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Background

Let Fq be a finite field of q elements. Pseudo-random sequences
are widely used in cryptography. E.g., key stream generator.

Question 1: How to generate pseudo-random sequences?

Question 2: How to measure randomness of a given
cryptographic sequence?

For Question 1, periodic pseudo-random sequences over Fq can be
generated by feedback shift registers (FSRs).
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Background

feedback shift register (FSR) with n stages

The feedback function f ∈ Fq[x1, x2, . . . , xn].

If f is linear, call it a linear feedback shift register (LFSR).
The corresponding sequence is a C -finite sequence over Fq.

If f is nonlinear, call it a nonlinear feedback shift register
(NFSR).

Yi Zhang, XJTLU 3/18



Background

Question 2: How to measure randomness of a given cryptographic
sequence?

Linear complexity: the length of the shortest LFSRs that
generate the sequence.

The Berlekamp-Massey (BM) algorithm: an efficient algorithm
for computing the shortest LFSR of a given sequence.

The Berlekamp-Massey-Sakata (BMS) algorithm: a
generalization of the BM algorithm to the multivariate case
using the idea of Gröbner bases.

Nonlinear complexity: the length of the shortest NFSRs that
generate the sequence.

Blumer’s algorithm: an efficient algorithm for computing the
shortest NFSR of a given sequence in linear time and memory.

Nonlinear complexity ≤ linear complexity.
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Motivation

Based on the function expansion into expansion series, Xing and
Lam (1999) constructed sequences with optimal linear complexity,
which are close to half of their lengths.

Diem (2012) showed that this type of sequences can be computed
from a shorter subsequence and then introduced

Expansion complexity: the least total degree of annihilating
polynomials for the generating function of a given sequence.

Mérai et al. (2017) studied the lower and upper bound for
expansion complexity of ultimately period sequences and
aperiodic sequences.

Gómez-Pérez et al. (2018) gave an upper bound for expansion
complexity of any sequence and introduced the notion of
irreducible expansion complexity.

Gómez-Pérez and Mérai (2020) studied the expansion
complexity of any sequence using Gröbner bases.
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Motivation

Our contribution:

An explicit formula of the irreducible expansion complexity of
ultimately periodic sequences.

A tighter upper bound for the Nth expansion complexity of
arbitrary sequence with given nonlinear complexity.
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Preliminaries

Let S = (si ) be a sequence over Fq.

The Nth linear complexity LN(S) is the minimal order of the
linear recurrence satisfies

si+N +

LN−1∑
j=0

cjsi+j = 0, for 0 ≤ i ≤ N − LN − 1

with cj ∈ Fq. If s0 = · · · = sN−1 = α, then LN(S) := 0 when
α = 0 and LN(S) := 1 when α ̸= 0.

The linear complexity of S is given by

L(S) = sup
N≥1

LN(S).
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Preliminaries

Let S = (si ) be a sequence over Fq.

The Nth nonlinear complexity CN(S) is the length of the
shortest NFSRs that generate {si}N−1

i=0 .
If s0 = · · · = sN−2 = α, then CN(S) := 0 when sN−1 = α and
CN(S) := N − 1 when sN−1 ̸= α.

The nonlinear complexity of S is given by

C (S) = sup
N≥1

CN(S).

CN(S) ≤ LN(S) for N = 1, 2, . . ..
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Preliminaries

Let G (x) =
∑∞

i=0 six
i be the generating function of S.

The Nth expansion complexity EN(S) := 0 if si = 0 for
i = 0, . . . ,N − 1 and otherwise the least total degree of
h(x , y) ∈ Fq[x , y ] with h(x ,G (x)) ≡ 0 (mod xN).

The expansion complexity of S is E (S) = supN≥1 EN(S).

If h(x , y) is irreducible, call it the Nth irreducible expansion
complexity E ∗

N(S) and the irreducible expansion complexity
E ∗(S), respectively.

EN(S) ≤ E ∗
N(S) ≤ E ∗

N+1(S) for N = 1, 2, . . ..
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Ultimately Periodic Sequences

A sequence S = (si ) over Fq is called ultimately or eventually
periodic if there exist n > 0 and u ≥ 0 s.t.

si+n = si for i ≥ u. (1)

It is said to have parameters (n, u) if n is the least period
satisfying (1). When u = 0, call S a (purely) periodic sequence.

Example 1.Let S = (si ) be the Legendre sequence of a prime
period p defined by

si =

{
[1 + ( i

p )]/2, if i ̸≡ 0 (mod p);

0, otherwise,

where ( i
p ) is the Legendre symbol.
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Ultimately Periodic Sequences

For an ultimately periodic sequence S = (si ) with parameters
(n, u), denote

su(x) =
u−1∑
i=0

six
i and sn(x) =

n−1∑
i=0

si+ux
i .

