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In this paper, we consider Laurent series solutions of algebraic ordinary
differential equations (AODEs). We first present several approaches to com-
pute formal power series solutions of a given AODE. Then we determine a
bound for the order of its Laurent series solutions. Using the order bound,
one can transform a given AODE into a new one whose Laurent series solu-
tions are only formal power series. The idea is basically inherited from the
Frobenius method for linear ordinary differential equations. As applications,
new algorithms are presented for determining all particular polynomial and
rational solutions of certain classes of AODEs.

1 Introduction
An algebraic ordinary differential equation (AODE) is of the form

F (x, y, y′, . . . , y(n)) = 0,

where F is a polynomial in y, y′, . . . , y(n) with coefficients in K(x), the field of rational
functions over an algebraically closed field K of characteristic zero, and n ∈ N. For
instance, K can be the field of complex numbers, or the field of algebraic numbers.
Many problems from applications (such as physics, combinatorics and statistics) can be
characterized in terms of AODEs. Therefore, determining (closed form) solutions of an
AODE is one of the central problems in mathematics and computer science.
Although linear ODEs [11] have been intensively studied, there are still many challeng-

ing problems for solving (nonlinear) AODEs. As far as we know, approaches for solving
AODEs are only available for very specific subclasses. For example, Riccati equations,
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which have the form y′ = f0(x) + f1(x)y + f2(x)y2 for some f0, f1, f2 ∈ K(x), can be
considered as the simplest form of nonlinear AODEs. In [14], Kovacic gives a complete
algorithm for determining Liouvillian solutions of a Riccati equation with rational func-
tion coefficients. The study of general solutions without movable singularities can be
found in [7, 16, 19] for first-order, and in [4, 11] for higher-order AODEs.
Since the problem of solving an arbitrary AODE is very difficult, it is natural to ask

whether a given AODE admits some special kinds of solutions, such as polynomials,
rational functions, or formal power series. During the last two decades, an algebraic-
geometric approach for finding symbolic solutions of AODEs has been developed. The
work by Feng and Gao in [5, 6] for computing rational general solutions of first-order
autonomous AODEs can be considered as the starting point. The authors of [17, 8,
24, 23] developed methods for finding different kinds of solutions of non-autonomous,
higher-order AODEs. For formal power series solutions, we refer to [3, 20].
As far as we know, there is few results concerning Laurent series solutions of AODEs.

In this paper, we give a method for determining such solutions. The approach is an
analog of the Frobenius method for linear ODEs. Our results generalize the work of Vo,
Winkler and Grasegger [9], Behloul and Cheng [1], and Krushel’nitskij [15]. The main
contribution of our work is to derive a bound (Theorem 3.2) for orders of Laurent series
solutions of a given AODE. Once the order bound is given, one can transform the given
AODE into a new one whose Laurent series solutions are always formal power series.
In Section 2, we present several approaches (Theorem 2.5, Proposition 2.8 and 2.11)
to calculate formal power series solutions of a given AODE. Theorem 3.2 has two ap-
plications: (i) In Section 4, we give a necessary condition for an AODE admitting a
degree bound for its polynomial solutions. An AODE satisfying this condition is called
noncritical (Definition 4.1). For noncritical AODEs, we can always determine such a
degree bound and then compute all polynomial solutions (if there are any). We also
show in Proposition 4.6 and 4.7 that two important classes of AODEs in applications
are indeed noncritical. (ii) In Section 5, we prove in Theorem 5.3 that a class of AODEs
has the property that the poles of their rational solutions are recognizable from their
“highest” coefficients. Differential equations of this type are called maximally compara-
ble (Definition 5.2). An algorithm for determining all rational solutions of a maximally
comparable AODE is then developed. In Section 6, by performing a statistical inves-
tigation, we show that all AODEs (around 834 examples) from Kamke’s collection [12]
are noncritical, and around 78.54% of them are maximally comparable.

2 Formal power series solutions
In this section, we only focus on formal power series solutions of AODEs around the
origin, as a point in K can always be translated to the origin. Firstly, we describe the
algebraic structure of the set of all formal power series solutions for AODEs at the origin.
In particular, we give a simplified proof of one specific case of [3, Lemma 2.3]. We also
present one approach to calculate singular formal power series solutions of first-order
AODEs. At last, we show that formal power series solutions at infinity of an AODE are
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equivalent to that at the origin of another AODE.
By K we denote an algebraically closed field of characteristic zero with the zero deriva-

tion. Let K[[x]] be the ring of formal power series with respect to x. For f ∈ K[[x]]
and k ∈ N, we use the notation [xk]f to refer the coefficient of xk in f . Besides, we
use f (k) to denote the k-th usual formal derivative [13, Section 2.2] of f . A direct
calculation implies that:

Lemma 2.1. Let f ∈ K[[x]] and k ∈ N. Then [xk]f = [x0]
(

1
k!f

(k)
)
.

As a matter of notation, we use K[x]{y}, (respectively K(x){y}), to denote the ring of
differential polynomials in y with coefficients in the ring of polynomialsK[x] (respectively
the field of rational functions K(x)), where the derivation of x is 1. A differential
polynomial is of order n ≥ 0 if the n-th derivative y(n) of y is the highest derivative
appearing in it. Next, we recall a lemma in [22].

Lemma 2.2. Let F ∈ K[x]{y} be a differential polynomial of order n ≥ 0. Then for
each k ≥ 1, there exists a differential polynomial Rk ∈ K[x]{y} of order at most n+k−1
such that

F (k) = SF · y(n+k) + Rk, (1)
where SF := ∂F

∂y(n) is the separant of F .

Consider an AODE F (y) = 0, where F ∈ K[x]{y}. If we substitute a formal power
series z ∈ K[[x]] into F (y), then F (z) is still a formal power series with respect to x.
The following proposition gives the coefficients of F (z).

