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The On-Line Encyclopedia of Integer Sequences (OEIS)

OEIS is an online database of integer sequences, such as Fibonacci numbers

(A000045), Catalan numbers (A000108).
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Two families of sequences in OEIS
a (OEIS tag) 0 1 2 3 4 5

A059710 1 0 1 1 4 10
A108307 1 1 2 5 15 51
A108304 1 2 5 15 52 202

The first family of sequences (octant sequences)

a (OEIS tag) 0 1 2 3 4 5

A151366 1 0 2 2 12 30
A236408 1 1 3 9 33 131
A001181 1 2 6 22 92 422
A216947 1 3 11 49 221 1113

The second family of sequences (quadrant sequences)

Those sequences are associated to the invariant theory of the
exceptional simple Lie algebra G2 of rank 2.

The quadrant sequences are related to the octant sequences
by the branching rules for SL(3) of G2.
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Octant sequences

The first family of sequences can be interpreted as lattice walks
restricted to the octant. We call them octant sequences.

A059710: enumerates the multiplicities of the trivial
representation in the tensor powers of V , which is the 7-D
fundamental representation of G2.

A108307: enumerates enhanced 3-noncrossing set partitions.

A108304: enumerates 3-noncrossing set partitions.

(Lin, 2018; Gil and Tirrell, 2019): A108307 and A108304 are
related by the binomial transform.
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Motivation and Contribution

(Bostan, Tirrell, Westbury and Z., 2019): A059710 and A108307
are also related by the binomial transform.
Mihailovs’ conjecture: Let T3(n) be the n-th term of A059710.
Then T3 is determined by T3 (0) = 1, T3 (1) = 0, T3 (2) = 1 and

14 (n + 1) (n + 2)T3 (n) + (n + 2) (19n + 75)T3 (n + 1)

+2 (n + 2) (2n + 11)T3 (n + 2)−(n + 8) (n + 9)T3 (n + 3) = 0.

(Bostan, Tirrell, Westbury and Z., 2019): Three independent
proofs of Mihailovs’ conjecture.

Two proofs are based on binomial relation between A059710
and A108307, together with a result by Bousquet-Mélou and
Xin.

The third one is a direct proof by the method of algebraic
residues, which leads to closed formulae for the generating
function of T3 in terms of hypergeometric functions.
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Quadrant sequences

The second family of sequences can be interpreted as lattice walks
restricted to the quadrant. We call them quadrant sequences.

A151366: enumerates nonpositive bipartite trivalent graphs.

A236408: enumerates pasting diagrams.

A001181: enumerates Baxter permutations.

A216947: enumerates 2-coloured noncrossing set partitions.

Question: What are relations between quadrant sequences?
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Motivation and Contribution

(Marberg, 2013): a combinatorial proof that A151366, A001181,
and A216947 are related by binomial transforms.

(Bostan, Tirrell, Westbury and Z., 2019): Derive a uniform
recurrence equation for quadrant sequences and show that they are
related by binomial transform by the representation theory of
simple Lie algebras.
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Outline

binomial relation between the first and second octant
sequences

Three independent proofs of Mihailovs’ conjecture

Recurrence relations for the quadrant sequences
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Preliminaries

Definition 1 Let G be a reductive complex algebraic group and
let V be a representation of G . The sequence associated to
(G ,V ), denoted aV , is the sequence whose n-th term is the
multiplicity of the trivial representation in the tensor power ⊗nV .

Example 1 Let V be the 7-D fundamental representation of G2.
Then A059710 is the sequence associated with (G2,V ).

Let a be a sequence with n-th term a(n), the binomial transform of
a is the sequence, denoted Ba, whose n-th term is

n∑
i=0

(
n

i

)
a(i).
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Preliminaries

Lemma 1 Assume aV is the sequence associated to (G ,V ) as
specified in Definition 1. Then aV⊕C = BaV .

Lemma 2 Assume a enumerates walks in a lattice, confined to a
domain D, using a set of steps S . Then Ba also enumerates walks
in a lattice restricted to D with steps S

∐
{0}.

Lemma 3 Let G (t) be the generating function of a. For k ∈ Z,
denote the generating function of Bka by BkG . Then

(BkG )(t) =
1

1− k t
G

(
t

1− k t

)
.
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Binomial relation between A059710 and A108307

Let V be the 7-D fundamental representation of G2. Then

A059710 is the sequence associated to (G2,V ). Let T3(n) be
its n-th term.

