
Fractional Calculus and Applied Analysis
https://doi.org/10.1007/s13540-023-00238-0

ORIG INAL PAPER

Log-concavity and log-convexity of series containing
multiple Pochhammer symbols

Dmitrii Karp1 · Yi Zhang2

Received: 6 November 2023 / Revised: 26 December 2023 / Accepted: 28 December 2023
© Diogenes Co.Ltd 2024

Abstract
In this paper, we study power series with coefficients equal to a product of a generic
sequence and an explicitly given function of a positive parameter expressible in terms
of the Pochhammer symbols. Four types of such series are treated. We show that
logarithmic concavity (convexity) of the generic sequence leads to logarithmic con-
cavity (convexity) of the sum of the series with respect to the argument of the explicitly
given function. The logarithmic concavity (convexity) is derived from a stronger prop-
erty, namely, positivity (negativity) of the power series coefficients of the so-called
generalized Turánian. Applications to special functions such as the generalized hyper-
geometric function and the Fox-Wright function are also discussed.
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1 Introduction

LetN be the set of positive integers andN0 := N∪{0},R+ = [0,∞). Define a formal
power series

f (μ; x) =
∞∑

n=0

fnφn(μ)
xn

n! (1.1)

with non-negative coefficients fnφn(μ)which depend continuously on a non-negative
parameter μ. Our main focus in this paper is the logarithmic concavity (convexity)
of the function μ → f (μ; x), i.e., concavity (convexity) of μ → log( f (μ; x)) for
a fixed x in the convergence domain of the series (1.1). To this end, we define the
so-called “generalized Turánian" for any α, β ≥ 0 by the expression

Δ f (α, β; x) = f (μ + α; x) f (μ + β; x) − f (μ; x) f (μ + α + β; x) =
∞∑

k=0

δk x
k .

(1.2)

It is well-known and is easy to see that the condition Δ f (α, β; x) ≥ 0 (≤ 0) implies
log-concavity (log-convexity) of μ → f (μ; x). It is less trivial that for continuous
functions the reverse implication also holds [15]. In this paper wewill mostly deal with
the stronger property: if the coefficients δk at all powers of x in (1.2) are non-negative
(non-positive) for all α, β ≥ 0 we will say that μ → f (μ; x) is coefficient-wise
log-concave (log-convex). If this property holds for (α, β) ∈ A for some subset A of
R+ ×R+, we say that μ → f (μ; x) is coefficient-wise log-concave (log-convex) for
shifts α, β in A. Note that coefficient-wise log-concavity/log-convexity is well-defined
regardless of convergence or divergence of the series (1.1).

In our previous work [7, 8, 12] we considered a number of explicitly specified
functions φn(μ), while a non-negative sequence fn remained generic. In many cases
this sequence will be required to satisfy one of the following properties.

Definition 1 Let { fk}∞k=0 be a non-negative nontrivial real sequence. We call { fk}∞k=0
log-concave (or Pólya frequency two – PF2, or doubly positive) if f 2k ≥ fk−1 fk+1 for
each k ∈ N, and { fk}∞k=0 is supported on an interval of integers (i.e., fN = 0 implies
either fN+i = 0 for all i ∈ N0 or fN−i = 0 for i = 0, . . . , N). If f 2k ≤ fk−1 fk+1 for
all k ∈ N, the sequence is called log-convex (this inequality implies that a nontrivial
sequence is strictly positive).

Denote by (μ)n the rising factorial, (μ)0 = 1, (μ)n = μ(μ + 1) · · · (μ + n − 1)
for n ≥ 1. In [12], S. M. Sitnik and the first author proved the following result: the
function

μ → f (μ; x) =
∞∑

n=0

fn
(μ)n

n! xn (1.3)
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is coefficient-wise log-concave if { fn}n≥0 is log-concave and coefficient-wise log-
convex if { fn}n≥0 is log-convex. This kind of duality ismade possible by log-neutrality
of the function f (μ; x) for fn ≡ C > 0 which is both log-concave and log-convex
sequence. Indeed, in this case f (μ; x) = C(1 − x)−μ, so that Δ f (α, β; x) = 0 for
all α, β. The first goal of this paper is to investigate a generalization of this result to
the case when (μ)n/n! in (1.3) is replaced by (μ)nr/(nr)! for r = 2, 3, . . .. Setting
fn ≡ C > 0 in this case does not lead to a log-neutral function, so the above kind
of duality is not possible here. Hence, instead of one series (1.3) we will consider
two different series depending on whether the sequence { fn}n≥0 is assumed to be
log-concave or log-convex. The second, modified series was suggested by Ahn Ninh
(private communication, 2017) by replacing (μ)n/n! in (1.3) by (μ)nr/(nr − 1)!
and starting the summation from n = 1. These two types of series are discussed in
Section 3.

Nevertheless, there exist other cases when setting fn ≡ C > 0 does lead to a log-
neutral function. In particular, taking φn(μ) = (μ)2n/(μ + 1)n in (1.1) leads to such
series. However, in this case we only managed to prove coefficient-wise log-concavity
(log-convexity) of μ → f (μ; x) for suitably restricted shifts. The corresponding
results and conjectures are discussed in Section 4.

In Section 5, we deal with the series of the form (1.1) with φn(μ) = (μ)n/(2μ)n .
We demonstrate that it is coefficient-wise log-convex for each non-negative sequence
{ fn}n≥0 and conjecture coefficient-wise log-concavity when φn(μ) is replaced by
[φn(μ)]−1.

In Section 6, we illustrate our results with several applications. We show that they
are well-suited for many special functions playing an important role in fractional
calculus [14]. First, we remark that all our claims can be immediately generalized
to the series containing the so-called k-shifted factorials and k-Gamma functions
[4]. Next, new log-convexity/concavity statements are presented for the generalized
hypergeometric functions and their parameter derivatives. Last but not least, we furnish
similar statements for the Fox-Wright function.

2 Preliminaries

In this section, we present several lemmas which will serve as our main tools in the
subsequent investigation.

Lemma 1 [8, Lemma 5] Suppose u, v, r , s > 0, u = max(u, v, r , s) and uv > rs.
Then u + v > r + s.

The following lemma is a slight generalization of [8, Lemma 6]. We say that
a sequence has no more than one change of sign if it has the pattern (− − · · · −
−00 · · · 00 + + · · · + +), where any of the three parts may be missing.

Lemma 2 [8, Lemma 6] Suppose that { fk}∞k=0 is log-concave (log-convex). If for a
certain n ∈ N the real sequence

A0, A1, . . . , A[n/2]
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has no more than one change of sign and
∑

0≤k≤[n/2] Ak ≥ 0 (≤ 0), then

∑

0≤k≤n/2

fk fn−k Ak ≥ 0 (≤ 0).

Proof It is literally the same as that of [7, Lemma 2.1]. 	


The following is a refinement of [8, Lemma 2].

Lemma 3 Suppose a positive function μ → f (μ) satisfies the Turán type inequality

Δ f (1, 1) = [ f (μ + 1)]2 − f (μ) f (μ + 2) ≥ 0 (≤ 0)

for all μ ≥ 0. Then

Δ f (α, β) = f (μ + α) f (μ + β) − f (μ) f (μ + α + β) ≥ 0 (≤ 0)

for all α, β ∈ N and μ ≥ 0.

Proof For the purposes of this proof it is convenient to write Δ f (α, β) = Δμ(α, β)

as f will remain fixed while μ will vary. We argue by induction. For α = β = 1 the
inequality Δμ(α, β) ≥ 0 holds by hypothesis of the lemma. Suppose it holds true for
α, β ∈ {1, 2, . . . , n}. Hence, taking α = n, β ∈ {1, 2, . . . , n} we have

f (μ + n) f (μ + β) ≥ f (μ) f (μ + n + β).

By changing μ → μ + n and taking α = 1 we also obtain:

f (μ + n + 1) f (μ + n + β) ≥ f (μ + n) f (μ + n + 1 + β).

