An Algorithm for Decomposing Multivariate Hypergeometric Terms

Yi Zhang

Key Laboratory of Mathematics Mechanization AMSS, Chinese Academy of Sciences

Joint work with Ziming Li

Outline

- Multivariate hypergeometric terms
- ▶ The Ore-Sato theorem
- ▶ An algorithm for the Ore–Sato decomposition

Multivariate hypergeometric terms

Let \mathbb{F} be a field of characteristic zero and x_1, \ldots, x_m indets. A function $H(x_1, \ldots, x_m)$ is hypergeometric over $\mathbb{F}(x_1, \ldots, x_m)$ if the *i*-th shift quotient

$$r_i = \frac{H(x_1, \ldots, x_i + 1, \ldots, x_n)}{H(x_1, \ldots, x_i, \ldots, x_m)} \in \mathbb{F}(x_1, \ldots, x_m), \quad i = 1, \ldots m.$$

Satisfy the compatibility conditions:

$$\frac{r_i(x_1,\ldots,x_j+1,\ldots,x_m)}{r_i(x_1,\ldots,x_j,\ldots,x_m)}=\frac{r_j(x_1,\ldots,x_i+1,\ldots,x_m)}{r_j(x_1,\ldots,x_i,\ldots,x_m)}$$

for
$$i, j \in \{1, \ldots, m\}$$

Example. Let n and k be indets.

$$H(n,k) = \frac{1}{n^2 + k^2} \binom{n}{k}^2.$$

$$\frac{H(n+1,k)}{H(n,k)} = \frac{(n^2+k^2)(n+1)^2}{(n-k+1)^2(n^2+2n+1+k^2)}$$

and

$$\frac{H(n,k+1)}{H(n,k)} = \frac{(n-k)^2(n^2+k^2)}{(k+1)^2(n^2+k^2+2k+1)}.$$

Factorial terms

▶ A polynomial $f \in \mathbb{F}[x_1, ..., x_m]$ is said to be integer-linear if

$$\exists v_1, \dots, v_m \in \mathbb{Z}, \text{ and } P \in \mathbb{F}[y], f = P(v_1x_1 + \dots + v_mx_m).$$

A hypergeometric term $T(x_1, ..., x_m)$ is called a factorial term if

$$\forall i \in \{1,\ldots,m\}, \ \frac{T(x_1,\ldots,x_i+1,\ldots,x_n)}{T(x_1,\ldots,x_i,\ldots,x_m)}$$

is the product of the powers of integer-linear polynomials.

Example. Let n and k be indets.

$$T(n,k)=\binom{n}{k}^2.$$

$$\frac{T(n+1,k)}{T(n,k)} = \frac{(n+1)^2}{(n-k+1)^2}$$

and

$$\frac{T(n, k+1)}{T(n, k)} = \frac{(n-k)^2}{(k+1)^2}.$$

Thus, T is a factorial term with shift quotients as above.

Testing integer-linear

Proposition. Let $f \in \mathbb{F}[x_1, \dots, x_m]$. Write

$$f = h_0 + \ldots + h_k$$

where h_i is homogeneous of degree d_i , i = 0, ..., k. Then f is integer-linear iff there are integers $v_1, ..., v_m$ s.t.

$$h_i = c_i (v_1 x_1 + \ldots + v_m x_m)^{d_i}$$
 for some $c_i \in \mathbb{F}$,

where $i = 0, \ldots, k$.

Ore-Sato theorem

Theorem. For a hypergeometric term H, $\exists f \in \mathbb{F}(x_1, \dots, x_m)$ and a factorial term T s.t.

$$H = f T.$$
 (*)

Moreover, (*) is unique up to a constant if none of the nontrivial irreducible factors of f is integer-linear.

Remark. H is said to be proper if f in (*) is a polynomial.

Structure of factorial terms

Payne's Product. Let a and b be two integers.

$$\prod_i^b = \left\{ \begin{array}{rl} \prod_{i=a}^{b-1} & \text{if } a < b \\ \\ 1 & \text{if } a = b \\ \\ 1/\prod_{i=b}^{a-1} & \text{if } a > b. \end{array} \right.$$

Lemma. Let $T(x_1, \ldots, x_m)$ be a factorial term. Then there exist

- a finite subset $V \subset \mathbb{Z}^m \setminus \{0\}$,
- $ightharpoonup r_{f v} \in \mathbb{F}(y) \setminus \mathbb{F}$ for each ${f v} \subset V$
- $c_i \in \mathbb{F} \setminus \{0\}, \ i = 1, \dots m,$

s.t.

$$\frac{T(x_1,\ldots x_i+1,\ldots x_m)}{T(x_1,\ldots x_i,\ldots x_m)}=c_i\prod_{\mathbf{v}\in V}\prod_i^{v_i}r_{\mathbf{v}}(v_1x_1+\cdots+v_mx_m+j)$$

with
$$\mathbf{v} = (v_1, \dots, v_m)$$
.

Computing the Ore-Sato decomposition

Given the shift quotients $r_1, \ldots r_m$ of a hypergeometric term $H(x_1, \ldots, x_m)$,

compute $f \in \mathbb{F}(x_1, \dots, x_m)$ and the shift quotients $t_1, \dots t_m$ of a factorial term T s.t.

$$H = fT$$

is the canonical Ore-Sato decomposition of H.

