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Abstract This paper considers algebraic ordinary differential equations (AODEs) and study their
polynomial and rational solutions. The authors first prove a sufficient condition for the existence of
a bound on the degree of the possible polynomial solutions to an AODE. An AODE satisfying this
condition is called noncritical. Then the authors prove that some common classes of low-order AODEs
are noncritical. For rational solutions, the authors determine a class of AODEs, which are called
maximally comparable, such that the possible poles of any rational solutions are recognizable from
their coefficients. This generalizes the well-known fact that any pole of rational solutions to a linear
ODE is contained in the set of zeros of its leading coefficient. Finally, the authors develop an algorithm
to compute all rational solutions of certain maximally comparable AODEs, which is applicable to
78.54% of the AODEs in Kamke’s collection of standard differential equations.

Keywords Algebraic ordinary differential equations, algorithms, polynomial solutions, rational solu-
tions.

1 Introduction
An algebraic ordinary differential equation (AODE) is of the form

F (x, y, y′, · · · , y(n)) = 0,
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where F is a polynomial in y, y′, · · · , y(n) with coefficients in K(x), the field of rational functions
over an algebraically closed field K of characteristic zero, and n ∈ N. For instance, K can
be the field of complex numbers, or the field of algebraic numbers. AODEs arise in many
areas of applications, such as physics, combinatorics and statistics. Therefore, being able to
effectively determine (closed form) solutions of a given AODE is one of the central problems in
mathematics, computer science, and their applications.

Although linear ODEs[1] have been intensively studied, there are still many challenging
problems in solving (nonlinear) AODEs. General approaches for solving AODEs are only
available for very specific subclasses. For example, Riccati equations, which have the form
y′ = f0(x) + f1(x)y + f2(x)y2 for some f0, f1, f2 ∈ K(x), can be considered as the simplest
form of nonlinear AODEs. In [2], Kovacic gave a complete algorithm for determining algebraic
solutions of a Riccati equation with rational function coefficients. The study of general solutions
without movable singularities can be found in [3–5] for first-order, and in [1, 6] for higher-order
AODEs.

The problem of finding all solutions of an arbitrary AODE is very difficulty in general, but
it is natural to ask whether a given AODE admits some special kinds of solutions. In [7],
Eremenko gave a theoretical bound for the degree of rational solutions of a first-order AODE.
This reduces the problem of finding all rational solutions of a first-order AODE to finding all
solutions of a system of algebraic equations in the coefficients of a possible rational solution.

During the last two decades, an algebraic geometric method for AODEs has been developed
(see [8–12]). The main idea of this approach is based on considering of the AODE as an alge-
braic equation in the dependent variable and its derivatives. This algebraic equation defines an
algebraic hypersurface in a suitable affine space. Therefore, tools from algebraic geometry are
applicable. Using this idea, Feng and Gao proposed an algorithm for computing a rational gen-
eral solution of an autonomous first-order AODE[8, 9]. The non-autonomous cases are studied
in [10] and are completed in [12]. In contrast, general approaches to treat higher order AODEs
are scant in the literature. In [13], the authors generalized the algebraic geometric method
mentioned above to arbitrary order AODEs whose associated hypersurfaces are given together
with proper parametrizations and studied their rational general solutions.

AODEs having no rational general solution can still have several particular rational solutions.
The algorithms developed in [13] are not able to detect these solutions. Therefore, it is necessary
to develop new algorithms for determining all rational solutions, including both general and
particular solutions.

In this paper, we study the properties of the possible polynomial and rational solutions
of an AODE of arbitrary order. We prove a sufficient condition for the existence of a bound
on the degree of the possible polynomial solutions to a given AODE. An AODE satisfying this
condition is called noncritical. Besides, we develop algorithms to test the noncritical property of
an AODE, and if so, find such a degree bound. The easy determination of the condition allows
us to confirm that some common classes of low-order AODEs are noncritical (see Theorems 3.6
and 3.7). This result can be considered as a refinement of the works of Krushel’nitskĳ in [14],
and Cano in [15] concerning polynomial solutions.
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It is well-known that the set of poles of rational solutions to a linear ODE with polynomial
coefficients is contained in the set of zeros of its highest coefficient. This fact allows us to easily
recognize possible poles of a rational solutions from the coefficients of a given linear AODE.
Unfortunately, this fact does not hold for nonlinear AODEs. However, we show that there
is a large subclass of AODEs for which this fact is still valid. In order to do that, we equip
the set of monomials in the unknown y and its derivatives with a suitable partial order (see
Definition 4.1). If an AODE admits a highest monomial with respect to this ordering, then the
poles of its possible rational solutions can only occur at the zeros of the corresponding highest
coefficient (Theorem 4.3). This generalizes the same fact of linear AODEs to the nonlinear ones.
An AODE satisfying the existence of the highest monomial is called maximally comparable.

