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Algebraic ordinary differential equations (AODEs)

Let K be an algebraic closed field of char 0, and x be an
indeterminate.

Consider the AODE:

F (x , y , y ′, . . . , y (n)) = 0, (1)

where F is a polynomial in y , y ′, . . . , y (n) with coeffs in K(x) and
n ∈ N is called the order of F . We also simply write (1) as
F (y) = 0.

Example 1. Consider the Riccati equation:

y ′ = 1 + y2.
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Background and motivation

Goal: Given an AODE F (y) = 0, find z =
∑∞

i=−r cix
i ∈ K((x)) s.t.

F (z) = 0,

where r is called the order of z , and denoted as ord(z).

Feng and Gao (2006): an algorithm for computing Laurent series
sols at x =∞ for first-order autonomous AODEs with nontrivial
rational sols.

Grasegger, Thieu and Winkler (2016): an algorithm for computing
rational sols of first-order AODEs without movable poles.

Our contribution: Construct an order bound for Laurent series sols
of arbitrary order AODEs and give a method to compute them.
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General idea

Let F (y) = 0 be an AODE, and m ∈ N.

Assume that z ∈ K((x)) is a sol of F (y) = 0.

1. Derive an order bound B for the order of z .

2. Substitute z = 1
xB

w with w ∈ K[[x ]] into F (y) = 0 and get a
new AODE

G (w) = 0. (2)

3. Compute formal power series sols of (2) with the form:

w = c0 + c1x + · · ·+ cm−1x
m−1 +O(xm).

4. Return 1
xB

w .
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General idea

Example 2. Consider the AODE:

F (y) = xy ′ + x2y2 + y − 1 = 0.

Assume that z ∈ K((x)) is a sol of F (y) = 0.

1. An order bound for the order of z is 2.

2. Substitute z = 1
x2
w with w ∈ K[[x ]] into F (y) = 0 and get a

new AODE

G (w) = xw ′ + w2 − w − x2 = 0. (3)

3. Compute formal power series sols of (3) with the form:

w = 1 + 0x +
1

3
x2 + 0x3 − 1

45
x4 +O(x5).

4. Return 1
x2
w .
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Outline

Computing formal power series solutions

Order bound for Laurent series solutions

Applications

Polynomial solutions of noncritical AODEs

Rational solutions of maximally comparable AODEs

Conclusion
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Formal power series solutions

Let K(x){y} = K(x)[y , y ′, y ′′, . . .] be the ring of differential
polynomials over K(x), where (y (n))′ = y (n+1) and x ′ = 1.

Given an AODE F (y) = 0 of order n, then F (y) ∈ K(x){y}.

Lemma 1. For each k ≥ 1, there exists Rk ∈ K(x){y} of order
n + k − 1 such that

F (k) = SF · y (n+k) + Rk ,

where SF := ∂F
∂y (n) is the separant of F .

Lemma 2. For f ∈ K[[x ]] and k ∈ N, we denote the coeff of xk

in f as [xk ]f . Then [xk ]f = [x0]
(
1
k! f

(k)
)
.
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Formal power series solutions

Let F (y) = 0 be an AODE of order n.

Using Lemmas 1 and 2, we have

Prop 1. Assume that z =
∑∞

i=0
ci
i! x

i ∈ K[[x ]]. Then:

(i) [x0]F (x , z , . . . , z(n)) = F (0, c0, . . . , cn).

(ii) For each k ≥ 1, [xk ]F (x , z , . . . , z(n)) is equal to

1

k!
(SF (0, c0, . . . , cn)cn+k + Rk(0, c0, . . . , cn+k−1)) ,

where Rk is specified in Lemma 1.
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Formal power series solutions

Let F (y) = 0 be an AODE of order n.

Theorem 1. Let (c0, . . . , cn) ∈ Kn+1 s.t. F (0, c0, . . . , cn) = 0 and
SF (0, c0, . . . , cn) 6= 0, and for each k ≥ 1, we set

cn+k = −Rk(0, c0, . . . , cn+k−1)

SF (0, c0, . . . , cn)
.

Then z =
∑∞

i=0
ci
i! x

i is a formal power series sol of F (y) = 0.

Example 1 (Continued). Consider the Riccati equation:

F (y) = y ′ − 1− y2 = 0.

Since SF = 1, its formal power series sols are in bijection with

{(c0, c1) ∈ K2 | c1 = 1 + c20}.
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Laurent series solutions

Let z =
∑∞

i=−r cix
i ∈ K((x)). We call c−r the lowest coeff of z ,

and denote it by c(z).

For I = (i0, i1, . . . , in) ∈ Nn+1 and r ∈ {0, . . . , n}, set
||I ||r := ir + . . . + in. Write ||I ||0 = ||I ||. Moreover, set
||I ||∞ := i1 + 2i2 + . . . + nin.