Proposition 2.3. Let F ∈ K[x]{y} be a differential polynomial of order n ≥ 0 and
z = ∑∞

i=0
ci

i! x
i ∈ K[[x]]. Then the following claims hold:

(i) [x0]F (x, z, . . . , z(n)) = F (0, c0, . . . , cn).

(ii) For each k ≥ 1, we have

[xk]F (x, z, . . . , z(n)) = 1
k! (SF (0, c0, . . . , cn)cn+k + Rk(0, c0, . . . , cn+k−1)) ,

where Rk is specified in (1).

Proof. (i) One can deduce it from the definition.
(ii) By Lemma 2.1, we have that

[xk]F (x, z, . . . , z(n)) = [x0]
( 1

k!F
(k)(x, z, . . . , z(n+k))

)
. (2)

On the other hand, it follows from Lemma 2.2 that

[x0]F (k)(x, z, . . . , z(n+k)) = SF (0, c0, . . . , cn)cn+k + Rk(0, c0, . . . , cn+k−1). (3)

Above all, we conclude from (2) and (3) that the claim holds.
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As a matter of notation, we set C = K[c0, c1, . . .] to be the ring of commutative
polynomials, where c0, c1, . . . are algebraically independent variables.

Definition 2.4. Let F ∈ K[x]{y} \ {0} be of order n ≥ 0 and z = ∑∞
i=0

ci

i! x
i ∈ C[[x]].

For each m ∈ N, we call

Jm(F ) =
〈
[x0]F (0, z, . . . , z(n)), . . . , [xm]F (0, z, . . . , z(n))

〉
the m-th jet ideal of F in C. When F is clear from context, we simply denote Jm(F )
by Jm.

The above definition is compatible with [18, Definition 2.5]. Proposition 2.3 gives the
explicit formula for the generators of each jet ideal of a given differential polynomial. The
following theorem presents the structure of formal power series solutions of an AODE
at the origin.

Theorem 2.5. Let F ∈ K[x]{y} \ {0} be of order n ≥ 0. Then the following claims
hold:

(i) the sequence {Jm}∞m=0 is an ascending chain.

(ii) the set of formal power series solutions of F at the origin is in bijection with the
zero set of ∪∞m=0Jm.

(iii) If (c0, . . . , cn) ∈ Kn+1 satisfies F (0, c0, . . . , cn) = 0 and SF (0, c0, . . . , cn) 6= 0, then
there is a unique formal power series solution z ∈ K[[x]] of F such that

z ≡ c0 + c1x + · · ·+ cnxn mod xn+1.

Proof. (i) By Definition 2.4, it is straightforward to see that Jm ⊆ Jm+1 for m ∈ N.
(ii) Assume that z = ∑∞

i=0
ci

i! x
i ∈ K[[x]] is a solution of F (0, z, . . . , z(n)) = 0, which

means that
[xk]F (0, z, . . . , z(n)) = 0 for each k ∈ N.

It is equivalent to the statement that (c0, c1, . . .) ∈ KN is a zero of ∪∞i=0Jm.
(iii) For each k ≥ 1, since SF (c0, . . . , cn) 6= 0, we set

cn+k = −Rk(0, c0, . . . , cn+k−1)
SF (0, c0, . . . , cn) ,

where Rk is specified in (1). Set z = ∑∞
i=0

ci

i! x
i ∈ K[[x]]. By Proposition 2.3 (ii), we have

[xk]F (x, z, . . . , z(n)) = 0.

On the other hand, it follows from Proposition 2.3 (i) and assumption that

[x0]F (x, z, . . . , z(n)) = 0.

Thus, we conclude that z is a solution of F (x, y, . . . , y(n)) = 0. The uniqueness is clear
from Proposition 2.3 (ii).
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Item (iii) of the above theorem is a generalization of Implicit Function Theorem [13,
Theorem 2.9] for algebraic equations. It implies that if the separant of a given differential
polynomial does not vanish at some initial values of a given formal power series, then
the zeros of the m-th jet ideal are uniquely determined by that of the 0-th jet ideal,
where m ∈ N. We can use it to describe the algebraic structure of formal power series
solutions for a class of AODEs.

Example 2.6. Consider the following AODE

y(n) = P (x, y, . . . , y(n−1)), (4)

where n ∈ N, and P is a polynomial in n variables. The separant of (4) is 1. Therefore,
it follows from Theorem 2.5 (ii), (iii) that the set of formal power series solutions of (4)
at the origin is in bijection with the hypersurface

{(c0, c1, . . . , cn) ∈ Kn+1 | cn = P (0, c0, . . . , cn−1)}.

When the separant of a given AODE vanishes at some initial values of a given formal
power series, various cases [13, Page 119] will happen.
For algebraic equations, the set of formal power series solutions can be determined

by computing their Puiseux series solutions [25]. The corresponding implementation is
available by the command “gfun[algeqtoseries]” in Maple.
For linear ODEs, we can compute formal power series solutions [11] by solving a system

of linear equations and a P-recursive equation. There are also algorithms [2, 21] to
calculate formal power series solutions of systems of linear PDEs with finite-dimensional
solution spaces.

Definition 2.7. Let F ∈ K[x]{y}\{0} be of order n ≥ 0. A solution y(x) of the AODE
F (y) = 0 is called a regular solution if SF (x, y(x), . . . , y(n)(x)) 6= 0. Otherwise, it is
called a singular solution.

Item (iii) of Theorem 2.5 gives one method for computing a class of regular formal
power series solutions of a given AODE. In the literature, we do not find suitable papers
concerning singular formal power series of an AODE. Next, we present an approach to
calculate singular formal power series solutions of first-order AODEs. An alternative
method can be found in [10].

Proposition 2.8. Let F be an irreducible polynomial in K[x, y, y′] \K[x, y]. Then there
exists a finite set G ⊂ K[x, y] such that z is a singular solution of F (x, y, y′) = 0 if and
only if g(x, z) = 0 for some g ∈ G.

