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Two families of sequences in OEIS

a(OEIStag) [0 1 2 3 4 5
A059710 |1 0 1 1 4 10
A108307 |1 1 2 5 15 51
A108304 |1 2 5 15 52 202

The first family of sequences (octant sequences)

a(OEIStag) [0 1 2 3 4 5
A151366 |1 0 2 2 12 30
A236408 |1 1 3 9 33 131
A001181 |1 2 6 22 92 422
A216947 |1 3 11 49 221 1113

The second family of sequences (quadrant sequences)

b Those sequences are associated to the invariant theory of the
exceptional simple Lie algebra Gy of rank 2.

b The quadrant sequences are related to the octant sequences
by the branching rules for SL(3) of Go.
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Octant sequences

The first family of sequences can be interpreted as lattice walks
restricted to the octant. We call them octant sequences.

» A059710: enumerates the multiplicities of the trivial
representation in the tensor powers of V, which is the 7-D
fundamental representation of Go.

» A108307: enumerates enhanced 3-noncrossing set partitions.

» A108304: enumerates 3-noncrossing set partitions.

(Lin, 2018; Gil and Tirrell, 2019): A108307 and A108304 are
related by the binomial transform.
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Motivation and Contribution

(Bostan, Tirrell, Westbury and Z., 2019): A059710 and A108307
are also related by the binomial transform.

Mihailovs' conjecture: Let T3(n) be the n-th term of A059710.
Then T3 is determined by T3(0) =1, T3(1) =0, T3(2) =1 and

14(n+1)(n+2) T3(n)+ (n+2)(19n+75) T3 (n+ 1)
+2(n+2)(2n+11) T3(n+2)—(n+8)(n+9) T3 (n+3) = 0.

(Bostan, Tirrell, Westbury and Z., 2019): Three independent
proofs of Mihailovs’ conjecture.

» Two proofs are based on binomial relation between A059710
and A108307, together with a result by Bousquet-Mélou and
Xin.

» The third one is a direct proof by the method of algebraic
residues, which leads to closed formulae for the generating
function of T3 in terms of hypergeometric functions.
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Quadrant sequences

The second family of sequences can be interpreted as lattice walks
restricted to the quadrant. We call them quadrant sequences.

» A151366: enumerates nonpositive bipartite trivalent graphs.
» A236408: enumerates pasting diagrams.

» A001181: enumerates Baxter permutations.

» A216947: enumerates 2-coloured noncrossing set partitions.

Question: What are relations between quadrant sequences?
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Motivation and Contribution

(Marberg, 2013): a combinatorial proof that A151366, A001181,
and A216947 are related by binomial transforms.

(Bostan, Tirrell, Westbury and Z., 2019): Derive a uniform
recurrence equation for quadrant sequences and show that they are
related by binomial transform by the representation theory of
simple Lie algebras.
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Outline

» binomial relation between the first and second octant
sequences

b Three independent proofs of Mihailovs' conjecture

b Recurrence relations for the quadrant sequences
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Preliminaries

Definition 1 Let G be a reductive complex algebraic group and
let V be a representation of G. The sequence associated to

(G, V), denoted ay/, is the sequence whose n-th term is the
multiplicity of the trivial representation in the tensor power Q" V.

Example 1 Let V' be the 7-D fundamental representation of G,.
Then A059710 is the sequence associated with (G, V).

Let a be a sequence with n-th term a(n), the binomial transform of
a is the sequence, denoted Ba, whose n-th term is
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Preliminaries

Lemma 1 Assume ay is the sequence associated to (G, V) as
specified in Definition 1. Then aygc = Bay.

Lemma 2 Assume a enumerates walks in a lattice, confined to a

domain D, using a set of steps S. Then Ba also enumerates walks
in a lattice restricted to D with steps S[{0}.

Lemma 3 Let G(t) be the generating function of a. For k € Z,
denote the generating function of B¥a by BXG. Then

(B*6)(1) = 1 —lk tG <1 —tk t) ’
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Binomial relation between A059710 and A108307

Let V be the 7-D fundamental representation of Gp. Then

» A059710 is the sequence associated to (Gz, V). Let T3(n) be
its n-th term.

» A108307 enumerates enhanced 3-noncrossing set partitions.
Let E3(n) be its n-th term.
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In terms of lattice walks, we can interpret T3 and Ez as follows:

(-1x)—(01)
(-1 0) (-1 0)
(Le1)—(2¢1) (0.£1) (1)
Steps in weight Steps in octant

lattice of Gy related to E3(n)
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In terms of lattice walks, we can interpret T3 and Ez as follows:

(-1:1) (041)
(-1 0) — (-1 :0)
(Le1)—(2¢1) (0.£1) (1)
Steps in weight Steps in octant
lattice of Gy related to E3(n)

If we make a linear transformation (x,y) — (x +y,y), then it
identifies the six non-zero steps, as well as the two domains.
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Binomial relation between A059710 and A108307

Recall: Lemma 2 Assume a enumerates walks in a lattice, confined
to a domain D, using a set of steps S. Then Ba also enumerates
walks in a lattice restricted to D with steps ST[{0}.
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Binomial relation between A059710 and A108307

Recall: Lemma 2 Assume a enumerates walks in a lattice, confined
to a domain D, using a set of steps S. Then Ba also enumerates
walks in a lattice restricted to D with steps ST[{0}.