The notion of maximally comparable AODEs already appears in [16], where the authors
considered first-order AODEs only. The authors proved that for every maximally comparable
first-order AODE, there is a finite upper bound on the degrees of its rational solutions, and
developed an algorithm to determine such a bound. Here, we extend this notion to higher order
AODEs. Unlike in the first-order cases, there might not exist a priori bound on the degree
of a possible rational solution for the higher order ones. We define a class of AODEs, called
completely maximally comparable, for which the existence of an upper bound for its rational
solutions is guaranteed. The class of maximally comparable AODEs covers 78.54% AODEs
from a standard collection by Kamke[17], and all of these are in fact also completely maximally
comparable. This suggests that completely maximally comparable AODEs, which are in the
scope of our algorithm for determining all rational solutions (see Algorithm 4.7), form a large
subclass of those AODEs that actually arise in practice.

The rest of the paper is organized as follows. Section 2 is devoted to a study of order bounds
for the poles of a Laurent series solution to an AODE. In Section 3 we give a sufficient condition
for an AODE to have a degree bound for its polynomial solutions. We also prove that some
common classes of low-order AODEs satisfy this condition. Rational solutions of maximally
comparable AODEs are considered in Section 4. Finally, we perform a statistical investigation
with a collection of AODEs from a standard textbook by Kamke[17].

2 An Order Bound for Laurent Series Solutions
This section can be considered as an alternative interpretation of the Newton polygon

method for AODEs, specifically tailored to Laurent series solutions. In particular, given an
AODE, we show in Proposition 2.3 that the orders of its Laurent series solutions at any given
point can be bounded in an algorithmic way. The proposition yields an easy determination of
the bound. More general constructions that apply to wider classes of series solutions can be
found in [15, 18, 19].
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Given x0 ∈ K ∪ {∞}, a Laurent series f at x = x0 has the form
∞∑

k=m

ck(x − x0)k, if x0 ∈ K,

∞∑

k=m

ckx−k, if x0 = ∞,

where ck ∈ K, cm �= 0 and m ∈ Z. We call −m the order of f (at x = x0), and denote it by
ordx0(f). The coefficient cm is called the lowest coefficient of f (at x = x0), and denoted by
cx0(f). Then we can rewrite f as follows:

cx0(f)(x − x0)−ordx0 (f) + higher order terms in (x − x0), if x0 ∈ K,

c∞(f)xord∞(f) + lower order terms in x, if x0 = ∞.

For each I = (i0, i1, · · · , in) ∈ N
n+1 and r ∈ {0, 1, · · · , n}, we set ||I||r = ir + · · · + in.

For r = 0 we write ||I|| instead of ||I||0. We also define ||I||∞ = i1 + 2i2 + · · · + nin.
Let F (y) =

∑
I∈Nn+1 fI(x)yi0 (y′)i1 · · · (y(n))in ∈ K(x){y} be a differential polynomial of

order n. We will use the following notations:

E(F ) = {I ∈ N
n+1 | fI �= 0},

d(F ) = max{||I|| | I ∈ E(F )},
D(F ) = {I ∈ E(F ) | ||I|| = d(F )}.

Moreover, for each x0 ∈ K, we denote

mx0(F ) = max{ordx0 fI + ||I||∞ | I ∈ D(F )},
Mx0(F ) = {I ∈ D(F ) | ordx0 fI + ||I||∞ = mx0(F )},

Px0,F (t) =
∑

I∈Mx0(F )

cx0(fI) ·
n−1∏

r=0

(−t − r)||I||r+1 ,

and if E(F ) \ D(F ) �= ∅, we set

bx0(F ) = max
{

ordx0 fI + ||I||∞ − mx0(F )
d(F ) − ||I||

∣∣∣ I ∈ E(F ) \ D(F )
}

.

