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Singularities (univariate case)

Let ∂ = d
dx .

Consider

L = pr∂
r + pr−1∂

r−1 + · · ·+ p0 ∈ C[x ][∂],

where pi ∈ C[x ] with pr 6= 0 and gcd(pr , pr−1, . . . , p0) = 1.

Call r the order of L, denoted by ord(L).

Definition. c ∈ C is an ordinary point of L if pr (c) 6= 0.
Otherwise, c is a singularity of L.
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Formal power series (univariate case)

Definition. Let f ∈ C[[x ]] be of the form

f = cmx
m + cm+1x

m+1 + · · · ,

where cm 6= 0. Call m the initial exponent of f .

Theorem (Fuchs, 1866). Let L ∈ C[x ][∂] \ {0} . Then

the origin is an ordinary point of L

m

L has ord(L) sols in C[[x ]] with initial exponents 0, 1, . . . , ord(L)− 1.
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Apparent singularities

Assume the origin is a singularity of L.

Definition. The origin is apparent if L has ord(L) C-linearly
independent sols in C[[x ]].

Example. x5 is a sol of xf ′(x)− 5f (x) = 0.
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Motivation

Assume the origin is an apparent singularity of L.

Goal. Find M ∈ C[x ][∂] \ {0} s.t.

sol(L) ⊂ sol(M);

the origin is an ordinary point of M.

Remark. If so, then sol(L) is spanned by formal power series.
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Apparent singularites

L has sols of the form:

xe1 + · · · , e1 = 0, . . . , α1 − 1,

xα1 + · · · ,

xe2 + · · · , e2 = α1 + 1, . . . , α2 − 1,

xα2 + · · · ,
...

xer + · · · , er = αr−1 + 1, . . . , αr − 1,

xαr + · · · .

where α1 < α2 < · · · < αr ∈ N, r = ord(L).

Remark. Some exponents are missing!
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Desingularization

Given L ∈ C[x ][∂], the origin being apparent, find M ∈ C[x ][∂] s.t.

M = PL for some P ∈ C(x)[∂];

the origin is an ordinary point of M.

Call M a desingluaried operator of L.

A first idea (Fuchs). Assume missing exponents are k1, . . . k`.
Compute the least common left multiple of

L, x∂ − k1, . . . , x∂ − k`

in C(x)[∂].

Yi Zhang, RICAM 7/19
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Advanced method

Chen, Jaroschek, Kauers and Singer (2013, 2016), construct a
desingularized operator M of L s.t.

all apparent singularities of L are ordinary points of M;

all singularities of M are non-apparent ones of L;

the degree of leading coeff of M is minimal.
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Contraction of Ore ideals (Z, 2016)

Theorem. A desingularized operator yields generators of

(C(x)[∂]L) ∩ C[x ][∂].

Determine the contraction ideals of shift operators

The ring of constants can replaced by a PID

Yi Zhang, RICAM 9/19
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D-finite systems

Notation.

An = C[x1, . . . , xn][∂1, . . . , ∂n] ⊂ Rn = C(x1, . . . , xn)[∂1, . . . , ∂n]
⇑ ⇑

Weyl algebra Rational algebra

where ∂i = ∂/∂xi .

Definition. A left ideal I ⊂ Rn is D-finite if Rn/I is a
finite-dimensional vector space over C(x1, . . . , xn).

Assume that G1, . . . ,Gm are generators of I . The system

Gi (f ) = 0, i = 1, . . . ,m.

is called a D-finite system.
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D-finite Gröbner bases

Let ≺∂ be a graded term order on ∂k11 · · · ∂knn , a finite set G ⊂ An

is a Gröbner basis w.r.t. ≺∂ .

Definition. G is D-finite if Rn · G is D-finite. The set

PE(G ) =
{

(i1, . . . , in) | ∂ i11 · · · ∂
in
n is not reducible w.r.t. G

}
.

is called the set of parametric exponents of G .

|PE(G )| is called the rank of G .
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Example 1

Consider
M = {∂31 , ∂21∂2, ∂1∂22 , ∂32}.

Then PE(M) = {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2)}.

deg∂2

deg∂1

PE(M)
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Ordinary points and singularities

Assume that G ⊂ An is a Gröbner basis and its elements are all
primitive.

Definition. c ∈ Cn is an ordinary point of G if c is not a zero of∏
g∈G

lc(g).

Otherwise, c is a singularity of G .
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Ordinary points and singularities

Example 1 (cont.) Consider

M = {∂31 , ∂21∂2, ∂1∂22 , ∂32}.

where
∏

g∈M lc(g) = 1. The origin is an ordinary point of M.

Example 2. Consider

G = {x22∂2 − x21∂1 + x1 − x2, ∂
2
1},

where
∏

g∈G lc(g) = x22 . The origin is a singularity of G .
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Formal power series

Let ≺x be the order induced by ≺∂ on xk11 · · · xknn .

Let f ∈ C[[x1, . . . , xn]] be of form

f = ci1,...,inx
i1
1 · · · x

in
n + higher terms w.r.t. ≺x ,

where ci1,...in ∈ C is nonzero.

Definition. Call (i1, . . . , in) the initial exponent of f .
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Main result

Let G be a D-finite Gröbner basis and its elements are all primitive.

Theorem. The origin of Cn is an ordinary point of G

m

∀ (i1, . . . , in) ∈ PE(G ), ∃ f ∈ C[[x1, . . . , xn]] with initial
exponent (i1, . . . , in) s.t. f is a solution of G .

Remark. an algorithm for computing formal power series sols of
D-finite systems at ordinary points.
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Apparent singularities

Assume the origin is a singularity of G .

Definition. The origin is apparent if G has |PE(G )| C-linearly
independent sols in C[[x1, . . . , xn]].

Example 2 (cont.) Consider

G = {x22∂2 − x21∂1 + x1 − x2, ∂
2
1},

{x1 + x2, x1x2} are sols of G . The origin is apparent.

We can decide whether a given point is apparent or not and
remove it using “a first idea”.

Yi Zhang, RICAM 17/19



Example 2 (cont.)

Consider
G = {x22∂2 − x21∂1 + x1 − x2, ∂

2
1},

Set
S = {(0, 0), (0, 1), (2, 0), (0, 2)}.

Let M ⊂ An be a Gröbner basis with

RnM = RnG ∩

 ⋂
(s,t)∈S

Rn{x1∂1 − s, x2∂2 − t}


We find

M = {∂31 , ∂21∂2, ∂1∂22 , ∂32}.

The origin is an ordinary point of M.
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Conclusion

Characterization of ordinary points of D-finite systems

Detect and remove apparent singularities of D-finite systems

Remark 1. an algorithm for computing formal power series sols of
D-finite systems at apparent singularities.

Remark 2. for arbitrary singularities, Takayama (2003) gives an
algorithm by using D-module theory. No elementary proof!

Thanks!

Yi Zhang, RICAM 19/19
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