Contraction of Linear Differential and Difference Operators

Yi Zhang

Institute for Algebra, Johannes Kepler University, Austria KLMM, Chinese Academy of Sciences, China

Krattenthaler's conjecture

Call $(c_n)_{n\geq 0}$ a *P*-recursive sequence over \mathbb{Z} if

$$\ell_r c_n = \ell_{r-1} c_{n-1} + \cdots + \ell_0 c_{n-r}$$

where $\ell_i \in \mathbb{Z}[n]$, $\ell_r \neq 0$.

Conjecture: Let $(a_n)_{\geq 0}$ and $(b_n)_{\geq 0}$ be two P-recursive sequences over \mathbb{Z} with leading coeff *n*. Show that $(n!a_nb_n)_{\geq 0}$ is also a P-recursive sequence over \mathbb{Z} with leading coeff *n*.

Example for Krattenthaler's conjecture

Consider:

$$\begin{array}{ll} na_n & = & (31n-6)a_{n-1} + (49n-110)a_{n-2} + (9n-225)a_{n-3} \\ nb_n & = & (4n+13)b_{n-1} + (69n-122)b_{n-2} + (36n-67)b_{n-3} \end{array}$$

 $c_n := n! a_n b_n$ satisfies

$$\alpha(n)nc_n = (\cdots)c_{n-1} + \ldots + (\cdots)c_{n-9}$$

where $\alpha(n) \in \mathbb{Z}[n]$, deg_n(α) = 20.

Example for Krattenthaler's conjecture

Consider:

$$na_n = (31n-6)a_{n-1} + (49n-110)a_{n-2} + (9n-225)a_{n-3}$$

$$nb_n = (4n+13)b_{n-1} + (69n-122)b_{n-2} + (36n-67)b_{n-3}$$

 $c_n := n! a_n b_n$ satisfies

$$\alpha(n)nc_n = (\cdots)c_{n-1} + \ldots + (\cdots)c_{n-9}$$

where $\alpha(n) \in \mathbb{Z}[n]$, deg_n(α) = 20.

Known algorithms:

$$\beta nc_n = (\cdots)c_{n-1} + \ldots + (\cdots)c_{n-10}$$

where β is a 853-digit integer.

Example for Krattenthaler's conjecture

Consider:

$$na_n = (31n-6)a_{n-1} + (49n-110)a_{n-2} + (9n-225)a_{n-3}$$

$$nb_n = (4n+13)b_{n-1} + (69n-122)b_{n-2} + (36n-67)b_{n-3}$$

 $c_n := n! a_n b_n$ satisfies

$$\alpha(n)nc_n = (\cdots)c_{n-1} + \ldots + (\cdots)c_{n-9}$$

where $\alpha(n) \in \mathbb{Z}[n]$, deg_n(α) = 20.

Known algorithms:

$$\beta nc_n = (\cdots)c_{n-1} + \ldots + (\cdots)c_{n-10}$$

where β is a 853-digit integer.

Our algorithm:

$$1nc_n = (\cdots)c_{n-1} + \ldots + (\cdots)c_{n-14}$$

Ore algebra (shift case)

 $\mathbb{Z}[n][\partial] \subset \mathbb{Q}(n)[\partial]$ small ring big ring
Assume $L = \ell_r \partial^r + \dots + \ell_1 \partial + \ell_0 \in \mathbb{Z}[n][\partial]$. Then $L \circ f(n) = \ell_r f(n+r) + \dots + \ell_1 f(n+1) + \ell_0 f(n)$ Call L an annihilator of f if $L \circ f = 0$.

▶ Call deg_∂(L) := r the order of L, $lc_∂(L) := \ell_r$ the leading coeff

▶ Let $T \in \mathbb{Z}[n][\partial]$. Call T a left multiple of L if T = PL, where $P \in \mathbb{Q}(n)[\partial]$.

Certifying integer sequences

Example 1 Consider an annihilator of u(n):

$$L = (1 + 16n)^2 \partial^2 - (224 + 512n)\partial - (1 + n)(17 + 16n)^2$$

Question: Assume $u(0), u(1) \in \mathbb{Z}$, whether or not $u(n) \in \mathbb{Z}$ for each $n \in \mathbb{N}$?