Multiplying the above two inequalities we get

f (μ + n + 1) f (μ + β) ≥ f (μ) f (μ + n + 1 + β).

Hence, the required inequality holds forα = n+1 andβ ∈ {1, 2, . . . , n}. In viewof the
symmetrywe also covered the caseβ = n+1 andα ∈ {1, 2, . . . , n}. Then,multiplying
the inequalitiesΔμ(n, n+1) ≥ 0 andΔμ+n(1, n+1) ≥ 0weobtainΔμ(n+1, n+1) ≥
0, so that we proved that Δμ(α, β) ≥ 0 for all α, β ∈ {1, 2, . . . , n + 1}. 	


Remark 1 An analogous lemma can also be formulated for α, β in any lattice not
necessarily N

2, but we will not need this fact here.

For the coefficient-wise logarithmic concavity (convexity), however, we only man-
aged to establish the following weaker claim.
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Lemma 4 Suppose a power series of the form (1.1) is coefficient-wise log-concave
(log-convex) for μ ≥ 0 and the shifts α = 1 and β = {1, 2, . . . , n}, i.e., δk ≥ 0
(δk ≤ 0) for all k = 0, 1, . . ., where

Δ f (α, β; x) = f (μ + α; x) f (μ + β; x) − f (μ; x) f (μ + α + β; x) =
∞∑

k=0

δk x
k .

Then it is coefficient-wise log-concave (log-convex) for shifts α, β ∈ N satisfying
α + β ≤ n + 1.

Proof Indeed, it is straightforward to check that for any β ≥ α and δ ≥ 0

Δμ(α + δ, β; x) = Δμ(α, β + δ; x) + Δμ+α(δ, β − α; x), (2.1)

where we again used the notation Δμ(α, β; x) = Δ f (α, β; x). Suppose the coeffi-
cients of Δμ(1, β) are non-negative for β ∈ {1, . . . , n}. By taking α = δ = 1 in (2.1)
and letting β run over {1, . . . , n − 1}, we conclude that the power series coefficients
of Δμ(2, β) are non-negative for β in this range. Taking α = 2, δ = 1 in (2.1) and
letting β run over {2, . . . , n − 2}, we conclude that the power series of Δμ(3, β) are
non-negative for β in this range. Continuing in the same fashion, we cover the trian-
gular set α + β ≤ n + 1 with β ≥ α. The proof is completed by exchanging the roles
of α and β in the above argument. 	


It remains open whether the conclusion in the above lemma can be extended to all
natural shifts α, β ∈ N in analogy with Lemma 3. Lemma 4 also leads to a strength-
ening of [8, Lemma 3] and various results based on it. The result reads as follows.

Corollary 1 Suppose a power series of the form (1.1) is coefficient-wise log-concave
(log-convex) for μ ≥ 0 and the shifts α = 1 and β ≥ 1. Then it is coefficient-wise
log-concave (log-convex) for μ ≥ 0 and all α, β ≥ 1 such that at least one of them is
an integer.

Proof We proceed by induction. The claim holds for α = 1, β ≥ 1 by assumption.
Suppose it holds for α = 1, 2, . . . , k, β ≥ 1, then taking α = 1, β = k + 1 and any
δ > 0 in (2.1) we have

Δμ(1 + δ, k + 1; x) = Δμ(k + 1, 1 + δ; x) = Δμ(1, k + 1 + δ; x) + Δμ+1(k, δ; x)

which establishes the claim for α = k + 1, β ≥ 1. The symmetry

Δμ(α, β) = Δμ(β, α)

completes the proof. 	
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3 Multiple factorial series

Define a generalization of (1.3) as follows:

g(μ; x) =
∞∑

n=0

gn
(μ)nr

(nr)! x
n, r = 2, 3, . . . . (3.1)

Note that

[log((μ)nr )]′′ = ψ ′(μ + rn) − ψ ′(μ) ≤ 0, (3.2)

where ψ(z) = Γ ′(z)/Γ (z) denotes the digamma function [1, p.13]. The equality
above is only attained for n = 0 in view of the inequalities

ψ ′(x) =
∫ ∞

0

te−t x

1 − e−t
dt > 0, ψ ′′(x) = −

∫ ∞

0

t2e−t x

1 − e−t
dt < 0.

Hence, we are dealing the the infinite sum of log-concave functions which may be
log-concave, log-convex or neither. Setting gn = C > 0 here does not lead to a log-
neutral function ofμ (as will be explicitly seen below), so that there is no hope to get a
duality between log-concave/log-convex sequences {gn} and log-concave/log-convex
functions as outlined in the Introduction. Ahn Ninh (private communication, 2017)
suggested to modify (3.1) as follows

μ → f (μ; x) =
∞∑

n=1

fn
(μ)nr

(nr − 1)! x
n (3.3)

and conjectured that this function is log-concave if { fn}n≥0 is log-concave. See related
developments in [16]. In this section we will prove this conjecture for r = 2 and
disprove numerically for r = 4 (strongly suggesting that is it also wrong for r > 4).
The case r = 3 remains open and is formulated in the form of Conjecture 1. We will
further proof that μ → g(μ; x) defined in (3.1) is coefficient-wise log-convex for
r = 2 and is neither log-convex nor log-concave for r = 3 (strongly suggesting that
it remains so for r > 3). We will need the following.

Lemma 5 Let k,m ∈ N0 with k ≤ m/2, μ ≥ 0 and α, β > 0. Set

Tk,m := (μ + α)k(μ + β)m−k + (μ + α)m−k(μ + β)k

−(μ)k(μ + α + β)m−k − (μ)m−k(μ + α + β)k . (3.4)

If Tk,m ≤ 0 for some 1 ≤ k ≤ m/2, then Tk−1,m < 0.

Proof See [12, proof of Theorem 1]. 	
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Theorem 1 Let

g(μ; x) =
∞∑

n=0

gn
(μ)2n

(2n)! x
n =

∞∑

n=0

gn
(μ/2)n((μ + 1)/2)n

(1/2)nn! xn, (3.5)

where {gn}∞n=0 is a log-convex sequence independent of μ. Then the formal power
series g(μ; x) is coefficient-wise log-convex for μ > 0.

Proof For each α, β > 0 we have

g(μ + α; x)g(μ + β; x) − g(μ; x)g(μ + α + β; x) :=
∞∑

m=1

φmx
m,

where φm = ∑m
k=0 gkgm−kMk and

Mk = 1

(2k)! (2(m − k))!
[
(μ + α)2k(μ + β)2(m−k) − (μ)2k(μ + α + β)2(m−k)

]
.

Using Gauss pairing, we may write φm in the following form:

φm =
[m/2]∑

k=0

gkgm−k Ak,

where Ak = Mk + Mm−k for k < m/2, and Ak = Mk for k = m/2. Set

Ãk = (2k)!(2(m − k))!Ak, (3.6)

which has the same sign as Ak . Then

Ãk =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(μ + α)2k(μ + β)2(m−k)︸ ︷︷ ︸
uk

+ (μ + α)2(m−k)(μ + β)2k︸ ︷︷ ︸
vk

− (μ)2k(μ + α + β)2(m−k)︸ ︷︷ ︸
rk

− (μ)2(m−k)(μ + α + β)2k︸ ︷︷ ︸
sk

if k < m/2,

(μ + α)2k(μ + β)2k − (μ)2k(μ + α + β)2k if k = m/2.

First, we show that
∑[m/2]

k=0 Ak < 0 for m ≥ 1. To this end, we set

ψ(μ; x) :=
∞∑

n=0

(μ)2n

(2n)! x
n = 1

2

[
1

(1 + √
x)μ

+ 1

(1 − √
x)μ

]
, (3.7)
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where the second equality is immediate by expanding each of the two summands by
the binomial theorem. Then

ξμ(α, β; x) := ψ(μ + α; x)ψ(μ + β; x) − ψ(μ; x)ψ(μ + α + β; x)

=
∞∑

m=1

xm
m∑

k=0

Mk =
∞∑

m=1

xm
[m/2]∑

k=0

Ak .