In case that x0 = ∞, we also denote

m∞(F ) = max{ord∞ fI − ||I||∞ | I ∈ D(F )},
M∞(F ) = {I ∈ D(F ) | ord∞ fI − ||I||∞ = m∞(F )},

P∞,F (t) =
∑

I∈M∞(F )

c∞(fI) ·
n−1∏

r=0

(t − r)||I||r+1,

and
b∞(F ) = max

{
ord∞ fI − ||I||∞ − m∞(F )

d(F ) − ||I||
∣∣∣ I ∈ E(F ) \ D(F )

}
,

if E(F ) \ D(F ) �= ∅.
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Definition 2.1 Let F (y) ∈ K(x){y} be a differential polynomial of order n. For each
x0 ∈ K ∪ {∞}, we call Px0,F the indicial polynomial of F at x = x0.

Remark 2.2 The term “indicial polynomial” already appears in the literature, for in-
stance in [1, 20], when linear ODEs are considered. Definition 2.1 can be seen as a generalization
of this term to non-linear AODEs.

The following proposition shows the relation between the order of a Laurent series solution
and the indicial polynomial.

Proposition 2.3 Given an AODE F (y) = 0, and x0 ∈ K ∪ {∞}. If r ≥ 1 is the order
of a Laurent series solution of F (y) = 0 at x = x0, then exactly one of the following properties
holds:

(i) E(F ) \ D(F ) �= ∅, and r ≤ bx0(F );

(ii) r is a positive integer root of Px0,F (t).

Proof Let F (y) =
∑

I∈Nn+1 fI(x)yi0 (y′)i1 · · · (y(n))in ∈ K(x){y} be a differential polyno-
mial of order n. Let x0 ∈ K and z ∈ K((x − x0)) \ K be a Laurent series solution of F (y) = 0
of order r ≥ 1. Then z(k) is of order k + r for each k ∈ N. For each I ∈ E(F ), we may write
the coefficient fI in the following form:

fI =
cx0(fI)

(x − x0)ordx0 fI
+ hI ,

where hI ∈ K((x)) and ordx0 hI < ordx0 fI . Since z is a solution of F (y) = 0, we have

0 = F (z)

= S1 + S2 + S3 + S4,

where

S1 =
∑

I∈Mx0(F )

cx0(fI)
(x − x0)ordx0 fI

· zi0(z′)i1 · · · (z(n))in , S2 =
∑

I∈Mx0(F )

hI · zi0(z′)i1 · · · (z(n))in ,

S3 =
∑

I∈D(F )\Mx0(F )

fIz
i0(z′)i1 · · · (z(n))in , S4 =

∑

I∈E(F )\D(F )

fIz
i0(z′)i1 · · · (z(n))in .

The order of each term in S1 is equal to D = d(F )r+mx0(F ), which is strictly larger than that
of each term in S2 and S3. One of the following two cases will occur:

Case 1 The order of S1 is equal to D. Then the terms of order D in S1 must be killed by
the terms of order D in S4. In this case, we have E(F ) \ D(F ) �= ∅. By comparing the orders
of terms in S4, we obtain

D ≤ max {||I|| · r + ||I||∞ + ordx0 fI | I ∈ E(F ) \ D(F )} .

On the other hand, since D = d(F )r + mx0(F ), we conclude that

r ≤ max
{ ||I||∞ + ordx0 fI − mx0(F )

d(F ) − ||I||
∣∣∣ I ∈ E(F ) \ D(F )

}
.
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In other words, r ≤ bx0(F ).
Case 2 The order of S1 is strictly smaller than D. For each k ∈ N, a direct computation

shows that the lowest coefficient z(k) at x = x0 is

cx0(z
(k)) = cx0(z)

k∏

s=1

(−r − s + 1).

Therefore, the lowest coefficient of the term indexed by I ∈ Mx0(F ) in S1 is

cx0(fI) ·
n∏

k=0

(
cx0(z)

k∏

s=1

(−r − s + 1)

)ik

= cx0(fI)cx0(y)||I||
n∏

s=1

(−r − s + 1)||I||s.

Since the orders of terms in S1 are the same and they are strictly larger than that of S1, the
sum of those lowest coefficients must be zero. In other words, we have

∑

I∈Mx0 (F )

cx0(fI)cx0(y)||I||
n∏

s=1

(−r − s + 1)||I||s = 0.