A108307 enumerates enhanced 3-noncrossing set partitions.
Let E3(n) be its n-th term.
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In terms of lattice walks, we can interpret T3 and E3 as follows:

(1,0)

(-1,1)(-2,1)

(-1,0)

(1,-1) (2,-1)

(0,0) (1,0)

(0,1)(-1,1)

(-1,0)

(0,-1) (1,-1)

(1,0)(0,0)

Steps in weight
lattice of G2

Steps in octant
related to E3(n)

If we make a linear transformation (x , y)→ (x + y , y), then it
identifies the six non-zero steps, as well as the two domains.
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Binomial relation between A059710 and A108307

Recall: Lemma 2 Assume a enumerates walks in a lattice, confined
to a domain D, using a set of steps S . Then Ba also enumerates
walks in a lattice restricted to D with steps S

∐
{0}.

By Lemma 2 and the previous figures, we conclude that E3 is the
binomial transform of T3.

(Lin, 2018; Gil and Tirrell, 2019): A108307 and A108304 are
related by the binomial transform.

Recall: Lemma 1 Assume aV is the sequence associated to (G ,V )
as specified in Definition 1. Then aV⊕C = BaV .

Thus, the octant sequences are sequences associated to

(G2,V ), (G2,V ⊕ C), (G2,V ⊕ 2C).
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First proof of Mihailovs’ conjecture

Mihailovs’ conjecture: Let T3(n) be the n-th term of A059710.
Then T3 is determined by T3 (0) = 1, T3 (1) = 0, T3 (2) = 1 and

14 (n + 1) (n + 2)T3 (n) + (n + 2) (19n + 75)T3 (n + 1)

+2 (n + 2) (2n + 11)T3 (n + 2)−(n + 8) (n + 9)T3 (n + 3) = 0.

(Bousquet-Mélou and Xin, 2005): Let E3(n) be the n-th term
of A108307. Then E3 is given by E3 (0) = E3 (1) = 1, and

8 (n + 3) (n + 1)E3 (n) +
(
7n2 + 53n + 88

)
E3 (n + 1)

− (n + 8) (n + 7)E3 (n + 2) = 0.
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First proof of Mihailovs’ conjecture

Recall: We prove that E3 is the binomial transform of T3. Thus,

T3(n) =
n∑

k=0

(−1)n−k
(
n

k

)
E3(k).

Set f (n, k) = (−1)n−k
(n
k

)
E3(k).

By Bousquet-Mélou and Xin’s result, f (n, k) is holonomic
function, which satisfies ordinary difference equations for n
and k , respectively.

Idea: Using creative telescoping method (Zeilberger, 1990),
which is an algorithmic approach to compute a
differential/difference equation for the integration/sum of
holonomic functions, to drive a recurrence equation for T3.
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First proof of Mihailovs’ conjecture

Using the Koutschan’s Mathematica package
HolonomicFunctions.m that implements Chyzak’s algorithm
for creative telescoping, we find exactly the recurrence
equation in Mihailovs’ conjecture.
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Second proof of Mihailovs’ conjecture

Recall: We prove that E3 is the binomial transform of T3. Let
T (t) =

∑
n≥0 T3(n)tn and E(t) =

∑
n≥0 E3(n)tn. Then

T (t) =
1

1 + t
· E
(

t

1 + t

)
.

By Bousquet-Mélou and Xin’s result, we can derive an ODE
for E(t).

Using the closure properties of holonomic function (the sum,
product and algebraic substitution of holonomic functions is
still holonomic), we can derive an ODE for T (t) and convert
it into a linear recurrence for T3(n), which is exactly the
recurrence equation in Mihailovs’ conjecture.
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Third proof of Mihailovs’ conjecture

Idea: In terms of lattice walks, we can interpret T3(n) to be the
constant term of W Kn, where

K = (1 + x + y + x y + x−1 + y−1 + (xy)−1),

and

W = x−2y−3(x2y3 − xy3 + x−1y2 − x−2y + x−3y−1 − x−3y−2

+ x−2y−3 − x−1y−3 + xy−2 − x2y−1 + x3y − x3y2).

Let T (t) =
∑

n≥0 T3(n)tn. Then T (t) is the constant coefficient

[x0y0] of W /(1− tK ). In other words, T (t) is equal to the
algebraic residue of W /(xy − txyK ), which is proportional to the
contour integral of W /(xy − txyK ) over a cycle.
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Third proof of Mihailovs’ conjecture

Using creative telescoping method, we can compute a 6-th order
ODE for T (t). Moreover, by using factorization of differential
operators, we can show that L3(T (t)) = 0, where ∂ = d

dt and

L3 =t2 (2 t + 1) (7 t − 1) (t + 1) ∂3 + 2 t (t + 1)
(
63 t2 + 22 t − 7

)
∂2+(

252 t3 + 338 t2 + 36 t − 42
)
∂ + 28 t (3 t + 4) .