Then the generating function of S is

G (x) =
u−1∑
i=0

six
i + xu

n−1∑
i=0

si+ux
i (1 + xn + · · · )

= su(x) + xu · sn(x)

1− xn

=
f0(x)

f1(x)
, (2)

where gcd(f0, f1) = 1. We can show that deg(f1) = L(S)− u.
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Ultimately Periodic Sequences

Theorem 1 (Sun-Zeng-Li-Z.-Yi 2021) Let S = (si ) be an ultimately
periodic sequence with parameters (n, u) and linear complexity
L(S). Set ℓ = L(S)− u +max{1, k − n}, where k ∈ Z≥0 can be
derived from {si}n+u−1

i=0 . Then the Nth irreducible expansion
complexity

E ∗
N(S) = ℓ for N > ℓ(ℓ− 1).

Moreover, the irreducible expansion complexity E ∗(S) = ℓ.

Ingredients for the proof:

Let G (x) = f0(x)/f1(x) with f0(x), f1(x) given in (2). Set
h(x , y) = f1(x)y − f0(x). Show that deg(h) = ℓ.

Use psedo-division algorithm over Fq[x , y ] to show that
E ∗
N(S) = ℓ when N is large enough and E ∗(S) = ℓ.
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Ultimately Periodic Sequences

Theorem 1 implies that EN(S) = E ∗
N(S) for N > ℓ(ℓ− 1).

The calculation of E ∗
N(S) can be converted to that of L(S),

which can be computed by the BM algorithm, and the
comparison of some terms of S.

Constructing an ultimately periodic sequence S = (si )
∞
i=0 with

large irreducible expansion complexity can be done by:

Choose an n-periodic sequence (si )
∞
i=u with large linear

complexity.

Choose a pre-periodic sequence (s0, . . . , su−1) with
su−1 ̸= su+n−1.
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Ultimately Periodic Sequences

Example 1 (continued). Let S = (si )
∞
i=0 be the Legendre sequence

of a prime period p defined by

si =

{
[1 + ( i

p )]/2, if i ̸≡ 0 (mod p);

0, otherwise,

where ( i
p ) is the Legendre symbol. By Theorem 1, we have

if p ≡ 1 (mod 8), then E ∗
N(S) =

p+1
2 for N > (p+1)(p−1)

4 ;

if p ≡ 3 (mod 8), then E ∗
N(S) = p + 1 for N > p(p + 1);

if p ≡ 5 (mod 8), then E ∗
N(S) = p for N > p(p − 1);

if p ≡ 7 (mod 8), then E ∗
N(S) =

p+3
2 for N > (p+3)(p+1)

4 .
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Upper Bound

Let S be a sequence over Fq.

Gómez-Pérez et al. (2018) show that the Nth expansion
complexity EN(S) ≤

√
2N.

However, if the first N terms of S is (0, 0, . . . , 0, 1) and N ≥ 3,
then CN(S) = N − 1 but EN(S) = 2, which is far less than

√
2N.

Question 3: What is the relation between CN(S) and EN(S)?

Yi Zhang, XJTLU 15/18



Upper Bound

Theorem 2 (Sun-Zeng-Li-Z.-Yi 2021). Let S = (si ) be a sequence
over Fq. If the Nth nonlinear complexity CN(S) = N − k with
1 ≤ k <

√
2N − 2, then Nth expansion complexity

EN(S) ≤ k + 2.

Idea for the proof: Induction and construction theorem
(Yi-Zeng-Sun 2021) of sequence S with CN(S) ≥ N/2.

Upper bound of EN(S) only depends on the number of
distinct subsequences of length N − k appearing in {si}N−1

i=0 .

Non-randomness property of S with large CN(S) may be
detected by computing its EN(S).
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Upper Bound

The upper bound in Theorem 2 is tight.

Example 2. Let S be a binary sequence. Its first N elements satisfy

s0 = 0, s1 = 1, si = si+2, 0 ≤ i ≤ N − 4, sN−1 ̸= sN−3.

Then CN(S) = N − 2 by Jansen’s Ph.D. thesis. By detailed
calculation, we find EN(S) = 2, which is exactly the upper bound
in Theorem 2.

C. J. A. Jansen, Investigations on Nonlinear Stream Cipher
Systems: Construction and Evaluation Methods, Ph.D.
dissertation, Technical University of Delft, Delft, 1989.
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Conclusion

An explicit formula of the (irreducible) expansion complexity
of ultimately periodic sequences over finite fields.

A tighter upper bound of the Nth expansion complexity for
arbitrary sequences with given Nth nonlinear complexity.

Thanks!
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