Certifying integer sequences

Example 1 Consider an annihilator of u(n):

$$L = (1+16n)^2 \partial^2 - (224+512n)\partial - (1+n)(17+16n)^2$$

Question: Assume $u(0), u(1) \in \mathbb{Z}$, whether or not $u(n) \in \mathbb{Z}$ for each $n \in \mathbb{N}$?

(Abramov, Barkatou, van Hoeij, 2006):

$$T := (\ldots)L = 64\partial^3 + \text{ lower terms } \in \mathbb{Z}[n][\partial]$$

Certifying integer sequences

Example 1 Consider an annihilator of u(n):

$$L = (1+16n)^2 \partial^2 - (224+512n)\partial - (1+n)(17+16n)^2$$

Question: Assume $u(0), u(1) \in \mathbb{Z}$, whether or not $u(n) \in \mathbb{Z}$ for each $n \in \mathbb{N}$?

(Abramov, Barkatou, van Hoeij, 2006):

$$T := (\ldots)L = 64\partial^3 + \text{ lower terms } \in \mathbb{Z}[n][\partial]$$

Our algorithm:

$$\widetilde{T} := 1\partial^3 + \text{ lower terms } \in \mathbb{Z}[n][\partial]$$

Answer: Yes, u(n) is an integer sequence.

Given $L \in \mathbb{Z}[n][\partial]$, $p \mid lc_{\partial}(L)$.

Let $T \in \mathbb{Z}[n][\partial]$ with $lc_{\partial}(T) = a \cdot g$, $a \in \mathbb{Z}$, g primitive. Call T a p-removed operator of L if

- T is a left multiple of L
- $g \mid \frac{1}{p} \operatorname{lc}_{\partial}(L)$

Given $L \in \mathbb{Z}[n][\partial]$, $p \mid lc_{\partial}(L)$.

Let $T \in \mathbb{Z}[n][\partial]$ with $lc_{\partial}(T) = a \cdot g$, $a \in \mathbb{Z}$, g primitive. Call T a p-removed operator of L if

T is a left multiple of L

•
$$g \mid \frac{1}{p} \operatorname{lc}_{\partial}(L)$$

Note: *a* is called the content of $lc_{\partial}(T)$, denoted as c(T).

Let T be a p-removing operator.

▶ Call *T* a desingularized operator of *L* if

 $deg(lc_{\partial}(T)) = min\{deg(lc_{\partial}(Q)) \mid Q \text{ is a p-removed operator}\}$

Let T be a p-removing operator.

• Call *T* a desingularized operator of *L* if

 $deg(lc_{\partial}(T)) = min\{deg(lc_{\partial}(Q)) \mid Q \text{ is a p-removed operator}\}$

▶ If *T* is a desingularized operator and

 $c(T) = \min\{c(Q) \mid Q \text{ is a desingularized operator}\},\$

call T a completely desingularized operator of L.

Example 1 (continued) Consider:

 $L = (1 + 16n)^2 \partial^2 - (224 + 512n)\partial - (1 + n)(17 + 16n)^2$

(Abramov et al. 2006):

$$T = (\ldots)L = 64\partial^3 + \text{ lower terms } \in \mathbb{Z}[n][\partial]$$

Our algorithm:

$$\widetilde{T} = 1\partial^3 + \text{ lower terms } \in \mathbb{Z}[n][\partial]$$

 ${\cal T}$ and $\widetilde{{\cal T}}$ are desingularized and completely desingularized operators, resp.

Given $L \in \mathbb{Z}[n][\partial]$, let $\langle L \rangle := \mathbb{Q}(n)[\partial]L$.

The contraction ideal of $\langle L \rangle$ is

 $\mathsf{Cont}(L) := \langle L \rangle \cap \mathbb{Z}[n][\partial]$

Given $L \in \mathbb{Z}[n][\partial]$, let $\langle L \rangle := \mathbb{Q}(n)[\partial]L$.

