Rational Solutions of First-Order Algebraic Ordinary Difference Equations

Yi Zhang
Department of Foundational Mathematics
Xi'an Jiaotong-Liverpool University, Suzhou, China

Joint work with Thieu N. Vo

$\mathrm{AO} \Delta \mathrm{E}$

Let \mathbb{K} be an algebraically closed field of char 0 , and x be an indeterminate.

Consider the algebraic ordinary difference equation $(A O \triangle E)$:

$$
\begin{equation*}
F(x, y(x), y(x+1), \cdots, y(x+m))=0 \tag{1}
\end{equation*}
$$

where F is a polynomial in $y(x), y(x+1), \ldots, y(x+m)$ with coeffs in $\mathbb{K}(x)$ and $m \in \mathbb{N}$ is called the order of F. We also simply write (1) as $F(y)=0$. An $\mathrm{AO} \Delta \mathrm{E}$ is autonomous if x does not appear in it explicitly.

Example 1. Equations of Riccati type:

$$
y(x+1) y(x)+p(x) y(x+1)+q(x) y(x)=0
$$

where $p, q \in \mathbb{K}[x]$.

Motivation

Goal: Given a first-order $\mathrm{AO} \Delta \mathrm{E} F(y)=0$. Determine a strong rational general solution $s \in \mathbb{K}(x, c) \backslash \mathbb{K}(x)$, where c is transcendental over $\mathbb{K}(x)$, s.t.

$$
F(x, s(x), s(x+1))=0
$$

Let $s(x)=\frac{p(x)}{q(x)}$ with $\operatorname{gcd}(p, q)=1$. Denote the degree of s by $\operatorname{deg}(s):=\max (\operatorname{deg}(p), \operatorname{deg}(q))$.

Applications:

- Automatic proof of combinatorial identities: symbolic summation.

Difference Galois theory: factorization of linear difference operators.

- Analysis of time or space complexity of computer programs.

Motivation

Previous works:

- (Abramov-Bronstein-Petkovšek-van Hoeij 1989-1998): Algorithms for computing rational solutions of linear difference equations.
- (Feng-Gao-Huang 2008): An algorithm for computing rational solutions of first-order autonomous $\mathrm{AO} \Delta \mathrm{Es}$ provided the degree of the rational solution is given.
- (Shkaravska-Eekelen 2014, 2021): a degree bound for polynomial solutions of high-order non-autonomous $\mathrm{AO} \Delta$ Es under a sufficient condition.

Our contribution: Construct a degree bound for rational solutions of first-order autonomous $\mathrm{AO} \Delta \mathrm{Es}$, thus derive a complete algorithm for computing corresponding rational solutions.

Preliminaries

Let $F \in \mathbb{K}[x, y, z] \backslash\{0\}$ be an irreducible polynomial.
Theorem 1: If the $\mathrm{AO} \Delta \mathrm{E} F(x, y(x), y(x+1))=0$ admits a strong rational general solution, then the algebraic curve in $\mathbb{A}^{2}(\overline{\mathbb{K}(x)})$ defined by $F(x, y, z)=0$ is of genus zero.

Preliminaries

Using parametrization theory of rational curves, we have
Proposition 1: If the algebraic curve $\mathcal{C}_{F} \subset \mathbb{A}^{2}(\overline{\mathbb{K}(x)})$ defined by $F(x, y, z)=0$ is of genus zero, then there exists a birational transformation $\mathcal{P}: \mathbb{A}^{1}(\overline{\mathbb{K}(x)}) \rightarrow \mathcal{C}_{F}$ defined by $\mathcal{P}(x, t)=\left(p_{1}(x, t), p_{2}(x, t)\right)$ for some $p_{1}(x, t), p_{2}(x, t) \in \mathbb{K}(x, t)$.

- There exists an algorithm (Vo-Grasegger-Winkler 2018) for determining such a birational transformation as above.

