1 ≥ ν2 > −1. Notwithstanding the fact that the literature on the ratio of the Bessel
functions is vast, we were unable to locate this property and leave it here as the following conjecture:

Conjecture 2. Suppose b ≥ 0, ν1 ≥ ν2 > −1 and 0 < a1 ≤ a2. Then the ratio

x→ Iν1(a1x)

Iν2
(a2x)

is unimodal on (0,∞). Moreover, if ν1 ≥ ν2 > 0 it is log-concave.

Acknowledgments. We thank Apoorva Khare for sharing some of his insights regarding sign regularity
which was very fruitful and helped to improve the paper.
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A Sign regularity of some q-Pochhammer kernels

Assume that k ∈ N, 0 < q < 1, and x, y are indeterminates. Let (x; q)k be the q-Pochhammer symbol. We
will need the following easily verifiable identity

(x; q)m − (y; q)m
x− y

= −
m−1∑
j=0

qj(x; q)j(yq
j+1; q)m−1−j , (A.1)

where m ∈ N0, and the straightforward expansion∣∣∣∣∣∣
∑m

i=1 ai
∑m

i=1 bi∑n
j=1 cj

∑n
j=1 dj

∣∣∣∣∣∣ =

m∑
i=1

n∑
j=1

∣∣∣∣ai bi
cj dj

∣∣∣∣ , (A.2)

where ai, bi, ci, di ∈ R and m,n ∈ N . The proof of the following lemma is inspired by a calculation in [6,
Theorem 3.2].

Lemma A.1. The kernel K(µ, n) = (qµ; q)n ∈ STP3 on (0,∞) × N0.

Proof. As K(µ, n) > 0 we need to verify the signs of the second and the third order determinants. Verification
for the second order determinants is rather straightforward and will be omitted. Suppose µ3 > µ2 > µ1 > 0
are reals and s > j > i ≥ 1 are positive integers. It remains to prove that∣∣∣∣∣∣

(qµ1 ; q)i (qµ2 ; q)i (qµ3 ; q)i
(qµ1 ; q)j (qµ2 ; q)j (qµ3 ; q)j
(qµ1 ; q)s (qµ2 ; q)s (qµ3 ; q)s

∣∣∣∣∣∣ > 0.

Using rather standard notation for column and row manipulations (say C2−C1 → C2 means that the second
column should be replaced by the difference of the second and the first column which does not alter the
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value of the determinant), we compute∣∣∣∣∣∣
(qµ1 ; q)i (qµ2 ; q)i (qµ3 ; q)i
(qµ1 ; q)j (qµ2 ; q)j (qµ3 ; q)j
(qµ1 ; q)s (qµ2 ; q)s (qµ3 ; q)s

∣∣∣∣∣∣ =
[
C2−C1→C2

C3−C1→C3

]
=

∣∣∣∣∣∣
(qµ1 ; q)i (qµ2 ; q)i − (qµ1 ; q)i (qµ3 ; q)i − (qµ1 ; q)i
(qµ1 ; q)j (qµ2 ; q)j − (qµ1 ; q)j (qµ3 ; q)j − (qµ1 ; q)j
(qµ1 ; q)s (qµ2 ; q)s − (qµ1 ; q)s (qµ3 ; q)s − (qµ1 ; q)s

∣∣∣∣∣∣
=
[
R3−(qµ1+j ;q)s−jR2→R3

]
=

∣∣∣∣∣∣
(qµ1 ; q)i (qµ2 ; q)i − (qµ1 ; q)i (qµ3 ; q)i − (qµ1 ; q)i
(qµ1 ; q)j (qµ2 ; q)j − (qµ1 ; q)j (qµ3 ; q)j − (qµ1 ; q)j