Proof. We first construct a finite set G ⊂ K[x, y] and then prove that G satisfies the
property as claimed above.
Set m(x, y) = Resy′(F, SF ), which is the resultant of F and SF with respect to y′.

Since F is irreducible, m(x, y) is a nonzero polynomial in K[x, y]. Without loss of gen-
erality, we may assume that degy(m) > 0 (otherwise, we set G = {m}). Let m1, . . . , mk

be the distinct irreducible factors of m in K[x, y] with positive degree in y.
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For each i ∈ {1, . . . , k}, we set mi1 = ∂mi

∂x
and mi2 = ∂mi

∂y
. Since mi is irreducible,

there exists ui, vi ∈ K(x)[y] such that

uimi + vimi2 = 1.

Set Fi = F (x, y,−vimi1), SF,i = SF (x, y,−vimi1). Let gi = gcd(mi, Fi, SF,i) in K(x)[y].
By clearing denominators, we may further assume that gi ∈ K[x, y]. Set G = {g1, . . . , gk}.
Assume that z is a singular solution of F (x, y, y′) = 0. Since m(x, y) is equal

to Resy′(F, SF ), we have m(x, z) = 0. Therefore, there exists i ∈ {1, . . . , k} such
that mi(x, z) = 0. By the argument in [13, Page 117], we have that

z′ = −v(x, z)mi1(x, z). (5)

Since z is a singular solution of F (y) = 0, it follows that

F (x, z, z′) = 0 and SF (x, z, z′) = 0. (6)

Substituting (5) into (6), we have

Fi(x, z) = 0 and SF,i(x, z) = 0.

Since gi = gcd(mi, Fi, SF,i) in K(x)[y], we conclude from Bézout’s identity that

gi(x, z) = 0.

Conversely, assume that z is a solution of gi(x, y) = 0 for some i ∈ {1, . . . , k}. Since
gi = gcd(mi, Fi, SF,i) in K(x)[y], we have that mi(x, z) = 0. By the argument in [13,
Page 117], we have that

z′ = −v(x, z)mi1(x, z). (7)
Since gi = gcd(mi, Fi, SF,i) in K(x)[y], it follows from the definitions of Fi and SF,i that

F (x, z,−vi(x, z)mi1(x, z)) = 0 and SF (x, z,−vi(x, z)mi1(x, z)) = 0. (8)

Substituting (7) into (8), we have that

F (x, z, z′) = 0 and SF (x, z, z′) = 0.

Since we can calculate formal power series solutions of algebraic equations by using the
Implicit Function Theorem or computing Puiseux series solutions, the above proposition
gives rise to an algorithm for computing singular formal power series solutions of a given
first-order AODE.

Example 2.9. Consider the following first-order AODE [22, Example 5.4.3]:

F (x, y, y′) = (y′)3 − xy4y′ − y5 = 0.

By computation, we find that G = {y, 4x3y2 − 27} satisfies the properties in Proposi-
tion 2.8. It is straightforward to see that z1 = 0 is the solution of y = 0. Furthermore,
we find that z2 = 3

√
3

2 x−
3
2 and z3 = −3

√
3

2 x−
3
2 are solutions of 4x3y2 − 27 = 0. By

Proposition 2.8, we conclude that F (y) = 0 has only one singular formal power series
solution z1.
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Example 2.10. Consider the following first-order AODE [12, Example 1.537]:

F (x, y, y′) = (xy′ − y)3 + x6y′ − 2x5y = 0.

By computation, we find that G = {1} satisfies the properties in Proposition 2.8. There-
fore, we conclude from Proposition 2.8 that F (y) = 0 has no singular solution.

In the literature, we do not find suitable papers to cover the formal power series
solutions of a given AODE at infinity. Next, we show that it can be turned into the
problem of finding formal power series solutions at the origin.

Proposition 2.11. Let F ∈ K[x]{y} \ {0} be of order n ≥ 0. Then there exists another
differential polynomial F̄ ∈ K[x]{y} \ {0} of order n such that z = ∑∞

i=0
ci

i! x
−i is a

solution of F (y) = 0 if and only if t = ∑∞
i=0

ci

i! x
i is a solution of F̄ (y) = 0.

Proof. We first construct a nonzero differential polynomial F̄ of order n and then prove
that F̄ satisfies the property as claimed above.
Set x̄ = x−1. Assume that z(x) = t(x̄) is a solution of F (y) = 0, where t(x) is a

differentiable function in x. By the chain rule, we have that

z(k)(x) = (−1)kx−2kt(k)(x̄) + Rk(x̄, t(x̄), . . . , t(k−1)(x̄)), (9)

where Rk is a polynomial in k variables, 0 ≤ k ≤ n. Substituting (9) into F (z), we have

F (z) = F (x, t(x̄), . . . , (−1)nx−2nt(n)(x̄) + Rn(x̄, t(x̄), . . . , t(n−1)(x̄))).

Let m ∈ Z be the largest exponent of x in the right side of the above equation. Then
we can write x−mF (z) in the following form:

x−mF (z) = F̄ (x̄, t(x̄), . . . , t(n)(x̄)),

where F̄ is a nonzero differential polynomial of order n.
Assume that z = ∑∞

i=0
ci

i! x
−i is a solution of F (y) = 0. Set t = ∑∞

i=0
ci

i! x
i. Then we

have z(x) = t(x̄). It follows from the construction of F̄ that

F̄ (x̄, t(x̄), . . . , t(n)(x̄)) = 0.

Therefore, t(x) is a solution of F̄ (y) = 0.
Conversely, assume that t = ∑∞

i=0
ci

i! x
i is a solution of F̄ (y) = 0. Set z = ∑∞

i=0
ci

i! x
−i.

Then we have t(x) = z(x̄). Similarly as in the construction of F̄ , we conclude that z(x)
is a solution of F (y) = 0.