By Lemma 2 and the previous figures, we conclude that Ez is the
binomial transform of Ts3.
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Binomial relation between A059710 and A108307

Recall: Lemma 2 Assume a enumerates walks in a lattice, confined
to a domain D, using a set of steps S. Then Ba also enumerates
walks in a lattice restricted to D with steps ST[{0}.

By Lemma 2 and the previous figures, we conclude that Ez is the
binomial transform of Ts3.

(Lin, 2018; Gil and Tirrell, 2019): A108307 and A108304 are
related by the binomial transform.

Recall: Lemma 1 Assume ay is the sequence associated to (G, V)
as specified in Definition 1. Then aygc = Bay.

Thus, the octant sequences are sequences associated to

(G27V)¢ (G27V@(C)7 (GZaV@2(C)
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First proof of Mihailovs' conjecture

Mihailovs' conjecture: Let T3(n) be the n-th term of A059710.
Then T3 is determined by T3(0) =1, T3(1) =0, T3(2) =1 and

14(n+1)(n+2) T3(n)+ (n+2)(19n+75) Tz (n+ 1)
+2(n+2)(2n+11) T3(n+2)—(n+8)(n+9) T3(n+3) = 0.

(Bousquet-Mélou and Xin, 2005): Let E3(n) be the n-th term
of A108307. Then Ej is given by E3(0) = E3(1) =1, and

8(n+3)(n+1)E3(n) + (7n* +53n+88) E3 (n + 1)
—(n+8)(n+7)Ez(n+2)=0.
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First proof of Mihailovs' conjecture

Recall: We prove that E3 is the binomial transform of T3. Thus,

n

EOR S WIEO)

k=0

Set £(n, k) = (—1)" () Es(k).

» By Bousquet-Mélou and Xin's result, f(n, k) is holonomic
function, which satisfies ordinary difference equations for n
and k, respectively.

» ldea: Using creative telescoping method (Zeilberger, 1990),
which is an algorithmic approach to compute a
differential /difference equation for the integration/sum of
holonomic functions, to drive a recurrence equation for T3.

Yi Zhang, XJTLU 15/27



First proof of Mihailovs' conjecture

>

Yi Zhang, XJTLU

Using the Koutschan's Mathematica package
HolonomicFunctions.m that implements Chyzak's algorithm
for creative telescoping, we find exactly the recurrence
equation in Mihailovs’ conjecture.

16/27



Creative Telescoping
Prove

Yi Zhang, XJTLU
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Creative Telescoping
Prove

> () -~

k=

o

Set f(n, k) = (}) and F(n)=3"}7_, (7). Find

1-f(n+1,k) + (—2) - f(n, k) = Dy (k_’;_l - f(n, k)) (1)
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Creative Telescoping
Prove

> ()=

k=

o

Set f(n, k) = (}) and F(n)=3"}7_, (7). Find

1-f(n+1,k) + (—2) - f(n, k) = Dy <k_’;_1 - f(n, k)) (1)

Taking sums on both sides of (1) for k from —oo to oo, we get

n+1 n
> f(n+1,k)=2> f(nk)=0
k=0 k=0

because f(n, k) =0 if k <0 or k > n. Thus, we have
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Set f(n, k) = (}) and F(n)=3"}7_, (7). Find

1-f(n+1,k) + (—2) - f(n, k) = Dy <k_’;_1 - f(n, k)) (1)

Taking sums on both sides of (1) for k from —oo to oo, we get

n+1 n
> f(n+1,k)=2> f(nk)=0
k=0 k=0

because f(n, k) =0 if k <0 or k > n. Thus, we have
F(n+1)—2F(n) =0.

Together with F(0) = 1, we get F(n) = 2".

Yi Zhang, XJTLU 17/271



Second proof of Mihailovs' conjecture

Recall: We prove that E3 is the binomial transform of T3. Let
T(t) =350 Ta(n)t" and E(t) = 3,50 E3(n)t". Then

T(t)zl—lkt'é’(lit)'

» By Bousquet-Mélou and Xin's result, we can derive an ODE
for £(t).

