Contraction of Linear Differential and Difference Operators

Yi Zhang

Institute for Algebra, Johannes Kepler University, Austria
KLMM, Chinese Academy of Sciences, China

Krattenthaler's conjecture

Call $\left(c_{n}\right)_{n \geq 0}$ a P-recursive sequence over \mathbb{Z} if

$$
\ell_{r} c_{n}=\ell_{r-1} c_{n-1}+\cdots+\ell_{0} c_{n-r}
$$

where $\ell_{i} \in \mathbb{Z}[n], \quad \ell_{r} \neq 0$.
Conjecture: Let $\left(a_{n}\right)_{\geq 0}$ and $\left(b_{n}\right)_{\geq 0}$ be two P-recursive sequences over \mathbb{Z} with leading coeff n. Show that $\left(n!a_{n} b_{n}\right)_{\geq 0}$ is also a P-recursive sequence over \mathbb{Z} with leading coeff n.

Example for Krattenthaler's conjecture

Consider:

$$
\begin{aligned}
& n a_{n}=(31 n-6) a_{n-1}+(49 n-110) a_{n-2}+(9 n-225) a_{n-3} \\
& n b_{n}=(4 n+13) b_{n-1}+(69 n-122) b_{n-2}+(36 n-67) b_{n-3}
\end{aligned}
$$

$c_{n}:=n!a_{n} b_{n}$ satisfies

$$
\alpha(n) n c_{n}=(\cdots) c_{n-1}+\ldots+(\cdots) c_{n-9}
$$

where $\alpha(n) \in \mathbb{Z}[n], \operatorname{deg}_{n}(\alpha)=20$.

Example for Krattenthaler's conjecture

Consider:

$$
\begin{aligned}
& n a_{n}=(31 n-6) a_{n-1}+(49 n-110) a_{n-2}+(9 n-225) a_{n-3} \\
& n b_{n}=(4 n+13) b_{n-1}+(69 n-122) b_{n-2}+(36 n-67) b_{n-3}
\end{aligned}
$$

$c_{n}:=n!a_{n} b_{n}$ satisfies

$$
\alpha(n) n c_{n}=(\cdots) c_{n-1}+\ldots+(\cdots) c_{n-9}
$$

where $\alpha(n) \in \mathbb{Z}[n], \operatorname{deg}_{n}(\alpha)=20$.
Known algorithms:

$$
\beta n c_{n}=(\cdots) c_{n-1}+\ldots+(\cdots) c_{n-10}
$$

where β is a 853 -digit integer.

Example for Krattenthaler's conjecture

Consider:

$$
\begin{aligned}
& n a_{n}=(31 n-6) a_{n-1}+(49 n-110) a_{n-2}+(9 n-225) a_{n-3} \\
& n b_{n}=(4 n+13) b_{n-1}+(69 n-122) b_{n-2}+(36 n-67) b_{n-3}
\end{aligned}
$$

$c_{n}:=n!a_{n} b_{n}$ satisfies

$$
\alpha(n) n c_{n}=(\cdots) c_{n-1}+\ldots+(\cdots) c_{n-9}
$$

where $\alpha(n) \in \mathbb{Z}[n], \operatorname{deg}_{n}(\alpha)=20$.
Known algorithms:

$$
\beta n c_{n}=(\cdots) c_{n-1}+\ldots+(\cdots) c_{n-10}
$$

where β is a 853 -digit integer.
Our algorithm:

$$
1 n c_{n}=(\cdots) c_{n-1}+\ldots+(\cdots) c_{n-14}
$$

Ore algebra (shift case)

$$
\begin{array}{cc}
\mathbb{Z}[n][\partial] & \subset \mathbb{Q}(n)[\partial] \\
\text { small ring } & \\
\text { big ring }
\end{array}
$$

Assume $L=\ell_{r} \partial^{r}+\cdots+\ell_{1} \partial+\ell_{0} \in \mathbb{Z}[n][\partial]$. Then

$$
L \circ f(n)=\ell_{r} f(n+r)+\cdots+\ell_{1} f(n+1)+\ell_{0} f(n)
$$

- Call L an annihilator of f if $L \circ f=0$.
- Call $\operatorname{deg}_{\partial}(L):=r$ the order of $L, \operatorname{|c}_{\partial}(L):=\ell_{r}$ the leading coeff
- Let $T \in \mathbb{Z}[n][\partial]$. Call T a left multiple of L if $T=P L$, where $P \in \mathbb{Q}(n)[\partial]$.