Example 2.12. Consider the following first-order AODE in Example 2.9:

F (x, y, y′) = (y′)3 − xy4y′ − y5 = 0.
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Assume that z(x) = t(x̄) is a solution of the above equation, where x̄ = x−1. Following
the construction in Proposition 2.11, we find that t(x) satisfies the following first-order
AODE:

F̄ (x, y, y′) = x6(y′)3 − xy4y′ + y5.

By Proposition 2.11, we conclude that z = ∑∞
i=0

ci

i! x
−i is a solution of F (y) = 0 if and

only if t = ∑∞
i=0

ci

i! x
i is a solution of F̄ (y) = 0.

Example 2.13. Consider the following first-order AODE in Example 2.10:

F (x, y, y′) = (xy′ − y)3 + x6y′ − 2x5y = 0.

Assume that z(x) = t(x̄) is a solution of the above equation, where x̄ = x−1. Following
the construction in Proposition 2.11, we find that t(x) satisfies the following first-order
AODE:

F̄ (x, y, y′) = x5(xy′ + y)3 + xy′ + 2y.

By Proposition 2.11, we conclude that z = ∑∞
i=0

ci

i! x
−i is a solution of F (y) = 0 if and

only if t = ∑∞
i=0

ci

i! x
i is a solution of F̄ (y) = 0.

3 Laurent series solutions
Given an AODE, we show in Theorem 3.2 that the orders of its Laurent series solutions
can be bounded in an algorithmic way. Whenever the bound is computed, one can
transform the given AODE into a new one whose Laurent series solutions are only
formal power series. Therefore, the results in Section 2 are applicable.
Given x0 ∈ K ∪ {∞}, a Laurent series f at x = x0 has the form

∞∑
k=m

ck(x− x0)k if x0 ∈ K,
∞∑
k=m

ckx
−k if x0 =∞,

where ck ∈ K, cm 6= 0 and m ∈ Z. We call −m the order of f (at x = x0), and denote
it by ordx0(f). The coefficient cm is called the lowest coefficient of f (at x = x0), and
denoted by cx0(f). Then we can rewrite f as follows:

cx0(f)(x− x0)−ordx0 (f) + higher terms in (x− x0) if x0 ∈ K,
c∞(f)xordx0 (f) + lower terms in x if x0 =∞.

For each I = (i0, i1, . . . , in) ∈ Nn+1 and r ∈ {0, . . . , n}, we set ||I||r := ir + . . . + in.
We simply write ||I||0 by ||I||. Furthermore, the notation ||I||∞ := i1 + 2i2 + . . . + nin
will be also used frequently.
Let F (y) = ∑

I∈Nn+1
fI(x)yi0(y′)i1 · · · (y(n))in ∈ K(x){y} be a differential polynomial of

order n. We will use the following notations:
E(F ) := {I ∈ Nn+1 | fI 6= 0},
d(F ) := max{||I|| | I ∈ E(F )},
D(F ) := {I ∈ E(F ) | ||I|| = d(F )}.
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Moreover, for each x0 ∈ K, we denote

mx0(F ) := max{ordx0 fI + ||I||∞ | I ∈ D(F )},
Mx0(F ) := {I ∈ D(F ) | ordx0 fI + ||I||∞ = mx0(F )},
Px0,F (t) := ∑

I∈Mx0 (F )
cx0(fI) ·

n−1∏
r=0

(−t− r)||I||r+1 ,

and if E(F ) \ D(F ) 6= ∅, we set

bx0(F ) := max
{

ordx0 fI + ||I||∞ −mx0(F )
d(F )− ||I||

∣∣∣∣ I ∈ E(F ) \ D(F )
}

.

In case that x0 =∞, we also denote

m∞(F ) := max{ord∞ fI − ||I||∞ | I ∈ D(F )},
M∞(F ) := {I ∈ D(F ) | ord∞ fI − ||I||∞ = m∞(F )},
P∞,F (t) := ∑

I∈M∞(F )
c∞(fI) ·

n−1∏
r=0

(t− r)||I||r+1 ,

and
b∞(F ) := max

{
ord∞ fI − ||I||∞ −m∞(F )

d(F )− ||I||

∣∣∣∣ I ∈ E(F ) \ D(F )
}

if E(F ) \ D(F ) 6= ∅.

Definition 3.1. Let F (y) ∈ K(x){y} be a differential polynomial of order n. For each
x0 ∈ K ∪ {∞}, we call Px0,F the indicial polynomial of F at x = x0.

Note that the above definition is a generalization of the usual indicial polynomial [2, 11]
of linear ODEs.

Theorem 3.2. Given an AODE F (y) = 0, and x0 ∈ K ∪ {∞}. If r ≥ 1 is the order of
a Laurent series solution of F (y) = 0 at x = x0, then one of the following claims hold:

(i) E(F ) \ D(F ) 6= ∅, and r ≤ bx0(F );

(ii) r is a positive integer root of Px0,F (t).

Proof. Let F (y) = ∑
I∈Nn+1

fI(x)yi0(y′)i1 . . . (y(n))in ∈ K(x){y} be a differential polynomial

of order n. Let x0 ∈ K and z ∈ K((x− x0)) \K be a Laurent series solution of F (y) = 0
of order r ≥ 1. Then z(k) is of order k + r for each k ∈ N. For each I ∈ E(F ), we may
write the coefficient fI in the following form:

fI = cx0(fI)
(x− x0)ordx0 fI

+ hI ,

where hI ∈ K((x)) and ordx0 hI < ordx0 fI . Since z is a solution of F (y) = 0, we have
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0 = F (z)
= S1 + S2 + S3 + S4,

where

S1 = ∑
I∈Mx0 (F )

cx0 (fI)
(x−x0)ordx0 fI

· zi0(z′)i1 · · · (z(n))in , S2 = ∑
I∈Mx0 (F )

hI · zi0(z′)i1 · · · (z(n))in ,

S3 = ∑
I∈D(F )\Mx0 (F )

fIz
i0(z′)i1 · · · (z(n))in , S4 = ∑

I∈E(F )\D(F )
fIz

i0(z′)i1 · · · (z(n))in .