0 (qµ2 ; q)s − (qµ1+j ; q)s−j(q
µ2 ; q)j (qµ3 ; q)s − (qµ1+j ; q)s−j(q

µ3 ; q)j

∣∣∣∣∣∣
=
[
R2−(qµ1+i;q)j−iR1→R2

]
=

∣∣∣∣∣∣
(qµ1 ; q)i (qµ2 ; q)i − (qµ1 ; q)i (qµ3 ; q)i − (qµ1 ; q)i

0 (qµ2 ; q)j − (qµ1+i; q)j−i(q
µ2 ; q)i (qµ3 ; q)j − (qµ1+i; q)j−i(q

µ3 ; q)i
0 (qµ2 ; q)s − (qµ1+j ; q)s−j(q

µ2 ; q)j (qµ3 ; q)s − (qµ1+j ; q)s−j(q
µ3 ; q)j

∣∣∣∣∣∣
= (qµ1 ; q)i

∣∣∣∣ (qµ2 ; q)j − (qµ1+i; q)j−i(q
µ2 ; q)i (qµ3 ; q)j − (qµ1+i; q)j−i(q

µ3 ; q)i
(qµ2 ; q)s − (qµ1+j ; q)s−j(q

µ2 ; q)j (qµ3 ; q)s − (qµ1+j ; q)s−j(q
µ3 ; q)j

∣∣∣∣
= (qµ1 ; q)i

∣∣∣∣ (qµ2 ; q)i
[
(qµ2+i; q)j−i − (qµ1+i; q)j−i

]
(qµ3 ; q)i

[
(qµ3+i; q)j−i − (qµ1+i; q)j−i

]
(qµ2 ; q)j

[
(qµ2+j ; q)s−j − (qµ1+j ; q)s−j

]
(qµ3 ; q)j

[
(qµ3+j ; q)s−j − (qµ1+j ; q)s−j

]∣∣∣∣
= by (A.1) = (qµ1 ; q)i(q

µ2 − qµ1)(qµ3 − qµ1)qiqj×∣∣∣∣∣∣∣∣∣
(qµ2 ; q)i

j−i−1∑
k=0

qk(qµ2+i; q)k(qµ1+i+k+1; q)j−i−1−k (qµ3 ; q)i
j−i−1∑
k=0

qk(qµ3+i; q)k(qµ1+i+k+1; q)j−i−1−k

(qµ2 ; q)j
s−j−1∑
ℓ=0

qℓ(qµ2+j ; q)ℓ(q
µ1+j+ℓ+1; q)s−j−1−ℓ (qµ3 ; q)j

s−j−1∑
ℓ=0

qℓ(qµ3+j ; q)ℓ(q
µ1+j+ℓ+1; q)s−j−1−ℓ

∣∣∣∣∣∣∣∣∣
= by (A.2) = (qµ1 ; q)i(q

µ2 − qµ1)(qµ3 − qµ1)qiqj×

j−i−1∑
k=0

s−j−1∑
ℓ=0

∣∣∣∣∣q
k(qµ2 ; q)i(q

µ2+i; q)k(qµ1+i+k+1; q)j−i−1−k qk(qµ3 ; q)i(q
µ3+i; q)k(qµ1+i+k+1; q)j−i−1−k

qℓ(qµ2 ; q)j(q
µ2+j ; q)ℓ(q

µ1+j+ℓ+1; q)s−j−1−ℓ qℓ(qµ3 ; q)j(q
µ3+j ; q)ℓ(q

µ1+j+ℓ+1; q)s−j−1−ℓ

∣∣∣∣∣
= (qµ1 ; q)i(q

µ2 − qµ1)(qµ3 − qµ1)qiqj×
j−i−1∑
k=0

s−j−1∑
ℓ=0

qk+ℓ(qµ1+i+k+1; q)j−i−1−k(qµ1+j+ℓ+1; q)s−j−1−ℓ

∣∣∣∣∣(q
µ2 ; q)i+k (qµ3 ; q)i+k

(qµ2 ; q)j+ℓ (qµ3 ; q)j+ℓ

∣∣∣∣∣ .
As, clearly, i+ k ≤ j − 1 < j + ℓ each determinant in the summand is positive.

Lemma A.2. The kernel K(µ, n) = 1/(qµ; q)n ∈ SSR3 on (0,∞) × N0 with the sign pattern (+,−,−).

Proof. As K(µ, n) > 0 we need to verify the signs of the second and the third order determinants. Verification
for the second order determinants is rather straightforward and will be omitted. Suppose µ3 > µ2 > µ1 > 0
are reals and s > j > i ≥ 1 are positive integers. It remains to prove that∣∣∣∣∣∣

(qµ1 ; q)−1
i (qµ2 ; q)−1

i (qµ3 ; q)−1
i

(qµ1 ; q)−1
j (qµ2 ; q)−1

j (qµ3 ; q)−1
j

(qµ1 ; q)−1
s (qµ2 ; q)−1

s (qµ3 ; q)−1
s

∣∣∣∣∣∣ < 0. (A.3)
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We compute∣∣∣∣∣∣
(qµ1 ; q)−1