The left side of the above equality is exactly cx0(y)d(F ) · Px0,F (r). Hence, r is a positive integer
root of Px0,F (r).

The proof in the case x0 = ∞ is analogous.
Remark 2.4 Proposition 2.3 shows that the indicial polynomial might provide informa-

tion about the order of a Laurent series solution.
1) For a linear homogeneous ordinary differential equation F (y) = 0, since E(F ) = D(F ),

Case 1 in the proof of Proposition 2.3 never happens. In this case, the indicial polynomial Px0,F

is nonzero (see Theorem 3.6), and the degree of a Laurent series solution is always a zero of the
indicial polynomial. This is a well-know fact in linear ODEs.

2) If E(F ) = D(F ) and the indicial polynomial Px0,F (t) is identically zero, then Propo-
sition 2.3 does not give any information about the order bound of Laurent series solution of
F (y) = 0 at x = x0. For instance, for the differential equation in Example 3.5 below, the order
of a Laurent series solution at infinity can be arbitrarily large.

3 Polynomial Solutions of Noncritical AODEs
In [14], Krushel’nitskĳ discussed the properties of the degree of a polynomial solution for a

given AODE. By using the Newton polygon at infinity, Cano proposed an algorithm for deter-
mining a bound for the degrees of polynomial solutions of an AODE provided that the Newton
polygon of the given AODE satisfies certain additional assumptions (see [15, Section 2.2]).
Whenever a degree bound is found, one can determine all polynomial solutions by the unde-
terminate coefficient method. However, to the best of our knowledge, no full algorithm for
computing all polynomial solutions of AODEs exists so far.

In this section, we use Proposition 2.3 to give a sufficient condition (see Definition 3.1)
for the existence of a bound for the degrees of polynomial solutions. We prove that several
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common classes of AODEs satisfy this sufficient condition (see Theorem 3.6 and Theorem 3.7).
Furthermore, we will show in Section 5 that all AODEs in Kamke’s collection[17] satisfy this
condition.

Definition 3.1 An AODE F (y) = 0 is called noncritical if P∞,F (t) �= 0.
Corollary 3.2 If an AODE F (y) = 0 is noncritical, then there exists a bound on the

degree of any polynomial solution.

Proof Straightforward from Proposition 2.3.
Algorithm 3.3 Given a noncritical AODE F (y) = 0, compute all its polynomial solu-

tions.

1) Compute P∞,F (t). If P∞,F (t) has integer roots, then set r1 to be the largest integer root.
Otherwise, set r1 = 0.

2) Compute r2 = 
b∞(F )� if E(F ) \ D(F ) �= ∅. Otherwise set r2 = 0.

3) Set r = max{r1, r2, 0}. Make an ansatz z =
∑r

i=0 cix
i, where the ci’s are unknown.

Substitute z into F (y) = 0 and solve the corresponding algebraic equations by using
Gröbner bases.

4) Return the solutions from the above step.

The termination of Algorithm 3.3 is clear. The correctness follows from Proposition 2.3.

Example 3.4 (see [17]) Consider the differential equation:

F (y) = a2y2y′′2 − 2a2yy′2y′′ + a2y′4 − b2y′′2 − y′2 = 0, (1)

where a, b ∈ K and a �= 0. The following table is a list of the exponents of terms of F and
related information.

From Table 1 we see that D(F ) is the set of exponents in the first three lines, and E(F )\D(F )
is the set of exponents in the last two lines. A direct computation shows that m∞(F ) =
−4, M∞(F ) = D(F ), and P∞,F (t) = a2t2 �= 0. Therefore, the differential equation (1) is
noncritical. Furthermore, we find that b∞(F ) = 1.

Table 1
I ∈ E(F ) ||I || ||I ||∞ fI

(2, 0, 2) 4 4 a2

(1, 2, 1) 4 4 −2a2

(0, 4, 0) 4 4 a2

(0, 0, 2) 2 4 −b2

(0, 2, 0) 2 2 −1

By Proposition 2.3, every polynomial solution of (1) has degree at most 1. By making an
ansatz and solving the corresponding algebraic equations, we obtain all polynomial solutions,
which are c, c + x

a , and c − x
a , where c is an arbitrary constant in K.
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To the best of our knowledge, almost every AODE in the literature is noncritical. But a few
of these fail to be noncritical; below is an example.