The order of each term in S1 are equal to D := d(F )r + mx0(F ), which is strictly larger
than that of each term in S2 and S3. One of the two following cases will happen:

Case 1: The order of S1 is equal to D. Then the term of order D in S1 must be killed
by terms of S4. In this case, we have E(F ) \ D(F ) 6= ∅. By comparing with
the orders of terms in S4, we obtain

D ≤ max {||I|| · r + ||I||∞ + ordx0 fI | I ∈ E(F ) \ D(F )} .

On the other hand, since D = d(F )r + mx0(F ), we conclude that

r ≤ max
{
||I||∞ + ordx0 fI −mx0(F )

d(F )− ||I||

∣∣∣∣ I ∈ E(F ) \ D(F )
}

.

In other words, r ≤ bx0(F ).

Case 2: The order of S1 is strictly smaller than D. For each k ∈ N, a direct computation
implies that the lowest coefficient z(k) at x = x0 is

cx0(z(k)) = cx0(z)
k∏
s=1

(r − s + 1).

Therefore, the lowest coefficient of the term indexed by I ∈Mx0(F ) in S1 is

cx0(fI) ·
n∏
k=0

(
cx0(z)

k∏
s=1

(r − s + 1)
)ik

= cx0(fI)cx0(y)||I||
n∏
s=1

(r − s + 1)||I||s .

Since the orders of terms in S1 are the same and they are strictly larger than
that of S1, the sum of those lowest coefficients must be zero. In other words,
we have

∑
I∈Mx0 (F )

cx0(fI)cx0(y)||I||
n∏
s=1

(r − s + 1)||I||s = 0.

The left side of the above equality is exactly cx0(y)d(F ) · Px0,F (r). Hence, r is
a positive integer root of Px0,F (r).

The case that x0 =∞ can be proved in a similar way.

10



For a linear homogeneous ordinary differential equation F (y) = 0, item (i) of the
above theorem will never happen because E(F ) = D(F ).

Example 3.3. Consider the following first-order AODE:

F (y) = xy′ + x2y2 + y − 1 = 0. (10)

We calculate the order bound for Laurent series solutions of the above equation at the
origin. The following table is the list of the exponents of terms of F and related infor-
mation.

I ∈ E(F ) ||I|| ||I||∞ fI ord0 fI
(2, 0) 2 0 x2 −2
(0, 1) 1 1 x −1
(1, 0) 1 0 1 0
(0, 0) 0 0 −1 0

Based on the above table, a direct computation implies that P0,F (t) = 1 and b0(F ) = 2.
According to Theorem 3.2, the order bound at the origin is 2.
Assume that y = 1

x2 z, where z = ∑∞
i=0

ci

i! x
i ∈ K[[x]] with c0 6= 0. Substituting this

ansatz into (10), we have

G(z) = xz′ + z2 − z − x2 = 0.

Since the separant of G is x, we can not apply item (iii) of Theorem 2.5. Nevertheless,
we observe by differentiating iteratively that

G(k) = xz(k+1) + (2z + k − 1)z(k) + Rk−1, (11)

where Rk−1 is a differential polynomial in K[x]{z} of order k−1, k ≥ 1. From [x0]G = 0,
we have that c0 = 1. Using (11) and Lemma 2.1, we conclude that F (y) = 0 has only
one Laurent series solution of order 2 at the origin, which has the following form:

y = 1
x2 + 1

x

( ∞∑
i=1

ci
i! xi

)
,

where ck = 1
k+1Rk−1(0, c0, . . . , ck−1), k ≥ 1.

Assume that y = 1
x
w, where w = ∑∞

i=0
ci

i! x
i ∈ K[[x]] with c0 6= 0. Substituting this

ansatz into (10), we have
H(w) = w′ + w2 − 1 = 0.

Since the separant of G is 1, we conclude from Example 2.6 that the set of Laurent series
solutions of F (y) = 0 of order 1 at the origin is in bijection with the set

{(c0, c1) ∈ K2 \ {(0, 1)} | c1 = −(c0)2 + 1}.

In the above example, the order bound provided by Theorem 3.2 is sharp. However,
the following example shows that, in general, this is not true.
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Example 3.4. Consider the following linear ODE:

F (y) = x2y′′ + 4xy′ + (2 + x)y = 0. (12)

We compute the order bound for Laurent series solutions of the above equation at the
origin. The following table is the list of the exponents of terms of F and related infor-
mation.

I ∈ E(F ) ||I|| ||I||∞ fI ord0 fI
(0, 0, 1) 1 2 x2 −2
(0, 1, 0) 1 1 4x −1
(1, 0, 0) 1 0 2 + x 0

Based on the above table, we find that P0,F (t) = (t−1)(t−2). According to Theorem 3.2,
the order bound at the origin is 2.
Assume that y = ∑∞

i=−r cix
i ∈ K((x)) and substitute it into (12), we get

(1 + i)(2 + i)ci + ci−1 = 0 for each i ∈ Z. (13)

The above recurrence equation implies that if F (y) = 0 has Laurent series solution at
the origin, then the order must be 1 or 2.
Substituting i = −1 into (13), we have c−2 = 0. So, F (y) = 0 does not have Laurent

series solution at the origin of order 2.
Assume that c−1 = 1, we conclude from (13) that F (y) = 0 has a Laurent series

solution of order 1 with the following form:
∞∑

i=−1
(−1)i+1 xi

(1 + i)!(2 + i)! .

Consider an AODE F (y) = 0. If E(F ) = D(F ) and the indicial polynomial Px0,F (t)
is zero, then Theorem 3.2 does not give any information for the order bound of Laurent
series solution of F (y) = 0 at x = x0. In the next section, we will give an example
(Example 4.5) that the order can be arbitrarily high in this case.