Preliminaries

Theorem 2: Let $F(x, y(x), y(x+1))=0$ be an $\mathrm{AO} \Delta \mathrm{E}$ s.t. its corresponding curve \mathcal{C}_{F} is of genus zero. Assume $\mathcal{P}(x, t)=\left(p_{1}(x, t), p_{2}(x, t)\right) \in \mathbb{K}(x, t)^{2}$ is a birational transformation from $\mathbb{A}^{1}(\overline{\mathbb{K}(x)})$ to \mathcal{C}_{F}. Consider

$$
\begin{equation*}
p_{1}(x+1, \omega(x+1))=p_{2}(x, \omega(x)) \tag{2}
\end{equation*}
$$

- If $s(x, c)$ is a strong rational general solution of $F(y)=0$, then there exists a strong rational general solution $\omega(x, c)$ of (2) s.t. $s(x, c)=p_{1}(x, \omega(x, c))$.
- Conversely, if $\omega(x, c)$ is a strong rational general solution of (2), then $s(x, c)=p_{1}(x, \omega(x, c))$ is a strong rational general solution of $F(y)=0$.

We call (2) an associated separable $\mathrm{AO} \Delta \mathrm{E}$ of $F(y)=0$.

Preliminaries

Proposition 2: If the $\mathrm{AO} \Delta \mathrm{E} F(x, y(x), y(x+1))=0$ admits a strong rational general solution, then we have

$$
\operatorname{deg}_{y} F=\operatorname{deg}_{z} F
$$

In this case, the associated separable $\mathrm{AO} \Delta \mathrm{E}$ exists and it must be of the form

$$
P(x, \omega(x+1))=Q(x, \omega(x))
$$

for some $P, Q \in \mathbb{K}(x, y)$ s.t.

$$
\operatorname{deg}_{y} P=\operatorname{deg}_{y} Q=\operatorname{deg}_{z} F=\operatorname{deg}_{y} F
$$

Goal: Construct a degree bound for rational solutions of autonomous separable $\mathrm{AO} \Delta \mathrm{Es}$, and thus derive an algorithm for computing rational solutions of first-order aotonomous $\mathrm{AO} \Delta \mathrm{Es}$.

Problem

Question 1: Let $P_{1}, P_{2}, Q_{1}, Q_{2}$ be polynomials in $\mathbb{K}[z] \backslash\{0\}$ such that $\operatorname{gcd}\left(P_{1}, Q_{1}\right)=\operatorname{gcd}\left(P_{2}, Q_{2}\right)=1$ and $\operatorname{deg} \frac{P_{1}}{Q_{1}}=\operatorname{deg} \frac{P_{2}}{Q_{2}}=n \geq 1$.
Find all rational solutions of the autonomous separable AODE

$$
\begin{equation*}
\frac{P_{1}(y(x+1))}{Q_{1}(y(x+1))}=\frac{P_{2}(y(x))}{Q_{2}(y(x))} . \tag{3}
\end{equation*}
$$

Reduction

By a gcd argument, we have
Proposition 3: Let $P_{1}, P_{2}, Q_{1}, Q_{2}$ be polynomials specified in Problem 1. Set

$$
\tilde{P}_{i}(z, w)=w^{n} P_{i}\left(\frac{z}{w}\right), \quad \text { and } \quad \tilde{Q}_{i}(z, w)=w^{n} Q_{i}\left(\frac{z}{w}\right),
$$

which are homogeneous of degree n in $\mathbb{K}[z, w], i=1,2$. Assume $\frac{A(x)}{B(x)}$ is a solution of (3), where $A, B \in \mathbb{K}[x]$ with $\operatorname{gcd}(A, B)=1$. Then there exists $c \in \mathbb{K}$ s.t.

$$
\left\{\begin{array}{l}
\tilde{P}_{1}(A(x+1), B(x+1))=c \cdot \tilde{P}_{2}(A(x), B(x)) \tag{4}\\
\tilde{Q}_{1}(A(x+1), B(x+1))=c \cdot \tilde{Q}_{2}(A(x), B(x))
\end{array}\right.
$$

By doing coefficient comparison, we can determine finite candidates for c algorithmically. WLOG, we assume that $c=1$.