Example 3.5 Let us consider the following differential equation:

F (y) = xyy′′ − xy′2 + yy′ = 0.

This differential equation appeared in [7], and has been studied by means of the Newton polygon
method in [19]. It admits the polynomial solution y(x) = cxn for arbitrary c ∈ K and n ∈ N.
A direct computation shows that its indicial polynomial at infinity is zero. So F (y) = 0 is a
critical AODE.

We show in the next two theorems that most common classes of low order AODEs are
noncritical.

Theorem 3.6 Let L ∈ K(x)
[

∂
∂x

]
be a differential operator, and P (x, y, z) ∈ K(x)[y, z]

a polynomial in two variables with coefficients in K(x). Then for each n > 0, the differential
equation L(y) + P (x, y, y(n)) = 0 is noncritical.

In particular, linear AODEs, first-order AODEs (which have the form F (x, y, y′) = 0
for some F ∈ K(x)[y, y′]), and quasi-linear second-order AODEs (which have the form y′′ +
G(x, y, y′) = 0 for some G ∈ K(x)[y, y′]), are noncritical.

Proof Let F (y) = L(y) + P (x, y, y(n)). We prove that P∞,F is nonzero.
First, we consider the case that P is a linear polynomial in y and z. Then F is a linear

differential polynomial, say

F (y) = fI−1 + fI0y + · · · + fImy(m),

where fIi ∈ K(x) and fIm �= 0 and m ∈ N. A direct computation shows that the indicial
polynomial of F at infinity is of the form

P∞,F (t) =
∑

i=0,1,··· ,m
Ii∈M∞(F )

c∞(fIi) ·
i∏

s=1

(t − s + 1),

which is a nonzero polynomial. Therefore, linear AODEs are noncritical.
Next, assume that P is of total degree at least 2. Then we have D(F ) = D(P (x, y, y(n)))

and M∞(F ) = M∞(P (x, y, y(n))). We write P (x, y, y(n)) in the form

P (x, y, y(n)) =
∑

(i,j)∈N2

fi,j(x)yi(y(n))j .

Then M∞(F ) consists of elements of the form ei,j = (i, 0, · · · , 0, j) ∈ N
n+1. A direct calculation

reveals that
P∞,F (t) =

∑

j=1,2,··· ,n
ei,j∈M∞(F )

c∞(fi,j) · [t(t − 1) · · · (t − n + 1)]j .
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The indicial polynomial P∞,F (t) can be viewed as the evaluation of the nonzero univariate
polynomial

g(T ) =
∑

j=1,2,··· ,n
ei,j∈M∞(F )

c∞(fi,j) · T j at T = t(t − 1) · · · (t − n + 1).

On the other hand, since t(t − 1) · · · (t − n + 1) is transcendental over K, we conclude that
P∞,F �= 0.

Theorem 3.7 Let L ∈ K(x)
[

∂
∂x

]
be a differential operator with coefficients in K(x), and

Q(y, z, w) ∈ K[y, z, w] a polynomial in three variables with coefficients in K. Then for each
m, n > 0, the differential equation L(y) + Q(y, y(n), y(m)) = 0 is noncritical.

In particular, autonomous second-order AODEs (which have the form F (y, y′, y′′) = 0 for
some F ∈ K[y, y′, y′′]), and quasi-linear autonomous third-order AODEs (which have the form
y′′′ + G(y, y′, y′′) = 0 for some G ∈ K[y, y′, y′′]), are noncritical.

Proof Let F (y) = L(y) + Q(y, y(m), y(n)). Without loss of generality, we can assume that
0 < m < n. As we have seen from the previous proposition, a linear AODE is noncritical.
Therefore we can assume further that Q is of total degree at least 2. Then we have D(F ) =
D(Q(y, y(m), y(n))) and M∞(F ) = M∞(Q(y, y(m), y(n))). Let us write Q(y, y(m), y(n)) in the
form

Q(y, y(m), y(n)) =
∑

(ijk)∈N3

fijkyi(y(m))j(y(n))k.