4 Polynomial Solutions
Theorem 3.2 suggests an answer for the problem of computing all polynomial solutions
of an AODE. In fact, the degree of a polynomial is equal to the order of its Laurent series
expansion at infinity. Therefore, by applying Theorem 3.2, we can give a degree bound
for polynomial solutions of a given AODE. Once the degree bound is given, one can
compute all polynomial solutions by making an ansatz and solving the corresponding
algebraic equations.
In [15], Krushel’nitskij discusses the properties of the degree of a polynomial solution

for a given AODE. However, no full algorithm for computing all polynomial solutions
for a given AODE is available so far. Note that not every AODE admits a degree
bound for its polynomial solutions (see Example 4.5). Based on the indicial polynomial
(Definition 3.1) at infinity, we give a necessary condition for an AODE to have polynomial
solutions with bounded degrees.
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Definition 4.1. An AODE F (y) = 0 is called noncritical if P∞,F (t) 6= 0.

Corollary 4.2. If an AODE F (y) = 0 is noncritical, then there exists a bound for the
degree of its polynomial solutions.

Proof. Straightforward from Theorem 3.2.

Algorithm 4.3. Given a noncritical AODE F (y) = 0, compute all its polynomial solu-
tions.

(1) Compute P∞,F (t). If P∞,F (t) has integer roots, then set r1 to be the largest integer
root. Otherwise, set r1 = 0.

(2) Compute r2 = bb∞(F )c if E(F ) \ D(F ) 6= ∅. Otherwise set r2 = 0.

(3) Set r = max{r1, r2, 0}. Make an ansatz z = ∑r
i=0 cix

i, where ci’s are unknown.
Substitute z into F (y) = 0 and solve the corresponding algebraic equations by using
Gröbner bases.

(4) Return the solutions from the above step.

The termination of Algorithm 4.3 is obvious. The correctness follows from Theo-
rem 3.2.

Example 4.4 (Kamke 6.234 [12]). Consider the differential equation

F (y) = a2y2y′′2 − 2a2yy′2y′′ + a2y′4 − b2y′′2 − y′2 = 0, (14)

where a, b ∈ K and a 6= 0. The following table is a list of the exponents of terms of F
and related information.

I ∈ E(F ) ||I|| ||I||∞ fI
(2, 0, 2) 4 4 a2

(1, 2, 1) 4 4 −2a2

(0, 4, 0) 4 4 a2

(0, 0, 2) 2 4 −b2

(0, 2, 0) 2 2 −1

From the above table we see that D(F ) is the set of exponents in the first three lines,
and E(F ) \ D(F ) is the set of exponents in the last two lines. A direct computation
shows that m∞(F ) = −4, M∞(F ) = D(F ), and P∞,F (t) = a2t2 6= 0. Therefore, the
differential equation (14) is noncritical. Furthermore, we find that b∞(F ) = 1.
By Theorem 3.2, every polynomial solution of (14) has degree at most 1. By making

an ansatz and solving the corresponding algebraic equations, we obtain all polynomial
solutions, which are c, c + x

a
, and c− x

a
, where c is an arbitrary constant in K.

Through our investigation, almost all AODEs we see in the literature are noncritical
(see Section 6). Only few of them are not noncritical. Below is one example for a critical
AODE.
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Example 4.5. Consider the differential equation xyy′′−xy′2 +yy′ = 0. By computation,
we find that its indicial polynomial is zero. So, it is a critical AODE. Actually, it has
polynomial solutions z = cxn for arbitrary c ∈ K and n ∈ N.

We end this section by proving that two important classes of AODEs are noncritical.

Proposition 4.6. Let L ∈ K(x)
[
∂
∂x

]
be a differential operator, and P (x, y, z) ∈ K(x)[y, z]

a polynomial in two variables with coefficients in K(x). Then for each n > 0, the differ-
ential equation L(y) + P (x, y, y(n)) = 0 is noncritical.
In particular, linear AODEs, first-order AODEs (which have the form F (x, y, y′) = 0

for some F ∈ K(x)[y, y′]), and quasi-linear second-order AODEs (which have the form
y′′ + G(x, y, y′) = 0 for some G ∈ K(x)[y, y′]), are noncritical.

Proof. Let F (y) := L(y) + P (x, y, y(n)). We prove that P∞,F is nonzero.
First, we consider the case that P is a linear polynomial in y and z. Then F is a

linear differential polynomial, say

F (y) = fI−1 + fI0y + · · ·+ fImy(m),

where fIi
∈ K(x) and fIm 6= 0 and m ∈ N. A direct computation shows that the indicial

polynomial of F at infinity is of the form

P∞,F (t) =
∑

i=0,...,m
Ii∈M∞(F )

c∞(fIi
) ·

i∏
s=1

(t− s + 1),

which is a nonzero polynomial. Therefore, linear AODEs are noncritical.
Next, assume that P is of total degree at least 2. Then we haveD(F ) = D(P (x, y, y(n)))

andM∞(F ) =M∞(P (x, y, y(n))). We write P (x, y, y(n)) in the form

P (x, y, y(n)) =
∑

(i,j)∈N2

fi,j(x)yi(y(n))j.

Then M∞(F ) consists of elements of the form ei,j = (i, 0, . . . , 0, j) ∈ Nn+1. A direct
calculation reveals that

P∞,F (t) =
∑

j=1,...,n
ei,j∈M∞(F )

c∞(fi,j) · [t(t− 1) · · · (t− n + 1)]j.

The indicial polynomial P∞,F (t) can be viewed as the evaluation of the nonzero univari-
ate polynomial

g(T ) =
∑

j=1,...,n
ei,j∈M∞(F )

c∞(fi,j) · T j at T = t(t− 1) · · · (t− n + 1).