Certifying integer sequences

Example 1 Consider an annihilator of $u(n)$:

$$
L=(1+16 n)^{2} \partial^{2}-(224+512 n) \partial-(1+n)(17+16 n)^{2}
$$

Question: Assume $u(0), u(1) \in \mathbb{Z}$, whether or not $u(n) \in \mathbb{Z}$ for each $n \in \mathbb{N}$?

Certifying integer sequences

Example 1 Consider an annihilator of $u(n)$:

$$
L=(1+16 n)^{2} \partial^{2}-(224+512 n) \partial-(1+n)(17+16 n)^{2}
$$

Question: Assume $u(0), u(1) \in \mathbb{Z}$, whether or not $u(n) \in \mathbb{Z}$ for each $n \in \mathbb{N}$?
(Abramov, Barkatou, van Hoeij, 2006):

$$
T:=(\ldots) L=64 \partial^{3}+\text { lower terms } \in \mathbb{Z}[n][\partial]
$$

Certifying integer sequences

Example 1 Consider an annihilator of $u(n)$:

$$
L=(1+16 n)^{2} \partial^{2}-(224+512 n) \partial-(1+n)(17+16 n)^{2}
$$

Question: Assume $u(0), u(1) \in \mathbb{Z}$, whether or not $u(n) \in \mathbb{Z}$ for each $n \in \mathbb{N}$?
(Abramov, Barkatou, van Hoeij, 2006):

$$
T:=(\ldots) L=64 \partial^{3}+\text { lower terms } \in \mathbb{Z}[n][\partial]
$$

Our algorithm:

$$
\widetilde{T}:=1 \partial^{3}+\text { lower terms } \in \mathbb{Z}[n][\partial]
$$

Answer: Yes, $u(n)$ is an integer sequence.

Desingularization

Given $L \in \mathbb{Z}[n][\partial], p \mid \operatorname{lc}_{\partial}(L)$.
Let $T \in \mathbb{Z}[n][\partial]$ with $\operatorname{lc}_{\partial}(T)=a \cdot g, a \in \mathbb{Z}, g$ primitive.
Call T a p-removed operator of L if
T is a left multiple of L

- $g \left\lvert\, \frac{1}{p} \operatorname{lc}_{\partial}(L)\right.$

Desingularization

Given $L \in \mathbb{Z}[n][\partial], p \mid \operatorname{lc}_{\partial}(L)$.
Let $T \in \mathbb{Z}[n][\partial]$ with $\mathrm{lc}_{\partial}(T)=a \cdot g, a \in \mathbb{Z}, g$ primitive.
Call T a p-removed operator of L if

- T is a left multiple of L
- $g \left\lvert\, \frac{1}{p} \operatorname{lc}_{\partial}(L)\right.$

Note: a is called the content of $\mathrm{lc}_{\partial}(T)$, denoted as $c(T)$.

Desingularization

Let T be a p-removing operator.

- Call T a desingularized operator of L if

$$
\operatorname{deg}\left(\operatorname{lc}_{\partial}(T)\right)=\min \left\{\operatorname{deg}\left(\operatorname{lc}_{\partial}(Q)\right) \mid Q \text { is a p-removed operator }\right\}
$$

Desingularization

Let T be a p-removing operator.