i (qµ2 ; q)−1
i (qµ3 ; q)−1

i

(qµ1 ; q)−1
j (qµ2 ; q)−1

j (qµ3 ; q)−1
j

(qµ1 ; q)−1
s (qµ2 ; q)−1

s (qµ3 ; q)−1
s

∣∣∣∣∣∣ =
[
C2−C1→C2

C3−C1→C3

]
=

∣∣∣∣∣∣
(qµ1 ; q)−1

i (qµ2 ; q)−1
i − (qµ1 ; q)−1

i (qµ3 ; q)−1
i − (qµ1 ; q)−1

i

(qµ1 ; q)−1
j (qµ2 ; q)−1

j − (qµ1 ; q)−1
j (qµ3 ; q)−1

j − (qµ1 ; q)−1
j

(qµ1 ; q)−1
s (qµ2 ; q)−1

s − (qµ1 ; q)−1
s (qµ3 ; q)−1

s − (qµ1 ; q)−1
s

∣∣∣∣∣∣
=
[
R3−(qµ1+j ;q)−1

s−jR2→R3

]
=

∣∣∣∣∣∣
(qµ1 ; q)−1

i (qµ2 ; q)−1
i − (qµ1 ; q)−1

i (qµ3 ; q)−1
i − (qµ1 ; q)−1

i

(qµ1 ; q)−1
j (qµ2 ; q)−1

j − (qµ1 ; q)−1
j (qµ3 ; q)−1

j − (qµ1 ; q)−1
j

0 (qµ2 ; q)−1
s − (qµ1+j ; q)−1

s−j(q
µ2 ; q)−1

j (qµ3 ; q)−1
s − (qµ1+j ; q)−1

s−j(q
µ3 ; q)−1

j

∣∣∣∣∣∣
=
[
R2−(qµ1+i;q)−1

j−iR1→R2

]
=

∣∣∣∣∣∣
(qµ1 ; q)−1

i (qµ2 ; q)−1
i − (qµ1 ; q)−1

i (qµ3 ; q)−1
i − (qµ1 ; q)−1

i

0 (qµ2 ; q)−1
j − (qµ1+i; q)−1

j−i(q
µ2 ; q)−1

i (qµ3 ; q)−1
j − (qµ1+i; q)−1

j−i(q
µ3 ; q)−1

i

0 (qµ2 ; q)−1
s − (qµ1+j ; q)−1

s−j(q
µ2 ; q)−1

j (qµ3 ; q)−1
s − (qµ1+j ; q)−1

s−j(q
µ3 ; q)−1

j

∣∣∣∣∣∣
= (qµ1 ; q)−1

i

∣∣∣∣(qµ2 ; q)−1
j − (qµ1+i; q)−1

j−i(q
µ2 ; q)−1

i (qµ3 ; q)−1
j − (qµ1+i; q)−1

j−i(q
µ3 ; q)−1

i

(qµ2 ; q)−1
s − (qµ1+j ; q)−1

s−j(q
µ2 ; q)−1

j (qµ3 ; q)−1
s − (qµ1+j ; q)−1

s−j(q
µ3 ; q)−1

j

∣∣∣∣
= (qµ1 ; q)−1

i

∣∣∣∣ (qµ2 ; q)−1
i

[
(qµ2+i; q)−1

j−i − (qµ1+i; q)−1
j−i

]
(qµ3 ; q)−1

i

[
(qµ3+i; q)−1

j−i − (qµ1+i; q)−1
j−i

]
(qµ2 ; q)−1

j

[
(qµ2+j ; q)−1

s−j − (qµ1+j ; q)−1
s−j

]
(qµ3 ; q)−1

j

[
(qµ3+j ; q)−1

s−j − (qµ1+j ; q)−1
s−j

]∣∣∣∣
= (qµ1 ; q)−1

i ×
∣∣∣∣a b
c d

∣∣∣∣ , (A.4)

where

a = (qµ2 ; q)−1
i (qµ2+i; q)−1

j−i(q
µ1+i; q)−1

j−i

[
(qµ2+i; q)j−i − (qµ1+i; q)j−i

]
,

b = (qµ3 ; q)−1
i (qµ3+i; q)−1

j−i(q
µ1+i; q)−1

j−i

[
(qµ3+i; q)j−i − (qµ1+i; q)j−i

]
,

c = (qµ2 ; q)−1
j (qµ2+j ; q)−1

s−j(q
µ1+j ; q)−1

s−j

[
(qµ2+j ; q)s−j − (qµ1+j ; q)s−j

]
,

d = (qµ3 ; q)−1
j (qµ3+j ; q)−1

s−j(q
µ1+j ; q)−1

s−j

[
(qµ3+j ; q)s−j − (qµ1+j ; q)s−j

]
.