» Using the closure properties of holonomic function (the sum,
product and algebraic substitution of holonomic functions is
still holonomic), we can derive an ODE for 7(t) and convert
it into a linear recurrence for T3(n), which is exactly the
recurrence equation in Mihailovs' conjecture.
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Third proof of Mihailovs' conjecture

|dea: In terms of lattice walks, we can interpret T3(n) to be the
constant term of W K", where

K=04+x+y+xy+xt+y )l
and

W — x_2y_3(x2y3 B x L2 X2y x3y 32

Fxy T3 )y 2 23, 08y

Let 7(t) = >, T3(n)t". Then T(t) is the constant coefficient
[x°y°] of W /(1 — tK). In other words, T (t) is equal to the
algebraic residue of W /(xy — txyK), which is proportional to the
contour integral of W /(xy — txyK) over a cycle.
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Third proof of Mihailovs' conjecture

Using creative telescoping method, we can compute a 6-th order
ODE for T(t). Moreover, by using factorization of differential
operators, we can show that L3(7(t)) = 0, where 9 = & and

Ly=t>(2t+1) (7Tt —1)(t+1) 0> +2¢t(t + 1) (63t> +22t —7) &°+
(252® +338¢t% +36t—42) 0+ 28t (3t +4).

Converting it into a linear recurrence for T3(n), we get exactly the
recurrence equation in Mihailovs’ conjecture.
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Closed formulae

By factorization of the operator L3 and algorithms for solving 2-nd
order ODEs, we derive the following closed formula for 7(t):

1 12 2 4
T(t):307t5 [R1'2F1 (323;¢) + R 2k (333;¢) +5P]7

where
o (t+1)° (2143 +45¢2+ 60t + 5)
e t—1 ’
n _6t2(t—|—1)2 (1012 +74t+5)
2 (t—1)2 ’
and
27 (t+1) ¢

¢_W’ P=28t"+66t3+46t>+15¢+ 1.
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Closed formulae

By elliptic curve theory, we derive an alternative formula for 7(t):

i+ (Tt—1)(2t+1)(t+1)
6 t° 360 t>

((155 24182t +59) (11t + 1) H(t)

+ (34183 45072 4231t +1) (5t +1) H’(t)),

where s
1 = = 1728
- . 12 12. - 77
C(t-1P (25834212 +3t-1)°
t6(1—7t)(2t+1)*(t+1)°
and

g =(t—1)(252+21t>+3t—1).
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Transcendence and asymptotics

Using those closed formulae, we can show that that 7(t) is a
transcendental power series and its n-th coefficient

n 411771
T3(n) ~ C- 77, where C = 8;Z5\f ~ 2627.6.
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Recurrence relations for quadrant sequences
Definition 2 Let V be the defining representation of SL(3) and
denote the dual by V*. For k > 0, we define Sy to be the
sequence associated to (SL(3),V & V* @ k C).

Remark: SL(3) is the maximal subgroup of Gy. Let V be the 7-D
fundamental representation of Go. Then Sy is the the sequence
associated to (SL(3), (V @ kC) lsi(3))-

Theorem (Bostan, Tirrell, Westbury and Z., 2019): The quadrant
sequences Sp, S1, S», S3 are identical to the sequences in the
second family listed in OEIS.

Lemma 4 Let G be the generating function of Sy, where k > 0.
Then Gy is the constant coefficient of [x%y°] of W /(1 — tK), where

X
K=k+x+y+x_1+y_1+;+£

and ) )
W:I—X—+x3—x2y2+y3—y—.
y X
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Recurrence relations for quadrant sequences
By Lemma 4, S3 is identical to the sequence A216947.

(Marberg, 2013): The n-th term Cy(n) of S3 is given by
C2(0) =1, Cg(l) =3 and

(n+5)(n+6)- Co(n+2) —2(5n* +36n+61) - Go(n+ 1)
+9(n+1)(n+4) - G(n)=0.

By Lemma 1, Si's are related by binomial transforms. Thus, by
Lemma 3, the generating function of Sy is

1 t
G(t) = =3¢ 9 (1—kt)

where G3(t) is the generating function of Ss.
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Recurrence relations for quadrant sequences

Using closure properties of holonomic functions, we derive a
uniform 4-th order recurrence equation for Sy with k as a
parameter.

By comparing the recurrence equations between Si's and the
sequences in the second family, and then checking initial terms, we
show that

Corollary: The recurrence relations stated in OEIS for the
sequences in the second family are true.
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Summary

» A combinatorial proof of binomial relation between the first
and second octant sequences

b Three independent proofs of Mihailovs' conjecture

» Two proofs are based on binomial relation between the first
and second octant sequences

» A direct proof by the method of algebraic residues, which leads

to closed formulae for the generating function of the first
octant sequence

» A unified proof for recurrence relations of the quadrant
sequences
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Summary

» A combinatorial proof of binomial relation between the first
and second octant sequences

b Three independent proofs of Mihailovs' conjecture

» Two proofs are based on binomial relation between the first
and second octant sequences

» A direct proof by the method of algebraic residues, which leads

to closed formulae for the generating function of the first
octant sequence

» A unified proof for recurrence relations of the quadrant
sequences

Thanks!

Yi Zhang, XJTLU 27/27