Uncoupling

$$
\left\{\begin{array}{l}
\tilde{P}_{1}(A(x+1), B(x+1))=\tilde{P}_{2}(A(x), B(x)), \tag{5}\\
\tilde{Q}_{1}(A(x+1), B(x+1))=\tilde{Q}_{2}(A(x), B(x)) .
\end{array}\right.
$$

Uncoupling

$$
\left\{\begin{array}{l}
\tilde{P}_{1}(A(x+1), B(x+1))=\tilde{P}_{2}(A(x), B(x)), \tag{5}\\
\tilde{Q}_{1}(A(x+1), B(x+1))=\tilde{Q}_{2}(A(x), B(x)) .
\end{array}\right.
$$

Applying $\sigma: x \longmapsto x+1$ to the above equations, we get

$$
\left\{\begin{array}{l}
\tilde{P}_{1}(A(x+2), B(x+2))=\tilde{P}_{2}(A(x+1), B(x+1)), \tag{6}\\
\tilde{Q}_{1}(A(x+2), B(x+2))=\tilde{Q}_{2}(A(x+1), B(x+1)) .
\end{array}\right.
$$

Regarding $A(x+i)$ and $B(x+i)$ as undeterminates, we have 4 equations and 6 variables. It is possible to utilize nonlinear elimination techniques to eliminate 3 variables, i.e., $A(x+i)$'s or $B(x+i)$'s from (5) and (6).

Uncoupling

Algorithm 1: Given the difference system (4). Compute nonzero autonomous second-order $\mathrm{AO} \Delta \mathrm{Es}$ for $A(x)$ and $B(x)$, respectively, which are consequences of (4).
(1) Let $I \subseteq \mathbb{K}\left[w_{0}, w_{1}, w_{2}, z_{0}, z_{1}, z_{2}\right]$ be the ideal generated by

$$
\begin{array}{ll}
\tilde{P}_{1}\left(z_{1}, w_{1}\right)-\tilde{P}_{2}\left(z_{0}, w_{0}\right), & \tilde{Q}_{1}\left(z_{1}, w_{1}\right)-\tilde{Q}_{2}\left(z_{0}, w_{0}\right), \\
\tilde{P}_{1}\left(z_{2}, w_{2}\right)-\tilde{P}_{2}\left(z_{1}, w_{1}\right), & \tilde{Q}_{1}\left(z_{2}, w_{2}\right)-\tilde{Q}_{2}\left(z_{1}, w_{1}\right) .
\end{array}
$$

Using Gröbner bases or resultants, compute nonzero elements $F_{A} \in I \cap \mathbb{K}\left[z_{0}, z_{1}, z_{2}\right]$ and $F_{B} \in I \cap \mathbb{K}\left[w_{0}, w_{1}, w_{2}\right]$.
(2) Return $F_{A}(A(x), A(x+1), A(x+2))=0$ and $F_{B}(B(x), B(x+1), B(x+2))=0$.

Uncoupling

Theorem 3 (Vo-Z. 2020) The elimination ideals $I \cap \mathbb{K}\left[z_{0}, z_{1}, z_{2}\right]$ and $I \cap \mathbb{K}\left[w_{0}, w_{1}, w_{2}\right]$ are nonzero and Algorithm 1 is correct.

Polynomial solutions

Let $\frac{A(x)}{B(x)}$ be a solution of the autonomous separable $O \Delta E$. By Algorithm 1, we can find nonzero autonomous second-order $\mathrm{AO} \Delta \mathrm{Es}$ for $A(x)$ and $B(x)$, respectively.

Question 2: Let $F \in \mathbb{K}[y, z, w]$ be a homogeneous polynomial. Find all polynomial solutions of the $\mathrm{AO} \Delta \mathrm{E}$

$$
\begin{equation*}
F(y(x), y(x+1), y(x+2))=0 . \tag{7}
\end{equation*}
$$

Polynomial solutions

Let $\frac{A(x)}{B(x)}$ be a solution of the autonomous separable $\mathrm{O} \Delta \mathrm{E}$. By Algorithm 1, we can find nonzero autonomous second-order $\mathrm{AO} \Delta \mathrm{Es}$ for $A(x)$ and $B(x)$, respectively.

Question 2: Let $F \in \mathbb{K}[y, z, w]$ be a homogeneous polynomial. Find all polynomial solutions of the $\mathrm{AO} \Delta \mathrm{E}$

$$
\begin{equation*}
F(y(x), y(x+1), y(x+2))=0 . \tag{7}
\end{equation*}
$$

Idea: Doing coefficient comparison to derive a degree bound.