- Call T a desingularized operator of L if

$$
\operatorname{deg}\left(\operatorname{lc}_{\partial}(T)\right)=\min \left\{\operatorname{deg}\left(\mathrm{lc}_{\partial}(Q)\right) \mid Q \text { is a p-removed operator }\right\}
$$

- If T is a desingularized operator and

$$
\mathrm{c}(T)=\min \{\mathrm{c}(Q) \mid Q \text { is a desingularized operator }\}
$$

call T a completely desingularized operator of L.

Desingularization

Example 1 (continued) Consider:

$$
L=(1+16 n)^{2} \partial^{2}-(224+512 n) \partial-(1+n)(17+16 n)^{2}
$$

(Abramov et al. 2006):

$$
T=(\ldots) L=64 \partial^{3}+\text { lower terms } \in \mathbb{Z}[n][\partial]
$$

Our algorithm:

$$
\widetilde{T}=1 \partial^{3}+\text { lower terms } \in \mathbb{Z}[n][\partial]
$$

T and \widetilde{T} are desingularized and completely desingularized operators, resp.

Contraction

Given $L \in \mathbb{Z}[n][\partial]$, let $\langle L\rangle:=\mathbb{Q}(n)[\partial] L$.
The contraction ideal of $\langle L\rangle$ is

$$
\operatorname{Cont}(L):=\langle L\rangle \cap \mathbb{Z}[n][\partial]
$$

Contraction

Given $L \in \mathbb{Z}[n][\partial]$, let $\langle L\rangle:=\mathbb{Q}(n)[\partial] L$.
The contraction ideal of $\langle L\rangle$ is

$$
\operatorname{Cont}(L):=\langle L\rangle \cap \mathbb{Z}[n][\partial]
$$

- Cont (L) is finitely generated.
- Every desingularized operator of L belongs to Cont (L).
- Cont (L) contains $\mathbb{Z}[n][\partial] L$, but in general more operators.

Contraction

Goal: compute a $\mathbb{Z}[n][\partial]$-basis of $\operatorname{Cont}(L)$.

Contraction

Goal: compute a $\mathbb{Z}[n][\partial]$-basis of $\operatorname{Cont}(L)$.

Example 1 (continued) Consider:

$$
L=(1+16 n)^{2} \partial^{2}-(224+512 n) \partial-(1+n)(17+16 n)^{2}
$$

$\operatorname{Cont}(L)$ is generated by $\{L, \widetilde{T}\}$.

Desingularization and contraction

Let $L \in \mathbb{Z}[n][\partial]$ with $\operatorname{deg}_{\partial}(L)=r$.
Set $k \geq r$. Call

$$
M_{k}:=\left\{T \mid T \in \operatorname{Cont}(L), \operatorname{deg}_{\partial}(T) \leq k\right\}
$$ the k-th submodule of $\operatorname{Cont}(L)$.

Desingularization and contraction

Let $L \in \mathbb{Z}[n][\partial]$ with $\operatorname{deg}_{\partial}(L)=r$.
Set $k \geq r$. Call

$$
M_{k}:=\left\{T \mid T \in \operatorname{Cont}(L), \operatorname{deg}_{\partial}(T) \leq k\right\}
$$

the k-th submodule of $\operatorname{Cont}(L)$.
Theorem 1 (Main Result 1) Let T be a desingularized operator of L. If $k=\operatorname{deg}_{\partial}(T)$, then

$$
\operatorname{Cont}(L)=\left(\mathbb{Z}[x][\partial] \cdot M_{k}\right): c(T)^{\infty}
$$

Order bound for desingularized operators

Let $L \in \mathbb{Z}[n][\partial]$.
Assume $p \mid \operatorname{lc}_{\partial}(L), p$ is irreducible.

- If p is removable, then one can compute an integer k, s.t. there exists a p-removing operator of order k.
- Using Euclidean algorithm, one can compute an order bound for desingularized operators.

Chen, Jaroschek, Kauers, Singer. Desingularization explains order-degree curves for Ore operators. ISSAC 2013.

Determining the k-th submodule

Given $L \in \mathbb{Z}[n][\partial], \operatorname{deg}_{\partial}(L)=r$.
Question: Given $k \geq r$, compute a $\mathbb{Z}[n]$-spanning set of M_{k} ?