Using (3.7), we find that

ξμ(α, β; x) = −1

4
(1 − x)−μ

[
(1 − √

x)−α − (1 + √
x)−α

]

· [(1 − √
x)−β − (1 + √

x)−β
]
. (3.8)

Since

(1 + √
x)−α − (1 − √

x)−α =
∞∑

n=0

(−α

n

)
(
√
x)n −

∞∑

n=0

(−α

n

)
(−√

x)n

= 2
√
x

∞∑

n=0

( −α

2n + 1

)
xn

has only negative coefficients, it follows from (3.8) that ψ(μ; x) is coefficient-wise
log-convex, and thus

∑[m/2]
k=0 Ak < 0 for m ≥ 1.

Next, we prove that for m ≥ 2 the sequence Ã0, . . . , Ã[m/2] has no more than one
change of sign. Assume that Ãk ≤ 0 for some k < m/2. Then Ãk = T2k,2m , which is
given in (3.4). Thus, it follows from Lemma 5 that

Ãk−1 = T2k−2,2m < 0.

Hence, since
∑[m/2]

k=0 Ak < 0, and the sequence A0, . . . , A[m/2] has no more than
one change of sign, we conclude by Lemma 2 that g(μ; x) is coefficient-wise log-
convex. 	

Remark 2 Note that the function ψ(μ; x) defined in (3.7) is a special case of the
so-called hypergeometric superhyperbolic cosine [18, page 74, Definition 2.10]. Its
second logarithmic derivative is easily seen to be positive:

∂2

∂μ2 (logψ(μ; x)) = 4(1 − x)μ(arctanh
√
x)2

((1 − √
x)μ + (1 + √

x)μ)2
> 0,

which proves its log-convexity. On the other hand, the function μ → (μ)2n in (3.5)
is log-concave for every n ∈ N0 according to (3.2). This shows that the condition that
{gn} is log-convex cannot be dropped, since taking gk = 1 with g j = 0 for j 
= k
yields a log-concave function.Moreover, the sequence A0, A1, . . . , A[m/2] has exactly
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one change of sign, which shows that restricting all gn to be strictly positive (which
rules out the previous example) is also insufficient, emphasizing the importance of the
log-convexity of {gn}. A proof of exactly one change of sign is given in the Appendix.

Remark 3 Theorem 1 is a natural generalization of [12, Theorem 1]. Rewriting the
proofs of [12, Theorems 2 and 3] mutatis mutandis, we can similarly show that for
each integer r ≥ 1 the formal power series

μ →
∞∑

n=0

fnΓ (μ + rn)xn,

μ →
∞∑

n=0

fn
(μ)rn

xn,

are coefficient-wise log-convex for arbitrary non-negative sequence { fn}∞n=0 indepen-
dent of μ (here Γ (·) stands for Euler’s gamma function).

Remark 4 Numerical experiments suggest that μ → ∑∞
n=0

(μ)nr
(nr)! x

n is neither
coefficient-wise log-convex nor coefficient-wise log-concave for r ≥ 3. Consider,
for instance,

ψ3(μ; x) =
∞∑

n=0

(μ)3n

(3n)! x
n = 1

3

2∑

k=0

1

(1 − ωk x1/3)μ
,

where ωk = e2kπ i/3 are the primitive roots of unity and the second equality follows
from the binomial theorem combined with the elementary identity

r−1∑

k=0

ωn
k =

{
r , if r divides n

0, otherwise

for ωk = e2kπ i/r , k = 0, . . . , r − 1, being primitive r -th roots of unity. Note first, that
the function μ → ψ3(μ; x) is convex for x > 0 as a sum of convex functions. Next,
by direct calculation we have

ψ3(μ + α; x)ψ3(μ + β; x) − ψ3(μ; x)ψ3(μ + α + β; x)
= −1

2
αβ(α + β + 2μ + 2)x + c(μ, α, β)x2 + O(x3)

as x → 0, where

c(μ, α, β) = − 1

240
αβ

(
2α4 + 5α3β + 10α3μ + 25α3 + 30α2β + 60α2μ + 100α2

+ 5αβ3 + 30αβ2 + 30αβμ + 110αβ + 30αμ2 + 220αμ + 185α

+ 2β4 + 10β3μ + 25β3 + 60β2μ + 100β2 + 30βμ2 + 220βμ + 185β

+ 20μ3 + 220μ2 + 370μ + 156 − 30αβμ2 − 20μ3(α + β) − 10μ4
)

.
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It is straightforward to verify that

c(5.76788, 1, 1) = −0.0998924,

c(6.13463, 1, 1) = 9.99983.

Thus, we see that ψ3(μ; x) is neither coefficient-wise log-convex nor coefficient-wise
log-concave.

Theorem 2 Let

f (μ; x) =
∞∑

n=1

fn
(μ)2n

(2n − 1)! x
n = x(μ)2

∞∑

n=0

fn+1
(μ/2 + 1)n(μ/2 + 3/2)n

(3/2)nn! xn,

where { fn}∞n=1 is log-concave and independent of μ. Then the formal power series
f (μ; x) is coefficient-wise log-concave.
Proof For each α, β > 0 we get

f (μ + α; x) f (μ + β; x) − f (μ; x) f (μ + α + β; x) :=
∞∑

m=2

φ̃mx
m,

where φ̃m = ∑m
k=1 fk fm−k M̃k and

M̃k = (μ + α)2k(μ + β)2(m−k) − (μ)2k(μ + α + β)2(m−k)

(2k − 1)! (2(m − k) − 1)! .

Moreover, we can write φ̃m in the following form:

φ̃m =
[m/2]∑

k=1

fk fm−k Bk,

where Bk = M̃k + M̃m−k for k < m/2, and Bk = M̃k for k = m/2. The modified
numbers

B̃k = (2k − 1)! (2(m − k) − 1)!Bk,

have the same sign as Bk and are obviously equal to Ãk defined in (3.6), B̃k =
Ãk . Therefore, by the proof of Theorem 1 and Lemma 5 we see that the sequence
B1, B2, . . . , B[m/2] has no more than one change of sign and B[m/2] > 0.

Next, we prove that
∑[m/2]

k=1 Bk > 0 for m ≥ 2. Set

ψ̃(μ; x) :=
∞∑

n=1

(μ)2n

(2n − 1)! x
n, η(μ; x) := 1

(1 − √
x)μ+1

− 1

(1 + √
x)μ+1

.
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Using the binomial theorem it is easy to see that

ψ̃(μ; x) = μ
√
x

2
η(μ; x).

Thus, we have

ψ̃(μ + α; x)ψ̃(μ + β; x) − ψ̃(μ; x)ψ̃(μ + α + β; x) =
∞∑

m=2

⎛

⎝
[m/2]∑

k=0

Bk

⎞

⎠ xm

= (μ + α)(μ + β)x

4
η(μ + α; x)η(μ + β; x)

−μ(μ + α + β)x

4
η(μ; x)η(μ + α + β; x). (3.9)

Since (μ+α)(μ+β) > μ(μ+α +β), we see that the coefficients of (3.9) are larger
than those of

μ(μ + α + β)x

4
[η(μ + α; x)η(μ + β; x) − η(μ; x)η(μ + α + β; x)] .

Therefore, it suffices to prove the coefficient-wise log-concavity of η(μ; x). Indeed,
we have

η(μ + α; x)η(μ + β; x) − η(μ; x)η(μ + α + β; x)
= (1 − x)−1−μ

[
(1 + √

x)−α − (1 − √
x)−α

] · [(1 + √
x)−β − (1 − √

x)−β
]
.

(3.10)

Since the coefficients of
[
(1 + √

x)−α − (1 − √
x)−α

]
are negative, as explained in

the proof of Theorem 1, it follows from (3.10) that η(μ; x) is coefficient-wise log-
concave, and, therefore,

∑[m/2]
k=0 Bk > 0 for m ≥ 2 by (3.9).