Let F (y) =
∑

I∈Nn+1

fI (x)y i0(y ′)i1 · · · (y (n))in ∈ K(x){y} be of

order n. Set:

E(F ) := {I ∈ Nn+1 | fI 6= 0},
d(F ) := max{||I || | I ∈ E(F )},
D(F ) := {I ∈ E(F ) | ||I || = d(F )}.
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Laurent series solutions

Moreover, we denote

m(F ) := max{ord(fI ) + ||I ||∞ | I ∈ D(F )},
M(F ) := {I ∈ D(F ) | ord(fI ) + ||I ||∞ = m(F )},

PF (t) :=
∑

I∈M(F )

c(fI ) ·
n−1∏
r=0

(−t − r)||I ||r+1 ,

and if E(F ) \ D(F ) 6= ∅, set

b(F ) := max

{
ord(fI ) + ||I ||∞ −m(F )

d(F )− ||I ||
| I ∈ E(F ) \ D(F )

}
.

Definition 1. We call PF the indicial polynomial of F at the origin.

Yi Zhang, RICAM 11/24



Laurent series solutions

Moreover, we denote

m(F ) := max{ord(fI ) + ||I ||∞ | I ∈ D(F )},
M(F ) := {I ∈ D(F ) | ord(fI ) + ||I ||∞ = m(F )},

PF (t) :=
∑

I∈M(F )

c(fI ) ·
n−1∏
r=0

(−t − r)||I ||r+1 ,

and if E(F ) \ D(F ) 6= ∅, set

b(F ) := max

{
ord(fI ) + ||I ||∞ −m(F )

d(F )− ||I ||
| I ∈ E(F ) \ D(F )

}
.

Definition 1. We call PF the indicial polynomial of F at the origin.

Yi Zhang, RICAM 11/24



Laurent series solutions

Theorem 2. (main result) Let F (y) = 0 be an AODE. If r ≥ 1 is
the order of a Laurent series sol of F (y) = 0 at the origin, then
one of the following claims holds:

(i) E(F ) \ D(F ) 6= ∅, and r ≤ b(F );

(ii) r is an integer root of PF (t).

The proof is an analog of the Frobenius method for linear
ODEs.

Theorem 2 also holds for x =∞.

Yi Zhang, RICAM 12/24
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Laurent series solutions
Example 2 (Continued). Consider:

F (y) = xy ′ + x2y2 + y − 1 = 0.

Assume z ∈ K((x)) is a sol of F (y) = 0.

1. By Theorem 2, an order bound for the order of z is 2.

2. Substitute z = 1
x2
w with w =

∑∞
i=0

ci
i! x

i ∈ K[[x ]] into
F (y) = 0 and get a new AODE

G (w) = xw ′ + w2 − w − w2 = 0.

3. By Prop 1, we have

[x0]G (w) = c20 − c0,

[xk ]G (w) = (2c0 + k − 1)ck + Rk−1(c0, . . . , ck−1) for k ≥ 1.

Thus, w = 1 + 0x + 1
3x

2 + 0x3 − 1
45x

4 +O(x5).

4. Return 1
x2
w .
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Laurent series solutions
Theorem 2 gives a sharp order bound in Example 2. However, in
general, it is not true.

Example 3. Consider the linear ODE:

F (y) = x2y ′′ + 4xy ′ + (2 + x)y = 0.

Assume z ∈ K((x)) is a sol of F (y) = 0.

1. By Theorem 2, an order bound for the order of z is 2.

2. Substitute z =
∑∞

i=−2 cix
i ∈ K((x)) into F (y) = 0 and get

(1 + i)(2 + i)ci + ci−1 = 0 for each i ∈ Z. (4)

Substitute i = −1 into (4) and get c−2 = 0. Thus, F (y) = 0
has no Laurent series sols of order 2.

3. Assume c−1 = 1. By (4), we conclude that F (y) = 0 has a sol
of the form:

∞∑
i=−1

(−1)i+1 x i

(1 + i)!(2 + i)!
.
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Laurent series solutions

Let F (y) = 0 be an AODE.

If E(F ) = D(F ) and PF (t) = 0, then Theorem 2 gives no info for
order bound of Laurent series sol of F (y) = 0.

Example 4. Consider the AODE:

F (y) = xyy ′′ − xy ′2 + yy ′ = 0.

Here, E(F ) = D(F ) and PF (t) = 0. It has Laurent series sols

z = cx−n for each c ∈ K and n ∈ N.
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Polynomial solutions

Let F (y) = 0 be an AODE, and P∞,F (t) be the indicial
polynomial of F (y) = 0 at infinity.

Definition 2. We call F (y) = 0 noncritical if P∞,F (t) 6= 0.

By Theorem 2, if F (y) = 0 is noncritical, then there exists a bound
for the degree of its polynomial sols.

Algorithm 1. Given a noncritical AODE F (y) = 0, compute all its
polynomial sols.