Determining the k-th submodule

Given $L \in \mathbb{Z}[n][\partial], \operatorname{deg}_{\partial}(L)=r$.
Question: Given $k \geq r$, compute a $\mathbb{Z}[n]$-spanning set of M_{k} ?

1. Make an ansatz: $F=z_{k} \partial^{k}+\ldots+z_{0}$, where $z_{k}, \ldots, z_{0} \in \mathbb{Z}[n]$ are to be determined.
2. Compute $\operatorname{rrem}(F, L)=0$. It gives:

$$
\begin{equation*}
\left(z_{k}, \ldots, z_{0}\right) A=\mathbf{0} \tag{1}
\end{equation*}
$$

where $A \in \mathbb{Z}[n]^{(k+1) \times r}$.
3. Using Gröbner bases, solve (1).

Computing desingularized operators

Let $L \in \mathbb{Z}[n][\partial], \operatorname{deg}_{\partial}(L)=r$.
Question: Assume k is an order bound for desingularized operators, compute a desingularized operator?

Computing desingularized operators

Let $L \in \mathbb{Z}[n][\partial], \operatorname{deg}_{\partial}(L)=r$.
Question: Assume k is an order bound for desingularized operators, compute a desingularized operator?

Set $k \geq r$. Call

$$
I_{k}:=\left\{\left[\partial^{k}\right] P \mid P \in M_{k}\right\} \cup\{0\}
$$

the k-th coefficient ideal of $\operatorname{Cont}(L)$, where $\left[\partial^{k}\right] P$ is the coefficient of ∂^{k} in P.

Computing desingularized operators

Proposition If $\left\{B_{1}, \ldots, B_{t}\right\}$ is a spanning set of M_{k}, then

$$
I_{k}=\left\langle\left[\partial^{k}\right] B_{1}, \ldots,\left[\partial^{k}\right] B_{t}\right\rangle
$$

Computing desingularized operators

Proposition If $\left\{B_{1}, \ldots, B_{t}\right\}$ is a spanning set of M_{k}, then

$$
I_{k}=\left\langle\left[\partial^{k}\right] B_{1}, \ldots,\left[\partial^{k}\right] B_{t}\right\rangle
$$

Theorem 3 If s is a nonzero element of I_{k} with minimal degree, then S in M_{k} with $\mathrm{lc}_{\partial}(S)=s$ is a desingularized operator.

Computing desingularized operators

Proposition If $\left\{B_{1}, \ldots, B_{t}\right\}$ is a spanning set of M_{k}, then

$$
I_{k}=\left\langle\left[\partial^{k}\right] B_{1}, \ldots,\left[\partial^{k}\right] B_{t}\right\rangle
$$

Theorem 3 If s is a nonzero element of I_{k} with minimal degree, then S in M_{k} with $\mathrm{lc}_{\partial}(S)=s$ is a desingularized operator.

Note: Using Euclidean algorithm over $\mathbb{Q}[n]$, one can compute an operator S with $\mathrm{lc}_{\partial}(S)=s$.

Determining contraction ideals

Algorithm 1: Given $L \in \mathbb{Z}[n][\partial]$, compute a basis of $\operatorname{Cont}(L)$.

1. Compute an order bound k for desingularized operators.
2. Compute a spanning set of M_{k}.
3. Compute a desingularized operator T of order k.
4. Using Gröbner bases, compute a basis of

$$
\left(\mathbb{Z}[n][\partial] \cdot M_{k}\right): c(T)^{\infty} .
$$

Determining contraction ideals

Example 1 (continued) Consider:

$$
L=(1+16 n)^{2} \partial^{2}-(224+512 n) \partial-(1+n)(17+16 n)^{2}
$$

1. An order bound for desingularized operator is 3 .
2. M_{3} is generated by $\{L, \widetilde{T}\}$.
3. Since $\operatorname{lc}_{\partial}(\widetilde{T})=1, \widetilde{T}$ is a desingularized operator.
4. $\operatorname{Cont}(L)=(\mathbb{Z}[n][\partial] \cdot\{L, \widetilde{T}\}): 1^{\infty}=\mathbb{Z}[n][\partial] \cdot\{L, \widetilde{T}\}$.