Summarizing, since
∑[m/2]

k=1 Bk > 0, the sequence B1, B2, . . . , B[m/2] has no more
than one change of sign and B[m/2] > 0, it follows from Lemma 2 that f (μ; x) is
coefficient-wise log-concave. 	


Remark 5 Similarly to Remark 4, we find that the function

μ → ψ̃r (μ; x) :=
∞∑

n=1

(μ)nr

(nr − 1)! x
n = μ

r
x1/r

r−1∑

k=0

ωk

(1 − ωk x1/r )μ+1 ,

ωk = e2π ik/r , is neither coefficient-wise log-convex nor coefficient-wise log-concave
for r ≥ 4 by numerical computations. However, the numerical evidence confirms the
following conjecture.

123



D. Karp, Y. Zhang

Conjecture 1 Assume that { fn}∞n=0 is log-concave and independent of μ. Then the
function

μ → f (μ; x) =
∞∑

n=1

fn
(μ)3n

(3n − 1)! x
n

is coefficient-wise log-concave.

4 The series in the functions �k(�) = (�)2k/(� + 1)k

We consider the series

h(μ; x) :=
∞∑

k=0

hk
(μ)2k

(μ + 1)kk! x
k =

∞∑

k=0

hk
(μ/2)k((μ + 1)/2)k

(μ + 1)kk! (4x)k . (4.1)

Along with the series (1.3), it gives another example of log-neutral function when
hk = 1 for all k. Indeed, if we set

λ(μ; x) :=
∞∑

k=0

(μ)2k

(μ + 1)kk! x
k (|4x | < 1),

then λ(μ; x) is a hypergeometric function with the following properties.

Lemma 6 [17, Lemma7] The hypergeometric functionλ(μ; x) has the following prop-
erties.

1. Closed form

λ(μ; x) =
(
1 − √

1 − 4x

2x

)μ

.

2. Index law

λ(α; x)λ(β; x) = λ(α + β; x).

This makes the following conjecture very natural.

Conjecture 2 Assume that {hk}∞k=0 is log-concave (log-convex) and independent of
μ. Then the function μ → h(μ; x) defined in (4.1) is coefficient-wise log-concave
(log-convex).

Forming the generalized Turánian

Δh(α, β; x) = h(μ + α; x)h(μ + β; x) − h(μ; x)h(μ + α + β; x) =
∞∑

m=2

δmx
m,
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we will have

δm =
m∑

k=0

hkhm−kMk,

Mk = 1

k!(m−k)!
[

(μ+α)2k(μ+β)2(m−k)
(μ+α+1)k(μ+β+1)m−k

− (μ)2k(μ+α+β)2(m−k)

(μ + 1)k(μ + α + β + 1)m−k

]
.

Furthermore, we can write

δm =
[m/2]∑

k=0

hkhm−k Ak for each m ≥ 2,

where Ak = Mk + Mm−k for k < m/2 and Ak = Mk for k = m/2. As

∞∑

m=0

⎛

⎝
[m/2]∑

k=0

Ak

⎞

⎠ xm =
∞∑

m=0

(
m∑

k=0

Mk

)
xm

= λ(μ + α; x)λ(μ + β; x) − λ(μ; x)λ(μ + α + β; x),

Lemma 6 implies that
∑[m/2]

k=0 Ak = 0 for m ≥ 0. Hence, to apply Lemma 2 we only

need to prove that the sequence {Ak}[m/2]
k=0 has no more than one change of sign. So far,

we failed to prove this fact in general. Nevertheless, we established the following.

Theorem 3 Let h(μ; x) be the formal power series defined by (4.1). If {hk}∞k=0 is
log-concave (log-convex) and independent of μ, then μ → h(μ; x) is log-concave
(log-convex) for integer shifts, i.e., Δh(α, β; x) ≥ 0 (Δh(α, β; x) ≤ 0) for α, β ∈ N

and coefficient-wise log-concave (log-convex) if furthermore α + β ≤ 4.

Proof Set α = β = 1 and consider the following generalized Turánian

Δh(1, 1; x) = h(μ + 1; x)2 − h(μ; x)h(μ + 2; x) =
∞∑

m=2

δmx
m,

where

δm =
m∑

k=0

hkhm−kMk,

Mk = 1

k!(m − k)!
[
(μ + 1)2k(μ + 1)2(m−k)

(μ + 2)k(μ + 2)m−k
− (μ)2k(μ + 2)2(m−k)

(μ + 1)k(μ + 3)m−k

]
.

Gauss pairing yields:

δm =
[m/2]∑

k=0

hkhm−k Ak for each m ≥ 2,
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where Ak = Mk + Mm−k for k < m/2 and Ak = Mk for k = m/2. For each k ≥ 0,
we set Ãk = k!(m − k)!Ak , which has the same sign as Ak . Then

Ãk =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 · (μ + 1)2k(μ + 1)2(m−k)

(μ + 2)k(μ + 2)m−k︸ ︷︷ ︸
uk

− (μ)2k(μ + 2)2(m−k)

(μ + 1)k(μ + 3)m−k︸ ︷︷ ︸
rk

− (μ)2(m−k)(μ + 2)2k
(μ + 1)m−k(μ + 3)k︸ ︷︷ ︸

sk

, if k < m/2,

(μ + 1)22k
(μ + 2)2k

− (μ)2k(μ + 2)2k
(μ + 1)k(μ + 3)k

, if k = m/2.

Our next goal is to show that the sequence { Ãk}[m/2]
k=0 has no more than one change of

sign, i.e.,

Ãk ≤ 0 ⇒ Ãk−1 < 0 for k ≥ 1. (4.2)

Since for m ≥ 2

Ã0 = 2
(μ + 1)2m
(μ + 2)m

− (μ + 2)2m
(μ + 3)m

− (μ)2m

(μ + 1)m

= (μ + 2)2m−2

(μ + 3)m−2

[
2

(μ + 1)(μ + 2m)

(μ + 2)(μ + m + 1)
− (μ + 2m)(μ + 2m + 1)

(μ + m + 1)(μ + m + 2)
− μ

μ + 2

]

= − (μ + 2)2m−2

(μ + 3)m−2
· (m − 1)m(μ + 4)

(μ + 2)(μ + m + 1)(μ + m + 2)
< 0,

we see that the claim (4.2) holds for k = 1. If k ≥ 2, then we have

Ãk = 2uk − rk − sk = (μ + 2)2k−2(μ + 2)2(m−k)−2

(μ + 3)k−2(μ + 3)(m−k)−2
(2g1 − g2 − g3) ,

where

g1 = (μ + 1)2(μ + 2k)(μ + 2(m − k))

(μ + 2)2(μ + k + 1)(μ + (m − k) + 1)
,

g2 = μ(μ + 2(m − k))(μ + 2(m − k) + 1)

(μ + 2)(μ + (m − k) + 1)(μ + (m − k) + 2)
,

g3 = μ(μ + 2k)(μ + 2k + 1)

(μ + 2)(μ + k + 1)(μ + k + 2)
.

Set q = k − 2 and t = m − 2k. Then q ≥ 0 and t ≥ 0. A direct calculation implies
that

2g1 − g2 − g3 = n1
(μ + 2)2(μ + q + 3)(μ + q + 4)(μ + q + t + 3)(μ + q + t + 4)

,
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where

n1 = 4μ4 + 52μ3 + 256μ2 + 576μ + 8q4 + 4μ2q3 + 32μq3 + 16q3t + 96q3

+ 6μ3q2 + 66μ2q2 + 264μq2 + 8q2t2 + 6μ2q2t + 48μq2t + 144q2t + 416q2

+ 2μ4q + 38μ3q + 244μ2q + 688μq + 2μ2qt2 + 16μqt2 + 48qt2

+ 6μ3qt + 66μ2qt + 264μqt + 416qt + 768q

− μ4t2 − 7μ3t2 − 10μ2t2 + 24μt2 + 64t2 + μ4t + 19μ3t + 122μ2t

+ 344μt + 384t + 512. (4.3)

Thus, we see that Ãk ≤ 0 is equivalent to n1 ≤ 0 with q ≥ 0, t ≥ 0, and μ ≥ 0. Set

I1 = uk−1

uk
= (k + μ + 1)(2k − μ − 2m − 2)(2k − μ − 2m − 1)

(2k + μ − 1)(2k + μ)(−k + μ + m + 2)
,

I2 = rk−1

rk
= (k + μ)(2k − μ − 2m − 3)(2k − μ − 2m − 2)

(2k + μ − 2)(2k + μ − 1)(−k + μ + m + 3)
,

I3 = sk−1

sk
= (k + μ + 2)(2k − μ − 2m − 1)(2k − μ − 2m)

(2k + μ)(2k + μ + 1)(−k + μ + m + 1)
.