For simplicity, we denote eijk = (i, 0, · · · , 0, j, 0, · · · , 0, k) ∈ N
n+1, where j is the (m + 1)-th

coordinate. Then M∞(F ) consists of all eijk such that i+j+k = d(F ) and mj +nk = m∞(F ).
A direct computation implies that

P∞,F (t) =
∑

(i,j,k)∈N
3

eijk∈M∞(F )

c∞(fijk) · (t(t − 1) · · · (t − m + 1))j+k · ((t − m) · · · (t − n + 1))k.

This polynomial can be rewritten as:

P∞,F (t) = A
m∞(F )

m ·
∑

k=0,1,··· ,n
eijk∈M∞(F )

c∞(fijk)
(

B

A
(n−m)

m

)k

, (2)

where A = t(t− 1) · · · (t−m+1) and B = (t−m) · · · (t−n+1). The sum in (2) can be viewed
as the evaluation of the univariate polynomial

h(T ) =
∑

k=0,1,··· ,n
eijk∈M∞(F )

c∞(fijk)T k at T =
B

A
(n−m)

m

.

Since the projection which maps eijk to k is injective, we have that h(T ) is nonzero. On the
other hand, since B

A
(n−m)

m

is transcendental over K, we conclude that P∞,F is nonzero.



830 VO THIEU N. · ZHANG YI

4 Rational Solutions of Maximally Comparable AODEs
A rational function admits a Laurent series expansion at every point in K or at infinity. A

point x0 ∈ K ∪ {∞} is called a pole of a rational function if the order of the Laurent series
expansion of the rational function is positive. In this case, the order of the Laurent series
expansion is called the order of the pole. A rational function has only finitely many poles, and
the order at each pole is a positive integer.

It is well-known that poles of rational solutions of a linear ODE with polynomial coefficients
only occur at the zeros of the highest coefficient of the equation (see [1]). This fact does
not hold for nonlinear AODEs in general. In this section, we describe a class of AODEs for
which the above fact is still true. In order to do that, we first need to define what is the
“highest” coefficient in the nonlinear case. To do so, we equip the set of monomials in y and
its derivatives with a suitable partial order (see Definition 4.1). We show in Theorem 4.3 that
if the given AODE has a greatest monomial with respect to this ordering, then the poles of its
rational solutions can only occur at the zeros of the corresponding coefficient. Together with
Proposition 2.3, we give a sufficient condition for such AODEs to have bounds for the orders
of their poles. Therefore for AODEs satisfying this condition it is possible to find all rational
solutions.

Definition 4.1 Assume that n ∈ N. For each I, J ∈ N
n+1, we say that I � J if

||I|| ≥ ||J || and ||I|| + ||I||∞ > ||J || + ||J ||∞.
It is straightforward to verify that the order defined as above is a strict partial ordering on

N
n+1, i. e., the following properties hold for all I, J, K ∈ N

n+1:
(i) irreflexivity: I �� I;
(ii) transitivity: if I � J and J � K, then I � K;
(iii) asymmetry: if I � J , then J �� I.
For I, J ∈ N

n+1, we say that I and J are comparable if either I � J or J � I. Otherwise,
they are called incomparable. It is clear that the order � is not a total order on N

n+1. For
example, (2, 0) and (0, 1) are incomparable. For a given point I in N

n+1, it is straightforward
to verify that the number of points that are incomparable to I is finite.

Let S be a subset of N
n+1. An element I ∈ S is called a greatest element of S if I � J

for every J ∈ S \ {I}. By the asymmetry property of �, the set S has at most one greatest
element. This motivates the following definition.

Definition 4.2 An AODE F (y) = 0 is called maximally comparable if E(F ) admits a
greatest element with respect to �. In this case, the corresponding monomial is called the
highest monomial, and the coefficient of the highest monomial is called the highest coefficient.

The term maximally comparable already appeared in [16]. In [16, Section 3], the authors
defined maximally comparable first-order AODEs and studied their rational solutions. The
authors also showed that most first-order AODEs are maximally comparable. Here, we extend
the work of [16] to higher-order AODEs. We will see later that most high-order AODEs in
the literature are also maximally comparable. The following theorem can be viewed as a
generalization of [16, Theorem 3.4].
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Theorem 4.3 Let F (y) =
∑

I∈Nn+1 fIy
i0(y′)i1 · · · (y(n))in ∈ K[x]{y} be a differential

polynomial of order n > 0. Assume that F (y) = 0 is maximally comparable, and I0 is the
greatest element of E(F ) with respect to �. Then the poles of a rational solution of F (y) = 0
can only occur at infinity or at the zeros of fI0(x).