Computing completely desingularized operators

Given $L \in \mathbb{Z}[n][\partial]$, $\operatorname{deg}_{\partial}(L)=r$.
Recall: Let T be a desingularized operator.
Call T a completely desingularized operator of L if

$$
\mathrm{c}(T)=\min \{\mathrm{c}(Q) \mid Q \text { is a desingularized operator }\}
$$

Computing completely desingularized operators

Given $L \in \mathbb{Z}[n][\partial]$, $\operatorname{deg}_{\partial}(L)=r$.
Recall: Let T be a desingularized operator.
Call T a completely desingularized operator of L if

$$
\mathrm{c}(T)=\min \{\mathrm{c}(Q) \mid Q \text { is a desingularized operator }\}
$$

Question: compute a completely desingularized operator of L ?

Main result 2

Theorem 4 Assume $\operatorname{Cont}(L)=\mathbb{Z}[n][\partial] \cdot M_{k}$ and \mathbf{G} is a Gröbner basis of I_{k}. Let f be the element of \mathbf{G} with minimal degree. If $F \in \operatorname{Cont}(L)$ with $\mathrm{Ic}_{\partial}(F)=f$, then F is a completely desingularized operator of L.

Main result 2

Theorem 4 Assume $\operatorname{Cont}(L)=\mathbb{Z}[n][\partial] \cdot M_{k}$ and \mathbf{G} is a Gröbner basis of I_{k}. Let f be the element of \mathbf{G} with minimal degree. If $F \in \operatorname{Cont}(L)$ with $\mathrm{lc}_{\partial}(F)=f$, then F is a completely desingularized operator of L.

Algorithm 2: Given $L \in \mathbb{Z}[n][\partial]$, compute a completely desingularized operator of L.

1. By Algorithm $1, \operatorname{Cont}(L)=\mathbb{Z}[n][\partial] \cdot M_{k}$.
2. Compute a Gröbner basis \mathbf{G} of I_{k}.
3. Let f be the element of \mathbf{G} with minimal degree. Tracing back to step 2 , find $F \in \operatorname{Cont}(L)$ with $\operatorname{lc}_{\partial}(F)=f$.

Example 2

Consider:

$$
\begin{aligned}
& n a_{n}=(31 n-6) a_{n-1}+(49 n-110) a_{n-2}+(9 n-225) a_{n-3} \\
& n b_{n}=(4 n+13) b_{n-1}+(69 n-122) b_{n-2}+(36 n-67) b_{n-3}
\end{aligned}
$$

$c_{n}:=n!a_{n} b_{n}$ has an annihilator L of order 9 with $\mathrm{Ic}_{\partial}(L)=(n+9) \alpha(n), \alpha(n) \in \mathbb{Z}[n]$.

Example 2

Consider:

$$
\begin{aligned}
& n a_{n}=(31 n-6) a_{n-1}+(49 n-110) a_{n-2}+(9 n-225) a_{n-3} \\
& n b_{n}=(4 n+13) b_{n-1}+(69 n-122) b_{n-2}+(36 n-67) b_{n-3}
\end{aligned}
$$

$c_{n}:=n!a_{n} b_{n}$ has an annihilator L of order 9 with $\mathrm{Ic}_{\partial}(L)=(n+9) \alpha(n), \alpha(n) \in \mathbb{Z}[n]$.