The contraction ideal of $\langle L \rangle$ is

$$\mathsf{Cont}(L) := \langle L \rangle \cap \mathbb{Z}[n][\partial]$$

- Cont(L) is finitely generated.
- Every desingularized operator of *L* belongs to Cont(*L*).
- Cont(L) contains $\mathbb{Z}[n][\partial]L$, but in general more operators.

Goal: compute a $\mathbb{Z}[n][\partial]$ -basis of Cont(*L*).

Goal: compute a $\mathbb{Z}[n][\partial]$ -basis of Cont(*L*).

Example 1 (continued) Consider:

$$L = (1 + 16n)^2 \partial^2 - (224 + 512n)\partial - (1 + n)(17 + 16n)^2$$

Cont(L) is generated by {L, \tilde{T} }.

Desingularization and contraction

Let $L \in \mathbb{Z}[n][\partial]$ with deg $_{\partial}(L) = r$. Set $k \ge r$. Call

$$M_k := \{T \mid T \in Cont(L), \deg_{\partial}(T) \leq k\}$$

the k-th submodule of Cont(*L*).

Desingularization and contraction

Let $L \in \mathbb{Z}[n][\partial]$ with deg $_{\partial}(L) = r$. Set $k \ge r$. Call

$$M_k := \{T \mid T \in Cont(L), \deg_{\partial}(T) \leq k\}$$

the k-th submodule of Cont(L).

Theorem 1 (Main Result 1) Let T be a desingularized operator of L. If $k = \deg_{\partial}(T)$, then

$$\operatorname{Cont}(L) = (\mathbb{Z}[x][\partial] \cdot M_k) : \operatorname{c}(T)^{\infty}$$

Order bound for desingularized operators

Let $L \in \mathbb{Z}[n][\partial]$.

Assume $p \mid lc_{\partial}(L)$, p is irreducible.

- If p is removable, then one can compute an integer k, s.t. there exists a p-removing operator of order k.
- Using Euclidean algorithm, one can compute an order bound for desingularized operators.

Chen, Jaroschek, Kauers, Singer. Desingularization explains order-degree curves for Ore operators. *ISSAC 2013*.

Determining the *k***-th submodule**

Given $L \in \mathbb{Z}[n][\partial]$, $\deg_{\partial}(L) = r$.

Question: Given $k \ge r$, compute a $\mathbb{Z}[n]$ -spanning set of M_k ?

Determining the *k***-th submodule**

Given $L \in \mathbb{Z}[n][\partial]$, $\deg_{\partial}(L) = r$.

Question: Given $k \ge r$, compute a $\mathbb{Z}[n]$ -spanning set of M_k ?

- 1. Make an ansatz: $F = z_k \partial^k + \ldots + z_0$, where $z_k, \ldots, z_0 \in \mathbb{Z}[n]$ are to be determined.
- 2. Compute rrem(F, L) = 0. It gives:

$$(z_k,\ldots,z_0)A=\mathbf{0},\tag{1}$$

where $A \in \mathbb{Z}[n]^{(k+1) \times r}$.

3. Using Gröbner bases, solve (1).

Let $L \in \mathbb{Z}[n][\partial]$, deg_{∂}(L) = r.

Question: Assume *k* is an order bound for desingularized operators, compute a desingularized operator?

Let $L \in \mathbb{Z}[n][\partial]$, deg_{∂}(L) = r.

Question: Assume *k* is an order bound for desingularized operators, compute a desingularized operator?

Set $k \ge r$. Call

$$I_k := \left\{ [\partial^k] P \mid P \in M_k \right\} \cup \{0\},$$

the *k*-th coefficient ideal of Cont(*L*), where $[\partial^k]P$ is the coefficient of ∂^k in *P*.

Proposition If $\{B_1, \ldots, B_t\}$ is a spanning set of M_k , then

$$I_k = \langle [\partial^k] B_1, \dots, [\partial^k] B_t \rangle$$

Proposition If $\{B_1, \ldots, B_t\}$ is a spanning set of M_k , then

$$I_k = \langle [\partial^k] B_1, \ldots, [\partial^k] B_t \rangle$$

Theorem 3 If s is a nonzero element of I_k with minimal degree, then S in M_k with $lc_{\partial}(S) = s$ is a desingularized operator.

