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A family of sequences in OEIS

a(OEIStag) [0 1 2 3 4 5
A059710 |1 0 1 1 4 10
A108307 |1 1 2 5 15 51
A108304 |1 2 5 15 52 202

Octant Sequences

» Those sequences are associated to the invariant theory of the
exceptional simple Lie algebra Gy of rank 2.

» They can be interpreted as lattice walks restricted to the
octant. We call them octant sequences.
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Octant sequences

» A059710: enumerates the multiplicities of the trivial
representation in the tensor powers of V, which is the 7-D
fundamental representation of Go.

» A108307: enumerates enhanced 3-noncrossing set partitions.

» A108304: enumerates 3-noncrossing set partitions.

(Lin, 2018; Gil and Tirrell, 2019): A108307 and A108304 are
related by the binomial transform.
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Motivation and Contribution

(Bostan, Tirrell, Westbury and Z., 2019): A059710 and A108307
are also related by the binomial transform.

Mihailovs' conjecture: Let T3(n) be the n-th term of A059710.
Then T; is determined by T5(0) =1, T3(1) =0, T3(2) =1 and

14(n+1)(n+2) T3(n)+ (n+2)(19n+75) T3 (n+1)
+2(n+2)(2n+11) T3(n+2)—(n+8)(n+9) T3 (n+3) = 0.

(Bostan, Tirrell, Westbury and Z., 2019): Three independent
proofs of Mihailovs’ conjecture.

» Two proofs are based on binomial relation between A059710
and A108307, together with a result by Bousquet-Mélou and
Xin.

b The third one is a direct proof by the method of algebraic
residues.
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Outline

» binomial relation between the first and second octant
sequences

b Three independent proofs of Mihailovs' conjecture
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Preliminaries

Definition 1 Let G be a reductive complex algebraic group and
let V be a representation of G. The sequence associated to

(G, V), denoted ay/, is the sequence whose n-th term is the
multiplicity of the trivial representation in the tensor power Q" V.

Example 1 Let V' be the 7-D fundamental representation of G,.
Then A059710 is the sequence associated with (G, V).

Let a be a sequence with n-th term a(n), the binomial transform of
a is the sequence, denoted Ba, whose n-th term is
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Preliminaries

Lemma 1 Assume ay is the sequence associated to (G, V) as
specified in Definition 1. Then aygc = Bay.

Lemma 2 Assume a enumerates walks in a lattice, confined to a

domain D, using a set of steps S. Then Ba also enumerates walks
in a lattice restricted to D with steps S[{0}.

Lemma 3 Let G(t) be the generating function of a. For k € Z,
denote the generating function of B¥a by BXG. Then

(B*6)(1) = 1 —lk tG <1 —tk t) ’
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Binomial relation between A059710 and A108307

Let V be the 7-D fundamental representation of Gp. Then

» A059710 is the sequence associated to (Gz, V). Let T3(n) be
its n-th term.

» A108307 enumerates enhanced 3-noncrossing set partitions.
Let E3(n) be its n-th term.
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In terms of lattice walks, we can interpret T3 and Ez as follows:

(-1x)—(01)
(-1 0) (-1 0)
(Le1)—(2¢1) (0.£1) (1)
Steps in weight Steps in octant

lattice of Gy related to E3(n)
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In terms of lattice walks, we can interpret T3 and Ez as follows:

(-1:1) (041)
(-1 0) — (-1 :0)
(Le1)—(2¢1) (0.£1) (1)
Steps in weight Steps in octant
lattice of Gy related to E3(n)

If we make a linear transformation (x,y) — (x +y,y), then it
identifies the six non-zero steps, as well as the two domains.

Yi Zhang, XJTLU 10/18



Binomial relation between A059710 and A108307

Recall: Lemma 2 Assume a enumerates walks in a lattice, confined
to a domain D, using a set of steps S. Then Ba also enumerates
walks in a lattice restricted to D with steps ST[{0}.
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Binomial relation between A059710 and A108307

Recall: Lemma 2 Assume a enumerates walks in a lattice, confined
to a domain D, using a set of steps S. Then Ba also enumerates
walks in a lattice restricted to D with steps ST[{0}.

By Lemma 2 and the previous figures, we conclude that Ez is the
binomial transform of Ts3.
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Binomial relation between A059710 and A108307

Recall: Lemma 2 Assume a enumerates walks in a lattice, confined
to a domain D, using a set of steps S. Then Ba also enumerates
walks in a lattice restricted to D with steps ST[{0}.