Then

Ãk−1 = 2uk−1 − rk−1 − sk−1 = 2I1uk − I2rk − I3sk

= (μ + 2)2k−2(μ + 2)2(m−k)−2

(μ + 3)k−2(μ + 3)(m−k)−2
(2I1g1 − I2g2 − I3g3) ,

where

2I1g1 − I2g2 − I3g3 = (μ + 2q + 2t + 4)(μ + 2q + 2t + 5)n2
(μ + 2)2(μ + q + 3)(μ + 2q + 2)(μ + 2q + 3)

× 1

(μ + q + t + 3)(μ + q + t + 4)(μ + q + t + 5)

with

n2 = 18μ3 + 150μ2 + 408μ + 8q4 + 4μ2q3 + 32μq3 + 16q3t + 96q3

+6μ3q2 + 66μ2q2 + 264μq2 + 8q2t2 + 6μ2q2t + 48μq2t

+128q2t + 400q2 + 2μ4q + 38μ3q + 240μ2q + 656μq

+2μ2qt2 + 16μqt2 + 32qt2 + 6μ3qt + 62μ2qt + 232μqt

+304qt + 672q − μ4t2 − 7μ3t2 − 12μ2t2 + 8μt2 + 24t2

−3μ4t − 15μ3t + 14μ2t + 160μt + 192t + 360. (4.4)
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Therefore, we conclude that Ãk−1 < 0 is equivalent to n2 < 0 with q ≥ 0, t ≥ 0, and
μ ≥ 0. By (4.3) and (4.4), we have

n2 = n1 − 4μ4 − 34μ3 − 106μ2 − 168μ − 16q2t − 16q2 − 4μ2q − 32μq

−16qt2 − 4μ2qt − 32μqt − 112qt − 96q − 2μ2t2 − 16μt2 − 40t2 − 4μ4t

−34μ3t − 108μ2t − 184μt − 192t − 152. (4.5)

From the above identity, we see that n1 ≤ 0 implies n2 < 0, and thus the claim (4.2)
holds for k ≥ 2.

By Lemma 6, we see that
∑[m/2]

k=0 Ak = 0. Combined with the fact that the sequence

{Ak}[m/2]
k=0 has no more than one change of sign, we conclude that A[m/2] > 0. Then, it

follows from Lemma 2 that the claim of the theorem holds for α = β = 1. According
to Lemma 3, we established discrete logarithmic concavity (convexity for log-convex
{hk}) for all shifts α, β ∈ N.

Similar approach can be applied to verify that the sequence { Ãk}[m/2]
k=0 has no more

than one change of sign for (α, β) ∈ {(1, 2), (1, 3)}. The problem still amounts to
proving that n1 ≤ 0 implies n2 < 0 with q ≥ 0, t ≥ 0, and μ ≥ 0, where n1 and
n2 are certain polynomials in q, t , and μ. However, in those two cases, the relation
connecting n2 with n1 has terms of opposite signs, unlike (4.5). Instead, we utilized
Cylindrical Algebraic Decomposition [3, 13] as implemented in Mathematica to
prove the desired inequalities. Detailed calculations can be found in the supplemental
material [9]. Finally, coefficient-wise logarithmic concavity (convexity for log-convex
{hk}) for shifts α + β ≤ 4 follows from Lemma 4. 	


5 The series in the functions �k = (�)k/(2�)k

In this section we will show that the formal power series

y(μ; x) :=
∞∑

k=0

yk
(μ)k

(2μ)kk! x
k (5.1)

is coefficient-wise log-convex for any non-negative sequence {yk}∞k=0 independent of
μ.

Theorem 4 Suppose y is defined in (5.1) with any non-negative sequence {yk}∞k=0
independent of μ. Then for any α, β > 0 the generalized Turánian

Δy(α, β; x) = y(μ + α; x)y(μ + β; x) − y(μ; x)y(μ + α + β; x) =
∞∑

m=2

φ̄mx
m

has negative power series coefficients φ̄m < 0, so that the function μ �→ y(μ; x) is
coefficient-wise log-convex for μ > 0.
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Proof By direct computation, we have

φ̄m =
m∑

k=0

yk ym−k M̄k,

where

M̄k = 1

k!(m − k)!
[

(μ + α)k(μ + β)m−k

(2(μ + α))k(2(μ + β))m−k
− (μ)k(μ + α + β)m−k

(2μ)k(2(μ + α + β))m−k

]
.

Pairing the terms with indices k and m − k, we may write φ̄m in the form

φ̄m =
[m/2]∑

k=0

yk ym−k Āk, (5.2)

where Āk = M̄k + M̄m−k for k < m/2 and Āk = M̄k for k = m/2. We set Ãk =
k!(m − k)! Āk . Then

Ãk =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(μ + α)k(μ + β)m−k

(2(μ + α))k(2(μ + β))m−k︸ ︷︷ ︸
uk

+ (μ + α)m−k(μ + β)k

(2(μ + α))m−k(2(μ + β))k︸ ︷︷ ︸
vk

− (μ)k(μ + α + β)m−k

(2μ)k(2(μ + α + β))m−k︸ ︷︷ ︸
rk

− (μ)m−k(μ + α + β)k

(2μ)m−k(2(μ + α + β))k︸ ︷︷ ︸
sk

if k < m/2,

(μ + α)k(μ + β)k

(2(μ + α))k(2(μ + β))k
− (μ)k(μ + α + β)k

(2μ)k(2(μ + α + β))k
if k = m/2.

By (5.2), it suffices to prove that:

(i) Ãk ≤ 0 for k = m/2, where the equality holds iff k = 0, 1;
(ii) Ãk < 0 for 0 ≤ k < m/2.

We first prove (i). If k = 0, 1, then it is straightforward to verify that Ãk = 0. If k ≥ 2,
then Ãk < 0 is equivalent to

(μ + α)k(μ + β)k

(μ)k(μ + α + β)k
<

(2(μ + α))k(2(μ + β))k

(2μ)k(2(μ + α + β))k
, (5.3)

which is true because

(2(μ + α) + i)(2(μ + β) + i)

(2μ + i)(2(μ + α + β) + i)
− (μ + α + i)(μ + β + i)

(μ + i)(μ + α + β + i)

= iαβ(3i + 4μ + 2α + 4β)

(μ + i)(2μ + i)(μ + α + β + i)(2(μ + α + β) + i)
> 0 for i > 0.
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Next, we prove (ii). In this case, we see that uk < sk is equivalent to

(μ + α)k(μ + β)m−k

(μ)m−k(μ + α + β)k
<

(2(μ + α))k(2(μ + β))m−k

(2μ)m−k(2(μ + α + β))k
.

In the light of (5.3) and (μ + β)m−k = (μ + β)k(μ + β + k)m−2k for 2k < m, it
suffices to show that

(μ + β + k)m−2k

(μ + k)m−2k
<

(2(μ + β) + k)m−2k

(2μ + k)m−2k
,

which holds true because

2(μ + β) + i

2μ + i
− μ + β + i

μ + i
= iβ

(μ + i)(2μ + i)
> 0 for i > 0.

Similarly, we can show that the inequalities vk < sk, rk < sk and ukvk < rksk hold
for 0 ≤ k < m/2. Thus, it follows from Lemma 1 that

Ãk = uk + vk − rk − sk < 0.