Outline of the algorithm

- 1. (Factorization) For i = 1, ..., m, compute $f_i, t_i \in \mathbb{F}(x_1, ..., x_m)$ s.t. $r_i = f_i t_i$, where
 - f_i is monic w.r.t. a fixed monomial order and has no integer-linear factor;
 - \blacktriangleright all the irreducible factors of t_i are integer-linear.
- 2. (Rational part) Find a nonzero rational solution *f* of the system

$$z(x_1,\ldots,x_i+1,\ldots,x_m)=f_iz(x_1,\ldots,x_i,\ldots,x_m), \quad i=1,\ldots,m.$$

3. (Integer-linear). Use the factorization of the t_i to find $V \in \mathbb{Z}^m$ s.t.

$$t_i = c_i \prod_{\mathbf{v} \in V} P_{i\mathbf{v}}(v_1 x_1 + \cdots v_m x_m)$$
 with $\mathbf{v} = (v_1, \dots, v_m)$.

4. (Uniform rational). By Payne's Lemma, use $P_{i\mathbf{v}}$'s to compute $r_{\mathbf{v}}$ s.t.

$$t_i = c_i \prod_{\mathbf{v} \in V} \prod_{i=0}^{v_i} r_{\mathbf{v}}(v_1 x_1 + \cdots + v_m x_m + j), \quad i = 1, \ldots, m.$$

5. Return $[f, [c_1, ..., c_m], [(\mathbf{v}, r_{\mathbf{v}}) | \mathbf{v} \in V]].$

Example

Consider a hypergeometric term H(n, k) with

1.

$$\frac{H(n+1,k)}{H(n,k)} = \frac{(n^2+k^2)}{(n^2+2n+1+k^2)} \cdot \frac{(n+1)^2}{(n-k+1)^2} = f_1 \cdot t_1$$

and

$$\frac{H(n,k+1)}{H(n,k)} = \frac{(n^2+k^2)}{(n^2+k^2+2k+1)} \cdot \frac{(n-k)^2}{(k+1)^2} = f_2 \cdot t_2$$

2. Compute
$$f = \frac{1}{n^2 + k^2}$$
 s.t. $\frac{f(n+1,k)}{f(n,k)} = f_1$ and $\frac{f(n,k+1)}{f(n,k)} = f_2$

$$H = \frac{1}{n^2 + k^2} T$$
, where T is a factorial term.

Example

Consider a hypergeometric term H(n, k) with

1.

$$\frac{H(n+1,k)}{H(n,k)} = \frac{(n^2+k^2)}{(n^2+2n+1+k^2)} \cdot \frac{(n+1)^2}{(n-k+1)^2} = f_1 \cdot t_1$$

and

$$\frac{H(n,k+1)}{H(n,k)} = \frac{(n^2+k^2)}{(n^2+k^2+2k+1)} \cdot \frac{(n-k)^2}{(k+1)^2} = f_2 \cdot t_2$$

2. Compute
$$f = \frac{1}{n^2 + k^2}$$
 s.t. $\frac{f(n+1,k)}{f(n,k)} = f_1$ and $\frac{f(n,k+1)}{f(n,k)} = f_2$

$$H = \frac{1}{n^2 + k^2} T$$
, where T is a factorial term. $\Longrightarrow H$ is not proper.

- 3. Compute $\mathbf{v}_1 = (1, -1), \mathbf{v}_2 = (1, 0), \mathbf{v}_3 = (0, 1)$ s.t. $t_1 = \frac{(n+1)^2}{(n-k+1)^2}$ and $t_2 = \frac{(n-k)^2}{(k+1)^2}$
- 4. Compute $r_{\mathbf{v}_1} = \frac{1}{(1+X)^2}, r_{\mathbf{v}_2} = (1+X)^2, r_{\mathbf{v}_3} = \frac{1}{(1+X)^2}$ s.t. $t_1 = 1 \cdot r_{\mathbf{v}_1}(n-k)r_{\mathbf{v}_2}(n)$ and $t_2 = 1 \cdot \frac{r_{\mathbf{v}_3}(k)}{r_{\mathbf{v}_1}(n-k-1)}$
- 5. Return $[f, [1, 1], [[\mathbf{v}_1, r_{\mathbf{v}_1}], [\mathbf{v}_2, r_{\mathbf{v}_2}], [\mathbf{v}_3, r_{\mathbf{v}_3}]]]$

$$T = \left(\frac{(1)_{n+1}}{(1)_{n-k+1}(1)_{k+1}}\right)^2 = \binom{n}{k}^2$$

- 3. Compute $\mathbf{v}_1 = (1, -1), \mathbf{v}_2 = (1, 0), \mathbf{v}_3 = (0, 1)$ s.t. $t_1 = \frac{(n+1)^2}{(n-k+1)^2}$ and $t_2 = \frac{(n-k)^2}{(k+1)^2}$
- 4. Compute $r_{\mathbf{v}_1} = \frac{1}{(1+X)^2}, r_{\mathbf{v}_2} = (1+X)^2, r_{\mathbf{v}_3} = \frac{1}{(1+X)^2}$ s.t. $t_1 = 1 \cdot r_{\mathbf{v}_1}(n-k)r_{\mathbf{v}_2}(n)$ and $t_2 = 1 \cdot \frac{r_{\mathbf{v}_3}(k)}{r_{\mathbf{v}_1}(n-k-1)}$
- 5. Return $[f, [1, 1], [[\mathbf{v}_1, r_{\mathbf{v}_1}], [\mathbf{v}_2, r_{\mathbf{v}_2}], [\mathbf{v}_3, r_{\mathbf{v}_3}]]]$

$$T = \left(\frac{(1)_{n+1}}{(1)_{n-k+1}(1)_{k+1}}\right)^2 = \binom{n}{k}^2 \implies H = \frac{1}{n^2 + k^2} \cdot \binom{n}{k}^2.$$

Summary

Results.

- 1. An algorithm for the Ore-Sato decomposition
- 2. A criterion concerning proper hypergeometric terms

Future work.

- Compute multiplicative decomposition of hypergeometric terms with parameters.
- Devise an algorithm for decomposing multivariate hyperexponential functions.

Thank you!