Polynomial solutions

Let $\frac{A(x)}{B(x)}$ be a solution of the autonomous separable $O \Delta E$. By Algorithm 1, we can find nonzero autonomous second-order $\mathrm{AO} \Delta \mathrm{Es}$ for $A(x)$ and $B(x)$, respectively.

Question 2: Let $F \in \mathbb{K}[y, z, w]$ be a homogeneous polynomial. Find all polynomial solutions of the $\mathrm{AO} \Delta \mathrm{E}$

$$
\begin{equation*}
F(y(x), y(x+1), y(x+2))=0 . \tag{7}
\end{equation*}
$$

Idea: Doing coefficient comparison to derive a degree bound. Note that (7) is equivalent to

$$
\begin{equation*}
\tilde{F}\left(y(x), \Delta y(x), \Delta^{2} y(x)\right)=0, \tag{8}
\end{equation*}
$$

where $\Delta y(x)=y(x+1)-y(x)$ and

$$
\tilde{F}(y, z, w)=F(y, y+z, y+2 z+w) .
$$

Polynomial solutions

For $\mathbf{i}=\left(i_{1}, i_{2}, i_{3}\right) \in \mathbb{N}^{3}$, we define $\|\mathbf{i}\|=i_{1}+i_{2}+i_{3}$. Write

$$
\tilde{F}=\sum_{\|\mathbf{i}\|=D} c_{i} y^{i_{1}} z^{i_{2}} w^{i_{3}}
$$

where $c_{\mathbf{i}} \in \mathbb{K}$. Set

$$
\begin{aligned}
\mathcal{E}(\tilde{F}) & =\left\{\mathbf{i} \in \mathbb{N}^{3} \mid c_{\mathbf{i}} \neq 0\right\}, \\
m(\tilde{F}) & =\min \left\{i_{2}+2 i_{3} \mid \mathbf{i} \in \mathcal{E}(\tilde{F})\right\}, \\
\mathcal{M}(\tilde{F}) & =\left\{\mathbf{i} \in \mathcal{E}(\tilde{P}) \mid i_{2}+2 i_{3}=m(\tilde{F})\right\}, \\
\mathcal{P}_{\tilde{F}}(t) & =\sum_{\mathbf{i} \in \mathcal{M}(\tilde{F})} c_{\mathbf{i}} t^{i_{2}}[t(t-1)]^{i_{3}} .
\end{aligned}
$$

We call $\mathcal{P}_{\tilde{F}}(t)$ the indicial polynomial of \tilde{F} (at infinity).

Polynomial solutions

Proposition 4: Let $\mathcal{P}_{\tilde{F}}(t)$ be the indicial polynomial of \tilde{F} at infinity. Then $\mathcal{P}_{\tilde{F}}(t) \neq 0$.

Theorem 4 (Vo-Z. 2020): Let $p(x)$ be a nonzero polynomial solution of $\tilde{F}\left(y(x), \Delta y(x), \Delta^{2} y(x)\right)=0$ with degree d. Then $\mathcal{P}_{\tilde{F}}(d)=0$.

Algorithms

Algorithm 2: Given a separable $\mathrm{AO} \Delta \mathrm{E} \frac{P_{1}(y(x+1))}{Q_{1}(y(x+1))}=\frac{P_{2}(y(x))}{Q_{2}(y(x))}$ with $\operatorname{gcd}\left(P_{i}, Q_{i}\right)=1$ and $\operatorname{deg} \frac{P_{1}}{Q_{1}}=\operatorname{deg} \frac{P_{2}}{Q_{2}} \geq 1, i=1,2$. Compute a degree bound for its rational solutions.
(1) Let $\tilde{P}_{j}(z, w)=w^{n} P_{j}\left(\frac{z}{w}\right)$ and $\tilde{Q}_{j}(z, w)=w^{n} Q_{j}\left(\frac{z}{w}\right), j=1,2$. Consider

$$
\left\{\begin{array}{l}
\tilde{P}_{1}(A(x+1), B(x+1))=\tilde{P}_{2}(A(x), B(x)) \tag{9}\\
\tilde{Q}_{1}(A(x+1), B(x+1))=\tilde{Q}_{2}(A(x), B(x))
\end{array}\right.
$$

where A, B are unknown. Derive the following nonzero $\mathrm{AO} \Delta \mathrm{Es}$ for $A(x)$ and $\mathrm{B}(\mathrm{x})$ from (9) by using Algorithm 1 :