	

Numerical experiments with the "reciprocal" series

ỹ(μ; x) :=
∞∑

k=0

yk
(2μ)k

(μ)kk! x
k

and the related gamma series

ŷ(μ; x) :=
∞∑

k=0

yk
Γ (μ + k)

Γ (2μ + k)k! x
k

provide strong evidence for the following conjecture.

Conjecture 3 Suppose that {yk}∞k=0 is a log-concave sequence. Then the functions
μ → ỹ(μ; x) and μ → ŷ(μ; x) are coefficient-wise log-concave on μ > 0.

So far, we have been unable to prove this claims.

6 Applications

In this section we give several examples of concrete special functions whose log-
arithmic concavity/convexity in parameters can be established using the results of
Sections 3, 4, and 5. Our emphasis is on special functions which are important in
fractional calculus.

123



Log-concavity and log-convexity of series containing multiple...

6.1 Generalized hypergeometric function

The generalized hypergeometric function is defined by the series

pFq

(
a1, a2, . . . , ap
b1, b2, . . . , bq

∣∣∣∣ z
)

:=
∞∑

n=0

(a1)n(a2)n · · · (ap)n
(b1)n(b2)n · · · (bq)nn! z

n . (6.1)

The series (6.1) converges in the entire complex plane if p ≤ q and in the unit disk if
p = q+1. In the latter case its sum can be extended analytically to the whole complex
plane cut along the ray [1,∞) [1, Chapter 2]. Applications of the previous results to
the generalized hypergeometric functions are mainly based on the following lemma.

Lemma 7 Denote by ek(x1, . . . , xq) the k-th elementary symmetric polynomial,

e0(x1, . . . , xq) = 1, ek(x1, . . . , xq) =
∑

1≤ j1< j2···< jk≤q

x j1x j2 · · · x jk , k ≥ 1.

Suppose that q ≥ 1 and 0 ≤ r ≤ q are integers, ai > 0, i = 1, . . . , q − r , bi > 0,
i = 1, . . . , q, and

eq(b1, . . . , bq)

eq−r (a1, . . . , aq−r )
≤ eq−1(b1, . . . , bq)

eq−r−1(a1, . . . , aq−r )
≤ · · · ≤ er+1(b1, . . . , bq)

e1(a1, . . . , aq−r )

≤ er (b1, . . . , bq). (6.2)

Then the sequence of hypergeometric terms (if r = q the numerator is 1),

fn = (a1)n · · · (aq−r )n

(b1)n · · · (bq)n , n = 0, 1, . . . ,

is log-concave i.e., 0 < fn−1 fn+1 ≤ f 2n , n = 1, 2, . . .. The inequality is strict
(i.e.{ fn}n≥0 is strictly log-concave) unless r = 0 and ai = bi for i = 1, . . . , q.

The proof of this lemma for r = 0 can be found in [5, Theorem 4.4] and [12,
Lemma 2]. The latter reference also explains how to extend the proof to general r
(see the last section of [12]). A simpler sufficient condition for (6.2) and thus for
log-concavity of { fn}n≥0 is given in the following lemma [6, Lemma 4].

Lemma 8 Suppose that

∑k

j=1
bn j ≤

∑k

j=1
a j for k = 1, 2, . . . , q − r (6.3)

for some (q − r)-dimensional sub-vector (bn1, . . . , bnq−r ) of (b1, . . . , bq). Then
inequalities (6.2) hold true.

In view of the obvious fact that reciprocals of the elements of a positive log-concave
sequence form a log-convex sequence, an application of Theorems 1 and 2 leads
immediately to the following statement.
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Theorem 5 Let 0 ≤ p ≤ q be integers and suppose that positive parameters
(a1, . . . , ap), (b1, . . . , bq) satisfy (6.2) or (6.3) with r = q − p. Then the function

μ → q+2Fq+1(μ/2, μ/2 + 1/2, b1, . . . , bq ; 1/2, a1, . . . , aq ; x)

is coefficient-wise log-convex for μ > 0, and the function

μ → (μ)2 · p+2Fq+1(μ/2 + 1, μ/2 + 3/2, a1, . . . , ap; 3/2, b1, . . . , bq ; x)

with p ≤ q is coefficient-wise log-concave for μ > 0.

Theorem 3 yields the following statement with Δ f defined in (1.2).

Theorem 6 Let 0 ≤ p ≤ q be integers and suppose that positive parameters
(a1, . . . , ap), (b1, . . . , bq) satisfy (6.2) or (6.3) with r = p − q. Then the function

f (μ; x) = p+2Fq+1(μ/2, μ/2 + 1/2, a1, . . . , ap;μ + 1, b1, . . . , bq ; x)

satisfies the Turán inequality Δ f (α, β; x) > 0 for all α, β ∈ N, and the coefficients
at all powers of x in Δ f (α, β; x) are non-negative if α + β ≤ 4 . The function

f̂ (μ; x) = q+2Fq+1(μ/2, μ/2 + 1/2, b1, . . . , bq ;μ + 1, a1, . . . , aq ; x)

satisfies the reverse Turán inequality Δ f̂ (α, β; x) < 0 for all α, β ∈ N, and the
coefficients at all powers of x in Δ f̂ (α, β; x) are non-positive if α + β ≤ 4 .

Finally, Theorem 4 implies that the function

μ → p+1Fq+1(μ, a1, . . . , ap; 2μ, b1, . . . , bq ; x)

is coefficient-wise log-convex for μ > 0 and any positive parameters ai , b j .

6.2 Parameter derivatives of hypergeometric functions

For arbitrary positive numbers a, b, c, define the sequence {hn}n≥0 by

hn(a, b, c) = (ψ(c + n) − ψ(c))(a)n

(b)n
,

where ψ(z) = Γ ′(z)/Γ (z). If a ≥ b, then the sequence {hn}n≥0 is log-concave since

h2n − hn−1hn+1 = (a)n−1(a)n

(b)n−1(b)n

{a + n − 1

b + n − 1
(ψ(c + n) − ψ(c))2

−a + n

b + n
(ψ(c + n − 1) − ψ(c))(ψ(c + n + 1) − ψ(c))

}
> 0.
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The last inequality holds because y → ψ(c + y) − ψ(c) is concave according to the
Gauss formula [1, Theorem 1.6.1]

(ψ(c + y) − ψ(c))′′y = ψ ′′(c + y) = −
∞∫

0

t2e−t(c+y)

1 − e−t
dt < 0

and hence is log-concave and since (a + n − 1)/(b + n − 1) > (a + n)/(b + n) for
a ≥ b. In view of the relations

∂

∂a

(a)n

(b)n
= hn(a, b, a),

∂

∂b

(a)n

(b)n
= −hn(a, b, b),

these observations combined with Theorem 2 lead to the following statement.

Theorem 7 Suppose a ≥ b > 0. Then the functions

μ → ∂

∂a
3F2

(
a, μ/2 + 1, μ/2 + 3/2

b, 3/2
; x

)

μ → − ∂

∂b
3F2

(
a, μ/2 + 1, μ/2 + 3/2

b, 3/2
; x

)

are coefficient-wise log-concave on (0,∞).

In a similar fashion, Theorem 3 yields

Theorem 8 Suppose a ≥ b > 0. Then the functions

F1(μ; x) = ∂

∂a
3F2

(
a, μ/2, μ/2 + 1/2

b, μ + 1
; x

)

F2(μ; x) = − ∂

∂b
3F2

(
a, μ/2, μ/2 + 1/2

b, μ + 1
; x

)

satisfy the Turán type inequality

Fi (μ + α; x)Fi (μ + β; x) − Fi (μ; x)Fi (μ + α + β; x) ≥ 0, i = 1, 2,

for each μ, x > 0 and α, β ∈ N. Moreover, the coefficients at all powers of x in the
above expression are non-negative if, furthermore, α + β ≤ 4.