On the other hand, since t(t − 1) · · · (t − n + 1) is transcendental over K, we conclude
that P∞,F 6= 0.
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Proposition 4.7. Let L ∈ K(x)
[
∂
∂x

]
be a differential operator with coefficients in K(x),

and Q(y, z, w) ∈ K[y, z, w] a polynomial in three variables with coefficients in K. Then
for each m, n > 0, the differential equation L(y) + Q(y, y(n), y(m)) = 0 is noncritical.
In particular, autonomous second-order AODEs (which have the form F (y, y′, y′′) = 0

for some F ∈ K[y, y′, y′′]), and quasi-linear autonomous third-order AODEs (which have
the form y′′′ + G(y, y′, y′′) = 0 for some G ∈ K[y, y′, y′′]), are noncritical.

Proof. Let F (y) := L(y) + Q(y, y(m), y(n)). Without loss of generality, we can assume
that 0 < m < n. As we have seen from the previous proposition, a linear AODE is
noncritical. Therefore we can assume further that Q is of total degree at least 2. Then
we have D(F ) = D(Q(y, y(m), y(n))) andM∞(F ) = M∞(Q(y, y(m), y(n))). Let us write
Q(y, y(m), y(n)) in the form

Q(y, y(m), y(n)) =
∑

(ijk)∈N3

fijky
i(y(m))j(y(n))k.

For simplicity, we denote eijk = (i, 0, . . . , 0, j, 0, . . . , 0, k) ∈ Nn+1, where j is the (m + 1)-
th coordinate. ThenM∞(F ) consists of all eijk such that i+j+k = d(F ) and mj+nk =
m∞(F ). A direct computation implies that

P∞,F (t) =
∑

(i,j,k)∈N3

eijk∈M∞(F )

c∞(fijk) · (t(t− 1) · · · (t−m + 1))j+k · ((t−m) · · · (t− n + 1))k.

This polynomial can be rewritten as:

P∞,F (t) = A
m∞(F )

m ·
∑

k=0,...,n
eijk∈M∞(F )

c∞(fijk)
(

B

A
(n−m)

m

)k
, (15)

where A = t(t− 1) · · · (t−m + 1) and B = (t−m) · · · (t− n + 1). The sum in (15) can
be viewed as the evaluation of the univariate polynomial

h(T ) =
∑

k=0,...,n
eijk∈M∞(F )

c∞(fijk)T k at T = B

A
(n−m)

m

.

Since the projection which maps eijk to k is injective, we have that h(T ) is nonzero.
On the other hand, since B

A
(n−m)

m

is transcendental over K, we conclude that P∞,F is
nonzero.

5 Rational Solutions
As another application of Theorem 3.2, we present a method for computing all rational
solutions of an AODE. It is well known [2, 11] that poles of rational solutions of a linear
ODE with polynomial coefficients only occur at the zeros of the highest coefficient of the
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equation. In order to generalize this fact to nonlinear AODEs, we first need to define
what is the “highest” coefficient in the nonlinear case. To do so, we equip the set of
monomials in y and its derivatives with a suitable partial order (Definition 5.1). We
show in Theorem 5.3 that if the given AODE has the greatest monomial with respect to
this ordering, then the poles of its rational solutions can only occur at the zeros of the
corresponding coefficient. Using this fact, an algorithm (Algorithm 5.4) for determining
all rational solutions of such AODEs will be proposed.

Definition 5.1. Assume that n ∈ N. For each I, J ∈ Nn+1, we say that I � J if
||I|| ≥ ||J || and ||I||+ ||I||∞ > ||J ||+ ||J ||∞.

It is straightforward to verify that the order defined as above is a strict partial ordering
on Nn+1, i. e. the following properties hold for all I, J, K ∈ Nn+1:

(i) irreflexivity: I 6� I;

(ii) transitivity: if I � J and J � K, then I � K;

(iii) asymmetry: if I � J , then J 6� I.

For I, J ∈ Nn+1, we say that I and J are comparable if either I � J or J � I.
Otherwise, they are called incomparable. It is clear that the order� is not a total order
on Nn+1. For example, (2, 0) and (0, 1) are incomparable. For a given point I in Nn+1,
it is straightforward to verify that the number of points that are incomparable to I is
finite.
Let S be a subset of Nn+1. An element I ∈ S is called the greatest element of S if

I � J for every J ∈ S \ {I}. By the asymmetry property of �, the set S has at most
one greatest element. This motivates the following definition.

Definition 5.2. An AODE F (y) = 0 is called maximally comparable if E(F ) admits a
greatest element with respect to �.

Theorem 5.3. Let F (y) = ∑
I∈Nn+1

fIy
i0(y′)i1 . . . (y(n))in ∈ K[x]{y} be a differential poly-

nomial of order n > 0. Assume that F (y) = 0 is maximally comparable, and I0 is the
greatest element of E(F ) with respect to �. Then the poles of a rational solution of
F (y) = 0 can only occur at infinity or at the zeros of fI0(x).

Proof. We prove the above claim by contradiction. Suppose that there is x0 ∈ K such
that x0 is a pole of order r ≥ 1 of a rational solution of the AODE F (y) = 0, and
fI0(x0) 6= 0. Then ordx0 fI0 = 0.
We first prove that Mx0(F ) = {I0}. Since I0 is the greatest element of E(F ) with

respect to �, we see that ||I0|| ≥ ||J || for all J ∈ E(F ). So I0 ∈ D(F ). Now let us fix
any J ∈ D(F ) \ {I0}. Since ||I0|| = ||J || and ||I0||+ ||I||∞ > ||J ||+ ||J ||∞, we have that
||I0||∞ > ||J ||∞. Therefore, we conclude that ordx0(fI0) + ||I0||∞ > ordx0(fJ) + ||J ||∞
because ordx0 fI0 = 0 ≥ ordx0(fJ). In other words, I0 is the only element ofMx0(F ).
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SinceMx0(F ) = {I0}, the indicial polynomial at x = x0 has the form

Px0,F (t) = cx0(fI0) ·
n−1∏
r=0

(−t− r)||I0||r+1 .