By (A.1) , we see that (A.4) is equal to

(qµ1 ; q)−1
i (qµ2 − qµ1)(qµ3 − qµ1)qiqj ×

∣∣∣∣u v
f g

∣∣∣∣ , (A.5)

where

u = (qµ2 ; q)−1
i (qµ2+i; q)−1

j−i(q
µ1+i; q)−1

j−i

j−i−1∑
k=0

qk(qµ2+i; q)k(qµ1+i+k+1; q)j−i−1−k,

v = (qµ3 ; q)−1
i (qµ3+i; q)−1

j−i(q
µ1+i; q)−1

j−i

j−i−1∑
k=0

qk(qµ3+i; q)k(qµ1+i+k+1; q)j−i−1−k,

f = (qµ2 ; q)−1
j (qµ2+j ; q)−1

s−j(q
µ1+j ; q)−1

s−j

s−j−1∑
ℓ=0

qℓ(qµ2+j ; q)ℓ(q
µ1+j+ℓ+1; q)s−j−1−ℓ,

g = (qµ3 ; q)−1
j (qµ3+j ; q)−1

s−j(q
µ1+j ; q)−1

s−j

s−j−1∑
ℓ=0

qℓ(qµ3+j ; q)ℓ(q
µ1+j+ℓ+1; q)s−j−1−ℓ.

In view of (qµ2 ; q)−1
i (qµ2+i; q)−1

j−i = (qµ2 ; q)−1
j and (qµ3 ; q)−1

i (qµ3+i; q)−1
j−i = (qµ3 ; q)−1

j and employing (A.2),
we conclude that that (A.5) is equal to

(qµ1 ; q)−1
i (qµ2 − qµ1)(qµ3 − qµ1)qi+j(qµ1+i; q)−1

j−i(q
µ1+j ; q)−1

s−j(q
µ2 ; q)−1

j (qµ3 ; q)−1
j

×
j−i−1∑
k=0

s−j−1∑
ℓ=0

qk+ℓ(qµ1+i+k+1; q)j−i−1−k(qµ1+j+ℓ+1; q)s−j−1−ℓ∆kℓ,
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where

∆kℓ =

∣∣∣∣∣ (qµ2+i; q)k (qµ3+i; q)k

(qµ2+j ; q)−1
s−j(q

µ2+j ; q)ℓ (qµ3+j ; q)−1
s−j(q

µ3+j ; q)ℓ

∣∣∣∣∣
= (qµ3+j ; q)−1

s−j(q
µ2+i; q)k(qµ3+j ; q)ℓ − (qµ2+j ; q)−1

s−j(q
µ3+i; q)k(qµ2+j ; q)ℓ

= (qµ3+j ; q)−1
s−j(q

µ2+j ; q)−1
s−j

[
(qµ2+j ; q)s−j(q

µ2+i; q)k(qµ3+j ; q)ℓ − (qµ3+j ; q)s−j(q
µ3+i; q)k(qµ2+j ; q)ℓ

]
= (qµ3+j ; q)−1

s−j(q
µ2+j ; q)−1

s−j(q
µ3+j ; q)ℓ(q

µ2+j ; q)ℓ

×
[
(qµ2+j+ℓ; q)s−j−ℓ(q

µ2+i; q)k − (qµ3+j+ℓ; q)s−j−ℓ(q
µ3+i; q)k

]
< 0

in view of µ2 < µ3. This proves (A.3).

B Derivative asymptotics for factorial and inverse factorial series

Lemma B.1. Suppose bk > 0 for all k ≥ 0 and

a0
b0

≤ a1
b1

≤ · · · ≤ am
bm

,
am
bm

≥ am+1

bm+1
≥ am+2

bm+2
· · ·

and at least one inequality in each chain is strict. Define

F (x) =

∑∞
k=0 ak(x)k∑∞
k=0 bk(x)k

=
A(x)

B(x)
,

and assume that each series converges uniformly on all compact subsets of R. Then F (x+ 1)−F (x) < 0 for
all sufficiently large x.