Theorem 4 leads to

Theorem 9 Suppose a, b, c > 0. Then the functions

μ → ∂

∂a
3F2

(
a, b, μ
c, 2μ

; x
)

, μ → − ∂

∂b
3F2

(
a, b, μ
c, 2μ

; x
)

are coefficient-wise log-convex on (0,∞).
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6.3 k-Pochhammer and k-Gamma series

In [4], the authors introduced for any k > 0 and n = 0, 1, . . ., the k-Pochhammer
symbol

(x)n,k = x(x + k)(x + 2k) · · · (x + (n − 1)k) (6.4)

and the k-Gamma function

Γk(x) = lim
n→∞

n!kn(nk)x/k−1

(x)n,k
=

∫ ∞

0
e−tk/k t x−1dt .

It is straightforward to verify that

Γk(x) = kx/k−1Γ (x/k), (x)n,k = kn(x/k)n = Γk(x + nk)

Γk(x)
.

For each integer r ≥ 1, and k, μ > 0, we set

gk(μ; x) :=
∞∑

n=0

gn
(μ)2n,k

(2n)! xn =
∞∑

n=0

gn
(μ/k)2n
(2n)! (k2x)n,

fk(μ; x) :=
∞∑

n=1

fn
(μ)2n,k

(2n − 1)! x
n =

∞∑

n=1

fn
(μ/k)2n
(2n − 1)! (k

2x)n,

yk(μ; x) :=
∞∑

n=0

ynΓk(μ + krn)xn = kμ/k−1
∞∑

n=0

ynΓ (μ/k + rn)[kr/k x]n,

hk(μ; x) :=
∞∑

n=0

hn
(μ)rn,k

xn =
∞∑

n=0

hn
(μ/k)rn

[ x

kr

]n
,

qk(μ; x) :=
∞∑

n=0

qn
(μ)2n,k

(μ + k)n,kn! x
n =

∞∑

n=0

qn
(μ/k)2n

(μ/k + 1)nn! (kx)
n,

wk(μ; x) :=
∞∑

n=0

wn
(μ)n,k

(2μ)n,kn! x
n =

∞∑

n=0

wn
(μ/k)n

(2μ/k)nn! x
n .

The right hand sides of the above identities imply that we can extend immediately
the results of this paper to the k-Pochhammer and k-Gamma series listed above.
Namely, if {gn}∞n=0 is log-convex and {yn}∞n=0, {hn}∞n=0 and {wn}∞n=0 are positive,
then gk(μ; x), yk(μ; x), hk(μ; x) and wk(μ; x) are all coefficient-wise log-convex.
If { fn} and {qn} are log-concave, then fk(μ; x) is coefficient-wise log-concave while
qk(μ; x) is discrete log-concave and coefficient-wise log-concave for integer shifts
whose sum does not exceed 4. Natural applications of the above series are the so-
called k-hypergeometric series similar to the classical hypergeometric series with
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Pochhammer’s symbols substituted with k-Pochhammer’s symbols. These series can
be easily expressed in terms of the classical hypergeometric series as follows:

pFq,k

(
a1, . . . , ap
b1, . . . , bq

∣∣∣∣ x
)

= pFq

(
a1/k, . . . , ap/k
b1/k, . . . , bq/k

∣∣∣∣ k
p−q x

)
.

This formula implies that the results of subsection 6.1 also hold for the k-
hypergeometric functions.

6.4 The Fox-Wright function

Given positive vectors A = (A1, . . . , Ap), B = (B1, . . . , Bq) and complex vectors
a = (a1, . . . , ap), b = (b1, . . . , bq), the Fox-Wright function (or ”the generalized
Wright function”) is defined by the series [11, (1)]

pΨq

(
(a1, A1), . . . , (ap, Ap)

(b1, B1), . . . , (bq , Bq)

∣∣∣∣ z
)

= pΨq

(
(a,A)

(b,B)

∣∣∣∣ z
)

=
∞∑

n=0

Γ (An + a)
Γ (Bn + b)

zn

n! ,

(6.5)

where the shorthand notationΓ (An+a) = ∏p
j=1 Γ (A jn+a j ) (similarly forΓ (Bn+

b)) has been used. The Fox-Wright function is a key function in fractional integration
and differentiation. The series (6.5) has a positive radius of convergence if

Δ :=
∑q

j=1
Bj −

∑p

i=1
Ai ≥ −1.

More precisely, if Δ > −1 the series converges for all finite values of z to an entire
function, while forΔ = −1, its radius of convergence equals ρ defined in (6.8) below,
see details in [11, (3)]. The above definition implies that for any θ > 0

g(μ; x) :=
∞∑

n=0

Γ (An + a)
Γ (Bn + b)

(μ)2n

(2n)!
( x

θ

)n =
√

π

Γ (μ)
p+1Ψq+1

(
(μ, 2), (a,A)

(1/2, 1), (b,B)

∣∣∣∣
x

4θ

)

(6.6)

and the condition
∑

Bi ≥ ∑
A j guarantees that the radius of convergence is positive.

To apply Theorem 1 we need conditions ensuring that the sequence

V (n) = Γ (An + a)
θnΓ (Bn + b)

(6.7)

is log-convex. As log-convexity is implied by complete monotonicity of the function
V (t) on (0,∞) we can apply conditions for complete monotonicity established in
[2, 10]. According to [10, Theorem 4] and [2, Theorem 3.2] the function V (t) is
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logarithmically completely monotonic (and hence completely monotonic) if and only
if

q∑

j=1

Bj =
p∑

i=1

Ai , ρ =
p∏

i=1

AAi
i

q∏

j=1

B
−Bj
j ≤ θ (6.8)

and

P(u) =
p∑

i=1

e−ai u/Ai

1 − e−u/Ai
−

q∑

i=1

e−bi u/Bi

1 − e−u/Bi
≥ 0 for all u > 0. (6.9)

Condition (6.9) may be hard to verify. Sufficient conditions in terms of parameters
A, B, a,b can be found in [10, Theorem 5] and [2, Theorems 3.4, 3.7, 3.10 and
corollaries]. For example, [2, Corollary 3.9] implies that {V (n)}n≥0 is log-convex if
(6.8) holds true and

q∑

k=1

Bk ≥ Bj

b j − 1

p∑

k=1

ak for j = 1, . . . , q. (6.10)

On the other hand, choosing h ji = ωi in [2, Theorem 3.7] we conclude that {V (n)}n≥0
is log-convex if together with (6.8) we have

Ai ≥ ωi

q∑

j=1

Bj , i = 1, . . . , p and b j/Bj ≥
p∑

i=1

ωi ai/Ai , j = 1, . . . , q,

(6.11)

for some weights ωi ≥ 0,
∑p

i=1 ωi = 1. Another condition is provided by [2, Theo-
rem 3.10]. Suppose that for some positive integers α j , β j , j = 1, . . . , p, we have

Ak = 1/α j for k = α j−1 + 1, α j−1 + 2, . . . , α j , j = 1, . . . , p and α0 = 0,

and, in a similar fashion,

Bm = 1/β j for m = β j−1 + 1, β j−1 + 2, . . . , β j , j = 1, . . . , p and β0 = 0.

Then for a ≥ 1 and θ = ∏p
j=1(β j/α j ) we obtain that

V (n) = θ−n
p∏

j=1

Γ α j (n/α j + a)

Γ β j (n/β j + a)
= θ−n

∏P
k=1 Γ (Akn + a)

∏Q
m=1 Γ (Bmn + a)

,
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where P = ∑p
j=1 α j , Q = ∑p

j=1 β j , is log-convex if

0 < α1 ≤ α2 ≤ · · · ≤ αp, 0 < β1 ≤ β2 ≤ · · · ≤ βp

k∑

j=1

α j ≤
k∑

j=1

β j , k = 1, 2, . . . , p.
(6.12)

We will summarize these facts in the following proposition

Proposition 1 Assume any of the following set of conditions holds:
(6.8)+(6.9), (6.8)+(6.10), (6.8)+(6.11) or (6.12) with integer α j , β j . Then the
sequence {V (n)}n≥0 defined in (6.7) is log-convex, so that {[V (n)]−1}n≥0 is log-
concave.