1. Assume z ∈ K[x ] is polynomial sol of F (y) = 0. Compute a
degree bound B for z by Theorem 2.

2. Set z =
∑B

i=0 cix
B , where ci is unknown. Substitute z into

F (y) = 0 and solve the algebraic equations by using Gröbner
bases. Return the results.

Yi Zhang, RICAM 16/24
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Polynomial solutions

Example 5 (Kamke 6.234). Consider:

F (y) = a2y2y ′′2 − 2a2yy ′2y ′′ + a2y ′4 − b2y ′′2 − y ′2 = 0,

where a, b ∈ K and a 6= 0. Here, P∞,F (t) = a2t2 6= 0.

1. Assume z ∈ K[x ] is polynomial sol of F (y) = 0. By Theorem
2, a degree bound for z is 1.

2. Set z = c0 + c1x , where ci is unknown. Substitute z into
F (y) = 0 and solve the algebraic equations by using Gröbner
bases. We find c , c + x

a , and c − x
a are sols, where c ∈ K.

Yi Zhang, RICAM 17/24
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Polynomial solutions

Example 4 (Continued). Consider the AODE:

F (y) = xyy ′′ − xy ′2 + yy ′ = 0.

Here, E(F ) = D(F ) and P∞,F (t) = 0. It has polynomial sols

z = cxn for each c ∈ K and n ∈ N.

linear, first-order, quasi-linear second-order AODEs are
noncritical.

In Kamke’s collection, all of the 834 AODEs are noncritical.
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Rational function solutions

Consider a linear ODE:

F (y) = `ny
(n) + `n−1y

(n−1) + · · ·+ `0y = 0,

where `i ∈ K[x ]. The roots of `n are singularities of F (y) = 0.

Fact: Poles of rational sols of F (y) = 0 must be roots of `n.

This is not true for nonlinear AODEs.

Example 6. Consider

F (y) = y ′ + y2 = 0.

It has rational sols z = 1
x−c for c ∈ K.
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Rational function solutions

Question: Find a class of (nonlinear) AODEs s.t. the set of poles
of rational sols of them is finite and computable.

For I , J ∈ Nn+1, we say I � J if ||I || ≥ ||J|| and
||I ||+ ||I ||∞ > ||J||+ ||J||∞.

For I , J ∈ Nn+1, we say I and J are comparable if I � J or J � I .

Given S ⊂ Nn+1, we call I ∈ S greatest element of S if I � J for
each J ∈ S \ {I}.

Definition 3. An AODE F (y) = 0 is called maximally comparable if
E(F ) admits a greatest element w.r.t. �.
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Rational function solutions

Let F (y) =
∑

I∈Nn+1

fI y
i0(y ′)i1 . . . (y (n))in = 0 be an AODE.

Theorem 3. Let F (y) = 0 be maximally comparable and I0 be the
greatest element of E(F ) w.r.t. �. Then the poles of rational sols
of F (y) = 0 are the zeros of fI0(x) or infinity.

In Kamke’s collection, 78.54% of the 834 AODEs are
maximally comparable.
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Rational function solutions

Algorithm 2. Given a maximally comparable AODE F (y) = 0,
compute all its rational sols.

1. Compute the greatest element I0 of E(F ) w.r.t. �. Compute
distinct roots x1, . . . , xm of fI0(x).

2. Compute order bounds ri and N for Laurent series sols of
F (y) = 0 at xi and infinity by Theorem 2, where i = 1, . . . ,m.

3. Set

z =
m∑
i=1

ri∑
j=1

cij
(x − xi )j

+
N∑

k=0

cix
i ,

where cij , ci are unknown. Substitute z into F (y) = 0 and
solve the algebraic equations by Gröbner bases.

Yi Zhang, RICAM 22/24



Rational function solutions
Example 7. Consider the AODE:

F (y) = x2(x − 1)2y ′′2 + 4x2(x − 1)y ′y ′′ − 4x(x − 1)yy ′′+
4x2y ′2 − 8xyy ′ + 4y2 − 2(x − 1)y ′′

= 0.

1. The greatest element of E(F ) w.r.t. � is (0, 0, 2). By
Theorem 3, the poles of rational sols of F (y) = 0 might
be 0, 1 or infinity.

2. By Theorem 2, the order bounds of Laurent series sols of
F (y) = 0 at 0, 1 and infinity are 0, 1 and 1.

3. Set

z =
c1

x − 1
+ c2 + c3x for some c1, c2, c3 ∈ K.

Substitute z into F (y) = 0 and we find c3x and 1
x−1 + c3x

are rational sols of F (y) = 0, where c3 ∈ K.
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Conclusion

Let F (y) = 0 be an AODE of order n.

Construct an order bound for Laurent series sols of F (y) = 0
and use it to compute them.

An algorithm for computing polynomial sols of noncritical
AODEs.

An algorithm for computing rational sols of maximally
comparable AODEs.

Thanks!
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