$$
F_{A}(A(x), A(x+1), A(x+2))=0, F_{B}(B(x), B(x+1), B(x+2))=0 .
$$

Algorithms

(2) Determine the indicial polynomials $\mathcal{P}_{F_{A}}$ and $\mathcal{P}_{F_{B}}$ of F_{A} and F_{B}, respectively. Let

$$
\begin{aligned}
& D_{A}=\left\{\text { non-negative integer solutions of } \mathcal{P}_{F_{A}}(t)\right\} \\
& D_{B}=\left\{\text { non-negative integer solutions of } \mathcal{P}_{F_{B}}(t)\right\}
\end{aligned}
$$

Return $\max \left(D_{A} \cup D_{B}\right)$.

Algorithms

Algorithm 3: Given an irreducible autonomous first-order $\mathrm{AO} \Delta \mathrm{E}$ $F(y(x), y(x+1))=0$. Compute a non-constant rational solution or return "NULL".
(1) If $\operatorname{deg}_{y}(F) \neq \operatorname{deg}_{z}(F)$, then output "NULL". Otherwise, go to step 2.
(2) Compute the genus g of the corresponding curve \mathcal{C}_{F} defined by $F(y, z)=0$. If $g \neq 0$, then output "NULL". Otherwise, go to step 3.
(3) Using Vo-Grasegger-Winkler's algorithm, determine an optimal parametrization for \mathcal{C}_{F}, say $\mathcal{P}(t)=\left(p_{1}(t), p_{2}(t)\right)$.

Algorithms

(4) Apply Algorithm 2 to compute a degree bound N for rational solutions of the separable $\mathrm{AO} \Delta \mathrm{E} p_{1}(y(x+1))=p_{2}(y(x))$.
(5) Set $M=N \cdot \operatorname{deg} p_{1}$. Use Feng-Gao-Huang's algorithm to determine a non-constant rational solution of $F(y)=0$ whose degree is at most M. Return the rational solution if there is any. Otherwise, return "NULL".

Example

Consider the first-order autonomous $\mathrm{AO} \triangle \mathrm{E}$:

$$
\begin{array}{r}
F=(12 y(x)+49) y(x+1)^{2}-\left(12 y^{2}+62 y+56\right) y(x+1)+y(x)^{2} \\
+8 y(x)+16=0 \tag{10}
\end{array}
$$

It is clear that $\operatorname{deg}_{y}(F)=\operatorname{deg}_{z}(F)=2$. The corresponding algebraic curve is of genus zero and it has an optimal parametrization

$$
\mathcal{P}(t)=\left(p_{1}(t), p_{2}(t)\right)=\left(\frac{9 t^{2}-12 t+4}{12 t}, \frac{9 t^{2}+36 t+4}{12(t+4)}\right) .
$$

Using the above parametrization, we derive the following associated separable $\mathrm{AO} \Delta \mathrm{E}$ of (10):

$$
\begin{equation*}
\frac{9 y(x+1)^{2}-12 y(x+1)+4}{y(x+1)}=\frac{9 y(x)^{2}+36 y(x)+4}{y(x)+4} \tag{11}
\end{equation*}
$$

Example

Using Algorithm 2, we see the degree bound for rational solutions of (11) is 2 . Thus, the degrees of rational solutions of $F(y)=0$ are bounded by 4. Applying Feng-Gao-Huang's algorithm, we determine a rational solution, say

$$
y(x)=\frac{\left(1-4 x+2 x^{2}\right)^{2}}{2 x\left(1-3 x+2 x^{2}\right)}
$$

Conclusion

- An algebraic geometric approach for studying rational solutions of first-order $\mathrm{AO} \Delta \mathrm{Es}$.
- A degree bound for rational solutions of autonomous first-order $\mathrm{AO} \Delta \mathrm{Es}$, and thus derive a complete algorithm for computing corresponding rational solutions.

Conclusion

- An algebraic geometric approach for studying rational solutions of first-order $\mathrm{AO} \Delta \mathrm{Es}$.
- A degree bound for rational solutions of autonomous first-order $\mathrm{AO} \triangle$ Es, and thus derive a complete algorithm for computing corresponding rational solutions.

Thanks!