More sufficient conditions and further details can be found in [10, Theorem 5] and
[2, Theorems 3.4, 3.7, 3.10 and corollaries].

Hence, by Theorem 1 we get

Theorem 10 Suppose conditions of Proposition 1 hold for {V (n)}n≥0 defined in (6.7).
Then the function μ → g(μ; x) defined in (6.6) is coefficient-wise log-convex on
[0,∞).

Next, define the functions

f (μ; x) :=
∞∑

n=1

(μ)2n

V (n − 1)(2n − 1)! x
n = x

√
π

8Γ (μ)

∞∑

n=0

Γ (2n + μ + 2)

V (n)Γ (3/2 + n)

(x/4)n

n!

= x
√

π

8Γ (μ)
q+1Ψp+1

(
(μ + 2, 2), (b,B)

(3/2, 1), (a,A)

∣∣∣∣
θx

4

)
, (6.13)

and

h(μ; x) :=
∞∑

n=0

Γ (Bn + b)

Γ (An + a)
(μ)2n

(μ + 1)nn! (θx)
n = μ q+1Ψp+1

(
(μ, 2), (b,B)

(μ + 1, 1), (a,A)

∣∣∣∣ θx
)

.

(6.14)

The condition
∑p

i=1 Ai ≥ ∑q
i= j B j ensures positive radii of convergence for f and

h. Set

ĥ(μ; x) :=
∞∑

n=0

Γ (An + a)
Γ (Bn + b)

(μ)2n

(μ + 1)nn!
( x

θ

)n = μ p+1Ψq+1

(
(μ, 2), (a,A)

(μ + 1, 1), (b,B)

∣∣∣∣
x

θ

)
.

(6.15)

The condition
∑q

i= j B j ≥ ∑p
i=1 Ai ensures a positive radius of convergence for ĥ.

Application of Theorem 2 to the function (6.13) yields:
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Theorem 11 Suppose conditions of Proposition 1 hold for {V (n)}n≥0 defined in (6.7).
Then the function μ → f (μ; x) defined in (6.13) is coefficient-wise log-concave on
[0,∞).

Application of Theorem 3 to the function (6.14) yields:

Theorem 12 Suppose conditions of Proposition 1 hold for {V (n)}n≥0 defined in (6.7).
Then the function μ → h(μ; x) defined in (6.14) is coefficient-wise log-concave for
shifts α + β ≤ 4 on [0,∞) and log-concave for α, β ∈ N; the function μ → ĥ(μ; x)
defined in (6.15) is coefficient-wise log-convex for shifts α + β ≤ 4 on [0,∞) and
log-convex for the shifts α, β ∈ N.

Finally, note that Theorem 4 implies that

μ → 4μΓ (μ + 1/2)p+1Ψq+1

(
(μ, 1), (a,A)

(2μ, 1), (b,B)

∣∣∣∣ x
)

is coefficient-wise log-convex for all positive values of A, B, a, b.
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7 Appendix

Proposition 2 The sequence A0, A1, . . . , A[m/2] defined by (3.6) has exactly one
change of sign.

Proof In the proof Theorem 1, we have shown that: (i).
∑[m/2]

k=0 Ak < 0 for m ≥ 1;
(ii) If Ãk ≤ 0 for some k < m/2, then Ãk−1 ≤ 0. Thus, it suffices to prove that
Ã[m/2] > 0 for each m ≥ 2. Set k = [m/2].
(a). If k = m/2 ≥ 1, then Ãk = (μ + α)2k(μ + β)2k − (μ)2k(μ + α + β)2k > 0

because the function x �→ (x+τ)/x is strictly decreasing for any positive x and τ .
(b). If k = (m − 1)/2 ≥ 1, i.e., m = 2k + 1, then

Ãk = (μ + α)2k(μ + β)2(k+1)︸ ︷︷ ︸
ak

+ (μ + α)2(k+1)(μ + β)2k︸ ︷︷ ︸
bk

− (μ)2k(μ + α + β)2(k+1)︸ ︷︷ ︸
ck

− (μ)2(k+1)(μ + α + β)2k︸ ︷︷ ︸
dk

.
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We will prove that Ãk > 0 for k ≥ 1 by induction. For k = 1, we have

Ã1 = αβ
(
α3β + 2α3μ + α3 + 4α2βμ + 6α2β + 4α2μ2 + 12α2μ + 6α2

+ αβ3 + 4αβ2μ + 6αβ2 + 6αβμ2 + 30αβμ + 22αβ + 4αμ3 + 30αμ2

+ 44αμ + 17α + 2β3μ + β3 + 4β2μ2 + 12β2μ + 6β2 + 4βμ3

+30βμ2 + 44βμ + 17β + 2μ4 + 20μ3 + 44μ2 + 34μ + 12
)

> 0.

Assume that Ãk = ak + bk − ck − dk > 0. Consider

F(α) := Ãk+1

= ak(μ + α + 2k)2(μ + β + 2k + 2)2
+ bk(μ + α + 2k + 2)2(μ + β + 2k)2
− ck(μ + 2k)2(μ + α + β + 2k + 2)2
− dk(μ + 2k + 2)2(μ + α + β + 2k)2.

Then

F(0) = ak (μ + 2k)2(μ + β + 2k + 2)2 + bk (μ + 2k + 2)2(μ + β + 2k)2
− ck (μ + 2k)2(μ + β + 2k + 2)2 − dk (μ + 2k + 2)2(μ + β + 2k)2

= (ak + bk − ck − dk )(μ + 2k)2(μ + β + 2k + 2)2
+ (bk − dk ) [(μ + 2k + 2)2(μ + β + 2k)2 − (μ + 2k)2(μ + β + 2k + 2)2]

= (ak + bk − ck − dk )(μ + 2k)2(μ + β + 2k + 2)2

+ 2(bk − dk )β
(
2βμ + 3β + 8k2 + 4βk + 8kμ + 12k + 2μ2 + 6μ + 3

)
> 0

because bk > dk . Regarding ak, bk, ck, dk as constants and differentiating with
respect to α, we have

F ′(α) = ak(2μ + 2α + 4k + 1)(μ + β + 2k + 2)2
+ bk(2μ + 2α + 4k + 5)(μ + β + 2k)2
− ck(2μ + 2α + 2β + 4k + 5)(μ + 2k)2
− dk(2μ + 2α + 2β + 4k + 1)(μ + 2k + 2)2

= (ak + bk − ck − dk)(2μ + 2α + 2β + 4k + 5)(μ + 2k)2
+ ak [(2μ + 2α + 4k + 1)(μ + β + 2k + 2)2

−(2μ + 2α + 2β + 4k + 5)(μ + 2k)2]

+ bk [(2μ + 2α + 4k + 5)(μ + β + 2k)2
− (2μ + 2α + 2β + 4k + 5)(μ + 2k)2]

− dk [(2μ + 2α + 2β + 4k + 1)(μ + 2k + 2)2
−(2μ + 2α + 2β + 4k + 5)(μ + 2k)2]
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> (ak + bk − ck − dk)(2μ + 2α + 2β + 4k + 5)(μ + 2k)2
dk [(2μ + 2α + 4k + 1)(μ + β + 2k + 2)2
+ (2μ + 2α + 4k + 5)(μ + β + 2k)2
− (2μ + 2α + 2β + 4k + 1)(μ + 2k + 2)2
− (2μ + 2α + 2β + 4k + 5)(μ + 2k)2]

= (ak + bk − ck − dk)(2μ + 2α + 2β + 4k + 5)(μ + 2k)2

+ 2dkβ
(
2αβ + 4αμ + 6α + 2βμ + 3β + 8k2 + 8αk + 4βk + 8kμ

+ 12k + 2μ2 + 6μ − 1
)

> 0.

The first inequality above holds since min(ak, bk) > dk , and the second one is true
because k ≥ 1. Thus, we see that Ãk+1 = F(α) ≥ F(0) > 0.
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