Proof We prove the above claim by contradiction. Suppose that there is x0 ∈ K such
that x0 is a pole of order r ≥ 1 of a rational solution of the AODE F (y) = 0, and fI0(x0) �= 0.
Then ordx0 fI0 = 0.

We first prove that Mx0(F ) = {I0}. Since I0 is the greatest element of E(F ) with respect to
�, we see that ||I0|| ≥ ||J || for all J ∈ E(F ). So I0 ∈ D(F ). Now let us fix any J ∈ D(F )\{I0}.
Since ||I0|| = ||J || and ||I0|| + ||I||∞ > ||J || + ||J ||∞, we have that ||I0||∞ > ||J ||∞. Therefore,
we conclude that ordx0(fI0) + ||I0||∞ > ordx0(fJ) + ||J ||∞ because ordx0 fI0 = 0 ≥ ordx0(fJ).
In other words, I0 is the only element of Mx0(F ).

Since Mx0(F ) = {I0}, the indicial polynomial at x = x0 has the form

Px0,F (t) = cx0(fI0) ·
n−1∏

r=0

(−t − r)||I0||r+1 .

It is straightforward to see that Px0,F (t) has no positive integer root. Due to Proposition 2.3
and r ≥ 1, we have E(F ) \ D(F ) �= ∅ and

r ≤ bx0(F ) = max
{

ordx0(fJ) + ||J ||∞ − ||I0||∞
||I0|| − ||J ||

∣∣∣ J ∈ E(F ) \ D(F )
}

= max
{

1 − − ordx0(fJ ) + (||I0|| + ||I0||∞) − (||J || + ||J ||∞)
||I0|| − ||J ||

∣∣∣ J ∈ E(F ) \ D(F )
}

< 1.

This contradicts the assumption that r ≥ 1.
The above theorem implies that for maximally comparable AODEs, there are only finitely

many candidates for poles of rational function solutions. Moreover, the poles of those rational
solutions, if there are any, can only occur at the zeros of the highest coefficient with respect
to the partial order �, or at infinity. This can be considered as a generalization to nonlinear
AODEs of the same fact for linear ordinary differential equations. Once a candidate for a pole of
a rational solution is found, one may use Proposition 2.3 to bound the order at this candidate.
As we mentioned in Example 3.5, Proposition 2.3 may fail to give an order bound at certain
points, as the following example illustrates.

Example 4.4 Consider the following AODE:

F (y) = x3yy′′′ + xyy′ − x(y′)2 + yy′ = 0.

It is straightforward to verify that F (y) = 0 is maximally comparable. By Theorem 4.3, we
know that the only possible pole of a rational solution of F (y) = 0 is at 0. However, a direct
calculation implies that P0,F (t) = 0. Therefore, we cannot bound the order of a pole at zero
by using Proposition 2.3.
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In order to compute rational solutions of a given maximally comparable AODEs, we impose
the following property to ensure that we can bound the order of candidates for poles of its
rational solutions.

Definition 4.5 Let F (y) = 0 be a maximally comparable AODE with highest coefficient
f(x) with respect to �. We say that F (y) = 0 is completely maximally comparable if Px0,F (t)
is a non-zero polynomial for every root x0 of f(x).

The following is a sufficient condition for a maximally comparable AODE to be complete.

Proposition 4.6 Let F (y) = 0 be a maximally comparable AODE, and assume that D(F )
is totally ordered with respect to the ordering �. Then Px0,F (t) �= 0 for every x0 ∈ K ∪ {∞}.
In particular, F is completely maximally comparable.

Proof Assume that x0 ∈ K ∪ {∞}. Since F (y) = 0 is a maximally comparable AODE,
for each I, J ∈ Mx0(F ) with I �= J we have that ||I||∞ �= ||J ||∞. On the other hand, for each
I ∈ Mx0(F ) the degree of the polynomial

∏n−1
r=0 (−t − r)||I||r+1 is exactly ||I||∞. Hence, we

conclude that Px0,F (t) �= 0.
We can always give an order bound for candidates of rational solutions of completely maxi-

mally comparable AODEs by using Proposition 2.3. Combined with the partial fraction decom-
position of a rational function, we present the following algorithm for determining all rational
solutions of a completely maximally comparable AODE.