Proposition If $\{B_1, \ldots, B_t\}$ is a spanning set of M_k , then

$$I_k = \langle [\partial^k] B_1, \ldots, [\partial^k] B_t \rangle$$

Theorem 3 If s is a nonzero element of I_k with minimal degree, then S in M_k with $lc_\partial(S) = s$ is a desingularized operator.

Note: Using Euclidean algorithm over $\mathbb{Q}[n]$, one can compute an operator *S* with $lc_{\partial}(S) = s$.

Determining contraction ideals

Algorithm 1: Given $L \in \mathbb{Z}[n][\partial]$, compute a basis of Cont(L).

- 1. Compute an order bound k for desingularized operators.
- 2. Compute a spanning set of M_k .
- 3. Compute a desingularized operator T of order k.
- 4. Using Gröbner bases, compute a basis of

 $(\mathbb{Z}[n][\partial] \cdot M_k) : c(T)^{\infty}.$

Determining contraction ideals

Example 1 (continued) Consider:

$$L = (1 + 16n)^2 \partial^2 - (224 + 512n)\partial - (1 + n)(17 + 16n)^2$$

1. An order bound for desingularized operator is 3.

- 2. M_3 is generated by $\{L, \tilde{T}\}$.
- 3. Since $lc_{\partial}(\widetilde{T}) = 1$, \widetilde{T} is a desingularized operator.
- 4. Cont(L) = $(\mathbb{Z}[n][\partial] \cdot \{L, \widetilde{T}\}) : 1^{\infty} = \mathbb{Z}[n][\partial] \cdot \{L, \widetilde{T}\}.$

Computing completely desingularized operators

Given $L \in \mathbb{Z}[n][\partial]$, $\deg_{\partial}(L) = r$.

Recall: Let T be a desingularized operator. Call T a completely desingularized operator of L if

 $c(T) = \min\{c(Q) \mid Q \text{ is a desingularized operator}\}$

Computing completely desingularized operators

Given $L \in \mathbb{Z}[n][\partial]$, $\deg_{\partial}(L) = r$.

Recall: Let T be a desingularized operator. Call T a completely desingularized operator of L if

 $c(T) = \min\{c(Q) \mid Q \text{ is a desingularized operator}\}$

Question: compute a completely desingularized operator of L?

Main result 2

Theorem 4 Assume $Cont(L) = \mathbb{Z}[n][\partial] \cdot M_k$ and **G** is a Gröbner basis of I_k . Let f be the element of **G** with minimal degree. If $F \in Cont(L)$ with $lc_{\partial}(F) = f$, then F is a completely desingularized operator of L.

Main result 2

Theorem 4 Assume $Cont(L) = \mathbb{Z}[n][\partial] \cdot M_k$ and **G** is a Gröbner basis of I_k . Let f be the element of **G** with minimal degree. If $F \in Cont(L)$ with $lc_{\partial}(F) = f$, then F is a completely desingularized operator of L.

Algorithm 2: Given $L \in \mathbb{Z}[n][\partial]$, compute a completely desingularized operator of *L*.

- 1. By Algorithm 1, $Cont(L) = \mathbb{Z}[n][\partial] \cdot M_k$.
- 2. Compute a Gröbner basis **G** of I_k .
- 3. Let f be the element of **G** with minimal degree. Tracing back to step 2, find $F \in \text{Cont}(L)$ with $lc_{\partial}(F) = f$.

Example 2

Consider:

$$na_n = (31n-6)a_{n-1} + (49n-110)a_{n-2} + (9n-225)a_{n-3}$$

$$nb_n = (4n+13)b_{n-1} + (69n-122)b_{n-2} + (36n-67)b_{n-3}$$

 $c_n := n! a_n b_n$ has an annihilator L of order 9 with $lc_\partial(L) = (n+9)\alpha(n)$, $\alpha(n) \in \mathbb{Z}[n]$.