Converting it into a linear recurrence for T3(n), we get exactly the
recurrence equation in Mihailovs’ conjecture.
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Closed formulae
By factorization of the operator L3 and algorithms for solving 2-nd
order ODEs, we derive the following closed formula for T (t):

T (t) =
1

30 t5

[
R1 · 2F1

(
1
3

2
3

2
;φ

)
+ R2 · 2F1

(
2
3

4
3

3
;φ

)
+ 5P

]
,

where

R1 =
(t + 1)2

(
214 t3 + 45 t2 + 60 t + 5

)
t − 1

,

R2 = 6
t2 (t + 1)2

(
101 t2 + 74 t + 5

)
(t − 1)2

,

and

φ =
27 (t + 1) t2

(1− t)3
, P = 28 t4 + 66 t3 + 46 t2 + 15 t + 1.
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Closed formulae

By elliptic curve theory, we derive an alternative formula for T (t):

P

6 t5
+

(7 t − 1) (2 t + 1) (t + 1)

360 t5

( (
155 t2 + 182 t + 59

)
(11 t + 1)H (t)

+
(
341 t3 + 507 t2 + 231 t + 1

)
(5 t + 1)H ′(t)

)
,

where

H(t) =
1

g21/4
· 2F1

(
1
12

5
12

1
;

1728

J

)
,

J =
(t − 1)3

(
25 t3 + 21 t2 + 3 t − 1

)3
t6 (1− 7 t) (2 t + 1)2 (t + 1)3

,

and
g2 = (t − 1)

(
25 t3 + 21 t2 + 3 t − 1

)
.
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Transcendence and asymptotics

Using those closed formulae, we can show that that T (t) is a
transcendental power series and its n-th coefficient

T3(n) ∼ C · 7n

n
, where C =

4117715

864

√
3

π
≈ 2627.6.
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Recurrence relations for quadrant sequences
Definition 2 Let Ṽ be the defining representation of SL(3) and
denote the dual by Ṽ ∗. For k > 0, we define Sk to be the
sequence associated to (SL(3), Ṽ ⊕ Ṽ ∗ ⊕ k C).

Remark: SL(3) is the maximal subgroup of G2. Let V be the 7-D
fundamental representation of G2. Then Sk is the the sequence
associated to (SL(3), (V ⊕ kC) ↓SL(3)).

Theorem (Bostan, Tirrell, Westbury and Z., 2019): The quadrant
sequences S0,S1,S2,S3 are identical to the sequences in the
second family listed in OEIS.

Lemma 4 Let Gk be the generating function of Sk , where k ≥ 0.
Then Gk is the constant coefficient of [x0y0] of W /(1− tK ), where

K = k + x + y + x−1 + y−1 +
x

y
+

y

x

and

W = 1− x2

y
+ x3 − x2y2 + y3 − y2

x
.
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Recurrence relations for quadrant sequences

By Lemma 4, S3 is identical to the sequence A216947.

(Marberg, 2013): The n-th term C2(n) of S3 is given by
C2(0) = 1,C2(1) = 3 and

(n + 5)(n + 6) · C2(n + 2)− 2(5n2 + 36n + 61) · C2(n + 1)

+ 9(n + 1)(n + 4) · C2(n) = 0.

By Lemma 1, Sk ’s are related by binomial transforms. Thus, by
Lemma 3, the generating function of Sk is

Gk(t) =
1

1− kt
· G3

(
t

1− kt

)
where G3(t) is the generating function of S3.
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Recurrence relations for quadrant sequences

Using closure properties of holonomic functions, we derive a
uniform 4-th order recurrence equation for Sk with k as a
parameter.

By comparing the recurrence equations between Sk ’s and the
sequences in the second family, and then checking initial terms, we
show that

Corollary: The recurrence relations stated in OEIS for the
sequences in the second family are true.
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Summary

A combinatorial proof of binomial relation between the first
and second octant sequences

Three independent proofs of Mihailovs’ conjecture

Two proofs are based on binomial relation between the first
and second octant sequences

A direct proof by the method of algebraic residues, which leads
to closed formulae for the generating function of the first
octant sequence

A unified proof for recurrence relations of the quadrant
sequences

Thanks!
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