By Lemma 2 and the previous figures, we conclude that Ez is the
binomial transform of Ts3.

(Lin, 2018; Gil and Tirrell, 2019): A108307 and A108304 are
related by the binomial transform.

Recall: Lemma 1 Assume ay is the sequence associated to (G, V)
as specified in Definition 1. Then aygc = Bay.

Thus, the octant sequences are sequences associated to

(G27V)¢ (G27V@(C)7 (GZaV@2(C)
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First proof of Mihailovs' conjecture

Mihailovs' conjecture: Let T3(n) be the n-th term of A059710.
Then T3 is determined by T3(0) =1, T3(1) =0, T3(2) =1 and

14(n+1)(n+2) T3(n)+ (n+2)(19n+75) Tz (n+ 1)
+2(n+2)(2n+11) T3(n+2)—(n+8)(n+9) T3(n+3) = 0.

(Bousquet-Mélou and Xin, 2005): Let E3(n) be the n-th term
of A108307. Then Ej is given by E3(0) = E3(1) =1, and

8(n+3)(n+1)E3(n) + (7n* +53n+88) E3 (n + 1)
—(n+8)(n+7)Ez(n+2)=0.
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First proof of Mihailovs' conjecture

Recall: We prove that E3 is the binomial transform of T3. Thus,

n

EOR S WIEO)

k=0

Set £(n, k) = (—1)" () Es(k).

» By Bousquet-Mélou and Xin's result, f(n, k) is holonomic
function, which satisfies ordinary difference equations for n
and k, respectively.

» ldea: Using creative telescoping method (Zeilberger, 1990),
which is an algorithmic approach to compute a
differential /difference equation for the integration/sum of
holonomic functions, to drive a recurrence equation for T3.
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First proof of Mihailovs' conjecture

>

Yi Zhang, XJTLU

Using the Koutschan's Mathematica package
HolonomicFunctions.m that implements Chyzak's algorithm
for creative telescoping, we find exactly the recurrence
equation in Mihailovs’ conjecture.
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Second proof of Mihailovs' conjecture

Recall: We prove that E3 is the binomial transform of T3. Let
T(t) =350 Ta(n)t" and E(t) = 3,50 E3(n)t". Then

T(t)zl—lkt'é’(lit)'

» By Bousquet-Mélou and Xin's result, we can derive an ODE
for £(t).

» Using the closure properties of holonomic function (the sum,
product and algebraic substitution of holonomic functions is
still holonomic), we can derive an ODE for 7(t) and convert
it into a linear recurrence for T3(n), which is exactly the
recurrence equation in Mihailovs' conjecture.
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Third proof of Mihailovs' conjecture

|dea: In terms of lattice walks, we can interpret T3(n) to be the
constant term of W K", where

K=04+x+y+xy+xt+y )l
and

W — x_2y_3(x2y3 B x L2 X2y x3y 32

Fxy T3 )y 2 23, 08y

Let 7(t) = >, T3(n)t". Then T(t) is the constant coefficient
[x°y°] of W /(1 — tK). In other words, T (t) is equal to the
algebraic residue of W /(xy — txyK), which is proportional to the
contour integral of W /(xy — txyK) over a cycle.
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Third proof of Mihailovs' conjecture

Using creative telescoping method, we can compute a 6-th order
ODE for T(t). Moreover, by using factorization of differential
operators, we can show that L3(7(t)) = 0, where 9 = & and

Ly=t>(2t+1) (7Tt —1)(t+1) 0> +2¢t(t + 1) (63t> +22t —7) &°+
(252® +338¢t% +36t—42) 0+ 28t (3t +4).

Converting it into a linear recurrence for T3(n), we get exactly the
recurrence equation in Mihailovs’ conjecture.
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Summary

» A combinatorial proof of binomial relation between the first
and second octant sequences

b Three independent proofs of Mihailovs' conjecture

» Two proofs are based on binomial relation between the first
and second octant sequences

» A direct proof by the method of algebraic residues
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Summary

» A combinatorial proof of binomial relation between the first
and second octant sequences

b Three independent proofs of Mihailovs' conjecture

» Two proofs are based on binomial relation between the first
and second octant sequences

» A direct proof by the method of algebraic residues

Thanks!
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