1. By Algorithm 1, Cont $(L)=\mathbb{Z}[n][\partial] \cdot M_{14}$
2. $I_{14}=\langle n+14\rangle$
3. Find a completely desingularized operator T of L, $\mid \mathrm{lc}_{\partial}(T)=n+14$

Example 2

Consider:

$$
\begin{aligned}
& n a_{n}=(31 n-6) a_{n-1}+(49 n-110) a_{n-2}+(9 n-225) a_{n-3} \\
& n b_{n}=(4 n+13) b_{n-1}+(69 n-122) b_{n-2}+(36 n-67) b_{n-3}
\end{aligned}
$$

$c_{n}:=n!a_{n} b_{n}$ has an annihilator L of order 9 with $\mathrm{Ic}_{\partial}(L)=(n+9) \alpha(n), \alpha(n) \in \mathbb{Z}[n]$.

1. By Algorithm 1, Cont $(L)=\mathbb{Z}[n][\partial] \cdot M_{14}$
2. $I_{14}=\langle n+14\rangle$
3. Find a completely desingularized operator T of L, $\mid \mathrm{Ic}_{\partial}(T)=n+14$

Translating T into a recurrence equation of c_{n}

$$
1 n c_{n}=(\cdots) c_{n-1}+\ldots+(\cdots) c_{n-14}
$$

Krattenthaler's conjecture

Let $\left(a_{n}\right)_{\geq 0}$ and $\left(b_{n}\right)_{\geq 0}$ be two P-recursive sequences over \mathbb{Z} with leading coeff n.
Set $L \in \mathbb{Z}[n][\partial]$ to be an annihilator of $n!a_{n} b_{n}$, and T to be a completely desingularized operator.

Krattenthaler's conjecture

Let $\left(a_{n}\right)_{\geq 0}$ and $\left(b_{n}\right)_{\geq 0}$ be two P-recursive sequences over \mathbb{Z} with leading coeff n.
Set $L \in \mathbb{Z}[n][\partial]$ to be an annihilator of $n!a_{n} b_{n}$, and T to be a completely desingularized operator.

Then
Krattenthaler's conjecture holds

$$
\begin{gathered}
\hat{\Downarrow} \\
\operatorname{lc}_{\partial}(T)=n+\operatorname{deg}_{\partial}(T)
\end{gathered}
$$

Case 1

Consider:

$$
\begin{aligned}
n a_{n} & =\alpha a_{n-1} \\
n b_{n} & =\beta_{1} b_{n-1}+\ldots+\beta_{t} b_{n-t}
\end{aligned}
$$

with $\alpha, \beta_{i} \in \mathbb{Z}[n]$. Then $c_{n}:=n!a_{n} b_{n}$ satisfies

$$
n c_{n}=\gamma_{1} c_{n-1}+\ldots+\gamma_{t} c_{n-t}
$$

where $\gamma_{i}:=\beta_{i} \prod_{j=0}^{i-1} \alpha(n-j)$.

Case 2

Consider:

$$
\begin{aligned}
n a_{n} & =\alpha_{1} a_{n-1}+\alpha_{2} a_{n-2} \\
n b_{n} & =\beta_{1} b_{n-1}+\beta_{2} b_{n-2}+\beta_{3} b_{n-3}
\end{aligned}
$$

where α_{i}, β_{j} are indeterminates. Then $c_{n}:=n!a_{n} b_{n}$ satisfies

$$
n c_{n}=\gamma_{1} c_{n-1}+\ldots+\gamma_{9} c_{n-9}
$$

with $\gamma_{i} \in \mathbb{Z}\left[\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}, \beta_{3}, n\right]$.

Conclusion

- An algorithm for determining contraction ideals
- An algorithm for computing completely desingularized operators
- Certify integer sequences and check special cases of Krattenthaler's conjecture.

Conclusion

- An algorithm for determining contraction ideals
- An algorithm for computing completely desingularized operators
- Certify integer sequences and check special cases of Krattenthaler's conjecture.

[^0]
Conclusion

- An algorithm for determining contraction ideals
- An algorithm for computing completely desingularized operators
- Certify integer sequences and check special cases of Krattenthaler's conjecture.

Remark: Using Tsai's bound, Algorithm 1 can determine contraction of a differential operator.

> Thanks!

[^0]: Remark: Using Tsai's bound, Algorithm 1 can determine contraction of a differential operator.