Example 2

Consider:

$$na_n = (31n-6)a_{n-1} + (49n-110)a_{n-2} + (9n-225)a_{n-3}$$

$$nb_n = (4n+13)b_{n-1} + (69n-122)b_{n-2} + (36n-67)b_{n-3}$$

 $c_n := n!a_nb_n$ has an annihilator L of order 9 with $lc_\partial(L) = (n+9)\alpha(n)$, $\alpha(n) \in \mathbb{Z}[n]$.

1. By Algorithm 1, $Cont(L) = \mathbb{Z}[n][\partial] \cdot M_{14}$

2.
$$I_{14} = \langle n + 14 \rangle$$

3. Find a completely desingularized operator T of L, $lc_{\partial}(T) = n + 14$

Example 2

Consider:

$$na_n = (31n-6)a_{n-1} + (49n-110)a_{n-2} + (9n-225)a_{n-3}$$

$$nb_n = (4n+13)b_{n-1} + (69n-122)b_{n-2} + (36n-67)b_{n-3}$$

 $c_n := n!a_nb_n$ has an annihilator L of order 9 with $lc_\partial(L) = (n+9)\alpha(n)$, $\alpha(n) \in \mathbb{Z}[n]$.

1. By Algorithm 1, $Cont(L) = \mathbb{Z}[n][\partial] \cdot M_{14}$

2.
$$I_{14} = \langle n + 14 \rangle$$

3. Find a completely desingularized operator T of L, $lc_{\partial}(T) = n + 14$

Translating T into a recurrence equation of c_n

$$1nc_n = (\cdots)c_{n-1} + \ldots + (\cdots)c_{n-14}$$

Krattenthaler's conjecture

Let $(a_n)_{\geq 0}$ and $(b_n)_{\geq 0}$ be two P-recursive sequences over \mathbb{Z} with leading coeff n.

Set $L \in \mathbb{Z}[n][\partial]$ to be an annihilator of $n!a_nb_n$, and T to be a completely desingularized operator.

Krattenthaler's conjecture

Let $(a_n)_{\geq 0}$ and $(b_n)_{\geq 0}$ be two P-recursive sequences over \mathbb{Z} with leading coeff n.

Set $L \in \mathbb{Z}[n][\partial]$ to be an annihilator of $n!a_nb_n$, and T to be a completely desingularized operator.

Then

Krattenthaler's conjecture holds

Case 1

Consider:

$$na_n = \alpha a_{n-1}$$

$$nb_n = \beta_1 b_{n-1} + \ldots + \beta_t b_{n-t}$$

with α , $\beta_i \in \mathbb{Z}[n]$. Then $c_n := n!a_nb_n$ satisfies

$$nc_n = \gamma_1 c_{n-1} + \ldots + \gamma_t c_{n-t}$$

where $\gamma_i := \beta_i \prod_{j=0}^{i-1} \alpha(n-j)$.

Case 2

Consider:

$$na_{n} = \alpha_{1}a_{n-1} + \alpha_{2}a_{n-2}$$

$$nb_{n} = \beta_{1}b_{n-1} + \beta_{2}b_{n-2} + \beta_{3}b_{n-3}$$

where α_i, β_j are indeterminates. Then $c_n := n! a_n b_n$ satisfies

$$nc_n = \gamma_1 c_{n-1} + \ldots + \gamma_9 c_{n-9}$$

with $\gamma_i \in \mathbb{Z}[\alpha_1, \alpha_2, \beta_1, \beta_2, \beta_3, n]$.

Conclusion

- An algorithm for determining contraction ideals
- An algorithm for computing completely desingularized operators
- Certify integer sequences and check special cases of Krattenthaler's conjecture.

Conclusion

- An algorithm for determining contraction ideals
- An algorithm for computing completely desingularized operators
- Certify integer sequences and check special cases of Krattenthaler's conjecture.

Remark: Using Tsai's bound, Algorithm 1 can determine contraction of a differential operator.

Conclusion

- An algorithm for determining contraction ideals
- An algorithm for computing completely desingularized operators
- Certify integer sequences and check special cases of Krattenthaler's conjecture.

Remark: Using Tsai's bound, Algorithm 1 can determine contraction of a differential operator.

Thanks!