It is straightforward to see that Px0,F (t) has no positive integer root. Due to Theorem 3.2
and r ≥ 1, we have E(F ) \ D(F ) 6= ∅ and

r ≤ bx0(F ) = max
{

ordx0(fJ) + ||J ||∞ − ||I0||∞
||I0|| − ||J ||

∣∣∣∣ J ∈ E(F ) \ D(F )
}

= max
{

1− − ordx0(fJ) + (||I0||+ ||I0||∞)− (||J ||+ ||J ||∞)
||I0|| − ||J ||

∣∣∣∣ J ∈ E(F ) \ D(F )
}

< 1.

This contradicts the assumption that r ≥ 1.

The above theorem gives us a necessary condition for an AODE having no “unex-
pected” poles. As we have seen from Theorem 3.2, once a candidate for poles of a
rational solution is found, we can bound the order at this candidate. Moreover, for
maximally comparable AODEs, there are only finitely many candidates for poles of ra-
tional function solutions. Combined with the partial fraction decomposition of a rational
function, we present the following algorithm for determining all rational solutions of a
maximally comparable AODE.

Algorithm 5.4. Given a maximally comparable AODE F (y) = 0, compute all its ra-
tional function solutions.

(1) Compute the greatest element I0 of E(F ) with respect to�. Compute distinct roots
x1, . . . , xm of fI0(x) in K.

(2) For i ∈ {1, . . . , m}, compute an order bound ri for rational solutions of F (y) = 0
at x = xi by Theorem 3.2. Similarly, compute the order bound N for rational
solutions of the equation at infinity.

(3) Make an ansatz with the partial fraction decomposition

z =
m∑
i=1

ri∑
j=1

cij
(x− xi)j

+
N∑
k=0

cix
i , (16)

where the cij and ci are unknown. Substitute (16) into F (y) = 0 and solve the
corresponding algebraic equations by using Gröbner bases.

(4) Return the solutions from the above step.

Algorithm 5.4 evidently terminates. The correctness follows from Theorems 3.2 and 5.3.
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Example 5.5. Consider the differential equation

F (y) = x2(x− 1)2y′′2 + 4x2(x− 1)y′y′′ − 4x(x− 1)yy′′+
4x2y′2 − 8xyy′ + 4y2 − 2(x− 1)y′′

= 0.

We first collect some information about the exponents of terms of F (y).

I ∈ E(F ) ||I|| ||I||∞ ||I||+ ||I||∞ fI
(0, 0, 2) 2 4 6 x2(x− 1)2

(0, 1, 1) 2 3 5 4x2(x− 1)
(1, 0, 1) 2 2 4 −4x(x− 1)
(0, 2, 0) 2 2 4 4x2

(1, 1, 0) 2 1 3 −8x
(2, 0, 0) 2 0 2 4
(0, 1, 0) 1 1 2 −2(x− 1)

In the above table, D(F ) consists of the first 6 elements of E(F ), and d(F ) = 2. The
first one (0, 0, 2) is the greatest element of E(F ) with respect to �. By Theorem 5.3,
the poles of a rational solution of F (y) = 0 can only occur at the zeros of the polynomial
x2(x− 1)2, which are 0 and 1, and probably at infinity.
A simple computation based on Theorem 3.2 shows that the orders of poles of a rational

solution of F (y) = 0 at 0, 1, and infinity are at most 0, 1, and 1, respectively.
Hence, we make an ansatz of the form:

z = c1

x− 1 + c2 + c3x for some c1, c2, c3 ∈ K.

Substituting z into F (y) = 0 and solving the corresponding algebraic equations, we find
that the rational solutions of F (y) = 0 are c3x and 1

x−1 + c3x, where c3 is an arbitrary
constant in K.

Through our investigation, most AODEs we see in literature are maximally compara-
ble (see Section 6). Only few of them are not. Below is one example for non-maximally
comparable AODEs.

Example 5.6. Consider the differential equation F (y) = y′ + y2 = 0. It is straightfor-
ward to see that this equation is not maximally comparable because (2, 0) and (0, 1) are
not comparable with respect to �. Actually, it has rational function solutions z = 1

x−c
for arbitrary c ∈ K.

6 Experimental results
In Sections 4 and 5, we concentrate on the problem of computing all particular polyno-
mial and rational solutions of some classes of AODEs. For a noncritical AODE (Defi-
nition 4.1), we bound the degree of its polynomial solutions, therefore determine (Al-
gorithm 4.3) all polynomial solutions (if there are any). For the class of maximally
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comparable AODEs (Definition 5.2), we propose a method (Algorithm 5.4) for com-
puting all rational solutions. In this section, we do some statistical investigation for
noncriticality and the maximal comparability of AODEs from the famous collection of
differential equations by Kamke [12]. The corresponding Maple worksheet is available
in:

https://yzhang1616.github.io/KamkeODEs.mw

The worksheet requires the availability of the following Maple package:

https://yzhang1616.github.io/KamkeODEs.mpl

There are 834 AODEs in Kamke’s collection. All of them are noncritical. It means
that our method can be used to determine all polynomial solutions, if there is any, of
each AODE from Kamke’s collection. Among them, there are 655 maximally comparable
AODEs (≈ 78.54 %).
The class of AODEs covers around 79.66 % of the entire collection of ODEs. The

remaining ODEs have coefficients involving trigonometric functions (sin x, cos x,...), hy-
perbolic functions (sinh x, cosh x, ...), exponential functions ex, logarithmic functions
log x, or power functions with parameters in the exponents (xα, yβ, ...). For certain
choices of the parameters, the latter ODEs will become algebraic. More precisely, there
are 35 ODEs containing parameters in the power functions. If the parameters are chosen
in a suitable way such that the corresponding ODEs are algebraic, then all of them are
noncritical and 21 among them (60 %) are maximally comparable.
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