Algorithm 4.7 Given a completely maximally comparable AODE F (y) = 0, compute
all its rational function solutions.

1) Compute the greatest element I0 of E(F ) with respect to �. Compute the distinct roots
x1, x2, · · · , xm of fI0(x) in K.

2) For i ∈ {1, 2, · · · , m}, compute an order bound ri for rational solutions of F (y) = 0 at
x = xi using Proposition 2.3. Similarly, compute the order bound N of a possible pole at
infinity.

3) Make an ansatz with the partial fraction decomposition

z =
m∑

i=1

ri∑

j=1

cij

(x − xi)j
+

N∑

k=0

cix
i , (3)

where the cij and ci are unknown. Substitute (3) into F (y) = 0 and solve the correspond-
ing algebraic equations by using Gröbner bases.

4) Return the solutions from the above step.

The termination of the above algorithm follows from Proposition 2.3. The correctness follows
from Theorem 4.3.
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Example 4.8 Consider the differential equation

F (y) = x2(x − 1)2y′′2 + 4x2(x − 1)y′y′′ − 4x(x − 1)yy′′

+4x2y′2 − 8xyy′ + 4y2 − 2(x − 1)y′′

= 0.

We first collect some information about the exponents of terms of F (y).
In Table 2, D(F ) consists of the first 6 elements of E(F ), and d(F ) = 2. Furthermore, D(F )

is totally ordered with respect to �. Therefore F is completely maximally comparable, and
the exponent (0, 0, 2) is the greatest element of E(F ).

Table 2
I ∈ E(F ) ||I || ||I ||∞ ||I || + ||I ||∞ fI

(0, 0, 2) 2 4 6 x2(x − 1)2

(0, 1, 1) 2 3 5 4x2(x − 1)

(1, 0, 1) 2 2 4 −4x(x − 1)

(0, 2, 0) 2 2 4 4x2

(1, 1, 0) 2 1 3 −8x

(2, 0, 0) 2 0 2 4

(0, 1, 0) 1 1 2 −2(x − 1)

By Theorem 4.3, the poles of a rational solution of F (y) = 0 can only occur at the zeros of
the polynomial x2(x − 1)2, which are 0 and 1, and possibly at infinity.

A simple computation based on Proposition 2.3 shows that the orders of poles of a rational
solution of F (y) = 0 at 0, 1, and infinity are at most 0, 1, and 1, respectively.

Hence, we make an ansatz of the form:

z =
c1

x − 1
+ c2 + c3x for some c1, c2, c3 ∈ K.

Substituting z into F (y) = 0 and solving the corresponding algebraic equations, we find that
the rational solutions of F (y) = 0 are c3x and 1

x−1 + c3x, where c3 is an arbitrary constant in
K. Note that this equation has no rational general solution. Thus the algorithm in [13] is not
applicable.

5 Experimental Results
In the previous sections we introduced the classes of noncritical, maximally comparable

and completely maximally comparable AODEs, and deduced properties of the possible rational
solutions of such equations. In this section we carry out a statistical investigation to find out
how many AODEs in Kamke’s well-known collection[17] are noncritical, maximally comparable,
or completely maximally comparable. The corresponding Maple worksheet is available in:

https://yzhang1616.github.io/KamkeODEs.mw.
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The worksheet requires the availability of the following Maple package:

https://yzhang1616.github.io/KamkeODEs.mpl.

There are 834 AODEs in Kamke’s collection. All of them are noncritical. This means that
our method can be used to determine all polynomial solutions, if there are any, of each AODE
from Kamke’s collection. Among them, there are 655 maximally comparable AODEs (≈ 78.54
%). All of the maximally comparable AODEs are also completely maximally comparable.

The class of AODEs covers around 79.66 % of the entire collection of ODEs in [17]. The
remaining ODEs have coefficients involving trigonometric functions (sin x, cos x, · · · ), hyperbolic
functions (sinh x, cosh x, · · · ), exponential functions ex, logarithmic functions log x, or power
functions with parameters in the exponents (xα, yβ, · · · ). For integer choices of the parameters,
the latter ODEs will become algebraic. More precisely, there are 35 ODEs containing parameters
in the power functions. For any choice of parameters such that the corresponding ODEs are
algebraic, then all of them are noncritical and 21 of them (60%) are completely maximally
comparable.
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