Proof. We have

F (x+ 1) − F (x) =
A(x+ 1)B(x) −A(x)B(x+ 1)

B(x)B(x+ 1)

In view of (x+ 1)k = (x)k(x+ k)/x, we obtain

A(x+ 1)B(x) −A(x)B(x+ 1) =
1

x

∞∑
k=0

ak(x)k(x+ k)

∞∑
n=0

bn(x)n − 1

x

∞∑
k=0

ak(x)k

∞∑
n=0

bn(x)n(x+ n)

=
1

x

∞∑
k,n=0

akbn(x)k(x)n(k − n) = − 1

x

∞∑
k,n=0

anbk(x)k(x)n(k − n)

=
1

2x

∞∑
k,n=0

bkbn(x)k(x)n(k − n)

(
ak
bk

− an
bn

)
=
S(x)

2x
,

so that

F (x+ 1) − F (x) =
S(x)

2xB(x)B(x+ 1)

16



and the sign of the left hand side coincides with that of S(x). Decomposing yields:

S(x) =

m−1∑
k,n=0

bkbn(x)k(x)n(k − n)

(
ak
bk

− an
bn

)
+

m−1∑
n=0

∞∑
k=m

bkbn(x)k(x)n(k − n)

(
ak
bk

− an
bn

)

+

m−1∑
k=0

∞∑
n=m

bkbn(x)k(x)n(k − n)

(
ak
bk

− an
bn

)
+

∞∑
k=m

∞∑
n=m

bkbn(x)k(x)n(k − n)

(
ak
bk

− an
bn

)

=

m−1∑
k,n=0

bkbn(x)k(x)n(k − n)

(
ak
bk

− an
bn

)
+ 2

∞∑
k=m

bk(x)k

m−1∑
n=0

bn(x)n(k − n)

(
ak
bk

− an
bn

)

+

∞∑
k=m

bk(x)k

∞∑
n=m

bn(x)n(k − n)

(
ak
bk

− an
bn

)
=

m−1∑
k,n=0

bkbn(x)k(x)n(k − n)

(
ak
bk

− an
bn

)

+

∞∑
k=m

bk(x)k

[
m−1∑
n=0

2bn(x)n(k − n)

(
ak
bk

− an
bn

)
−

∞∑
n=m

bn(x)n(n− k)

(
ak
bk

− an
bn

)]
.

From the last expression we get

S(x)

[(x)m]2
=

m−1∑
k,n=0

bkbn
(x)k(x)n
(x)m(x)m

(k − n)

(
ak
bk

− an
bn

)

+

∞∑
k=m

bk
(x)k
(x)m

[
m−1∑
n=0

2bn
(x)n
(x)m

(k − n)

(
ak
bk

− an
bn

)
−

∞∑
n=m

bn
(x)n
(x)m

(n− k)

(
ak
bk

− an
bn

)]
Clearly, we can make the first sum as small as we wish by making x sufficiently large. Next, the expression
in brackets in the second sum is eventually negative (for large x) , since the first sum tends to zero while
the second sum is positive for all x > 0 and is monotonically increasing, because for some (at least one)
n > m the coefficient at (x)n/(x)m is strictly positive, so that the second sum in brackets tends to +∞ as
x increases. This implies that S(x) is negative for sufficiently large x which establishes our claim.

Lemma B.2. Define

F (x) =

∑∞
k=0 ak/(x)k∑∞
k=0 bk/(x)k

.

and assume that each series converges uniformly on all compact subsets of (0,∞). Then( ∞∑
k=1

bk
(k − 1)!

)2

F ′(0+) =

∞∑
k=1

b0bk
(k − 1)!

(a0
b0

− ak
bk

)
+

∞∑
k=1

k−1∑
j=1

bkbj(Hj−1 −Hk−1)

(k − 1)!(j − 1)!

(ak
bk

− aj
bj

)
, (B.1)

where Hn denotes the n-th harmonic number.

Proof. In in view of the elementary differentiation formula

d

dx

1

(x)k
=
ψ(x) − ψ(x+ k)

(x)k
,

where ψ(z) = Γ′(z)/Γ(z) stands for digamma function, we have:

x2

( ∞∑
k=1

bk
(x)k

)2

F ′(x) =

∞∑
k,n=0

bkan
(ψ(x+ k) − ψ(x+ n))x2

(x)k(x)n
.

As, clearly, (x)k/x = (x+ 1)k−1 → (k − 1)! and x(ψ(x+ n) − ψ(x)) → 1 as x→ for n = 1, 2, . . ., by letting
x→ 0 we obtain( ∞∑

k=1

bk
(k − 1)!

)2

F ′(0+) = a0

∞∑
k=1

bk
(k − 1)!

− b0

∞∑
k=1

ak
(k − 1)!

+

∞∑
k,n=1

bkan
(ψ(k) − ψ(n))

(k − 1)!(n− 1)!
.

Finally using ψ(n) = Hn−1 − γ, where Hn denotes the n-th harmonic number and γ is Euler-Mascheroni
constant, we arrive at (B.1).
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