Computations of the Expected Euler Characteristic for the Largest Eigenvalue of a Real non-central Wishart Matrix

Nobuki Takayama ${ }^{*}$ Lin Jiu ${ }^{\dagger}$ Satoshi Kuriki \ddagger Yi Zhang ${ }^{\S}$

March 27, 2020

Abstract

We give an approximate formula of the distribution of the largest eigenvalue of real Wishart matrices by the expected Euler characteristic method for the general dimension. The formula is expressed in terms of a definite integral with parameters. We derive a differential equation satisfied by the integral for the 2×2 matrix case and perform a numerical analysis of it.

1 Introduction

For $i=1, \ldots, n$, let $\xi_{i} \in \mathbb{R}^{m \times 1}$ be independently distributed as the m-dimensional (real) Gaussian distribution $N_{m}\left(\mu_{i}, \Sigma\right)$, where μ_{i} and Σ are the mean vector and the covariance matrix of ξ_{i}, respectively. The (real) Wishart distribution $W_{m}(n, \Sigma ; \Omega)$ is the probability measure on the cone of $m \times m$ positive semi-definite matrices induced by the random matrix

$$
W=\Xi \Xi^{\top}, \quad \Xi=\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathbb{R}^{m \times n}
$$

Here, $\Omega=\Sigma^{-1} \sum_{i=1}^{n} \mu_{i} \mu_{i}^{\top}$ is a parameter matrix. Unless Ω vanishes, the corresponding distribution is referred to be the non-central (real) Wishart distribution.

The largest eigenvalue $\lambda_{1}(W)$ of W is used as a test statistic for testing $\Sigma=I_{m}$ and/or $\Omega \neq 0$ under the assumption that $\Sigma-I_{m}$ is positive semi-definite. This test statistic is expected to have a good power when the matrices $\Sigma-I_{m}$ and Ω are of low rank.

In the setting of testing hypotheses, the distribution of $\lambda_{1}(W)$ is of particular interest; It corresponds to the power of the test. When $\Omega=0$, the celebrated works by A. T. James and

[^0]other authors show (see e.g., the book by Muirhead [26]) that the cumulative distribution function of $\lambda_{1}(W)$ can be written as a hypergeometric function of matrix arguments:
$$
\operatorname{Pr}\left(\lambda_{1}(W)<x\right)=c_{m, n} \operatorname{det}\left(\frac{1}{2} n x \Sigma^{-1}\right)^{n / 2}{ }_{1} F_{1}\left(\frac{1}{n} ; \frac{1}{2}(n+m+1) ;-\frac{1}{2} n x \Sigma^{-1}\right),
$$
where $c_{m, n}$ is a known constant [26, Corollary 9.7.2]. It is well-known that the hypergeometric function ${ }_{1} F_{1}$ has a series expression in the zonal polynomial C_{κ} with index κ, which is a partition of an integer. However, in view of numerical calculation, this is less useful because the explicit form of $C_{\kappa}(X)$ is not known unless the rank of matrix X is 1 or 2 . On account of this difficulty, Hashiguchi et al. [9] recently proposed a holonomic gradient method (HGM) for numerical evaluation, which utilizes a holonomic system of differential equations for computation. However, when $\Omega \neq 0$, the situation is getting worse. The cumulative distribution function $\operatorname{Pr}\left(\lambda_{1}(W)<x\right)$ can not be expressed as a simple series of the zonal polynomials. Hayakawa [10, Corollary 10] provides a formula for the cumulative distribution function as a series expansion in the Hermite polynomial H_{κ} with symmetric matrix argument defined by the Laplace transform of C_{κ} :
$$
\operatorname{etr}\left(-T T^{\top}\right) H_{\kappa}(T)=\frac{(-1)^{|\kappa|}}{\pi^{m n / 2}} \int \operatorname{etr}\left(-2 i T U^{\top}\right) \operatorname{etr}\left(-U U^{\top}\right) C_{\kappa}\left(U U^{\top}\right) d U, \quad T, U \in \mathbb{R}^{m \times n}
$$

The Hermite polynomial H_{κ} can be written as a linear combination of the zonal polynomial C_{κ}, but the coefficients are not given explicitly [4]. Another approach is the use of invariant polynomials proposed by Davis [6, 7]. Using the probability density function of the noncentral Wishart distribution derived by James [14], the cumulative distribution function of $\lambda_{1}(W)$ is shown to be proportional to

$$
\int_{0<W<x I_{m}}|W|^{(n-m+1) / 2-1} \operatorname{etr}\left(-\frac{1}{2}\left(\Sigma^{-1} W+\Omega\right)\right)_{0} F_{1}\left(n / 2 ; \Omega \Sigma^{-1} W / 4\right) d W .
$$

Díaz-Garí and Gutiérrez-Jáimez [8] show that this has a series expansion in terms of invariant polynomials. Here, the invariant polynomial is a polynomial in two matrices indexed by two partitions. Although, in principle, the invariant polynomial can expressed in terms of zonal polynomials in two matrices, it is hard to utilize this expression for numerical calculation.

In this paper, instead of the direct calculation approach, we will approximate the distribution function by means of the expected Euler characteristic heuristic or the Euler characteristic method proposed in 2000's by Adler and Tayler [1] or by Kuriki and Takemura [21]. This is a methodology to approximate the tail upper probability of a random field. In our problem, since the square root of the largest eigenvalue $\lambda_{1}(W)^{1 / 2}$ is the maximum of a Gaussian field

$$
\left\{u^{\top} \Xi v \mid\|u\|_{\mathbb{R}^{m}}=\|v\|_{\mathbb{R}^{n}}=1\right\},
$$

this method actually works for our purpose ([19], [20]). One can show that the Eulercharacteristics method evaluates the quantity

$$
\operatorname{Pr}\left(\lambda_{1}(W) \geq x\right)-\operatorname{Pr}\left(\lambda_{2}(W) \geq x\right)+\cdots+(-1)^{m-1} \operatorname{Pr}\left(\lambda_{m}(W) \geq x\right)
$$

rather than $\operatorname{Pr}\left(\lambda_{1}(W) \geq x\right)$. Nevertheless, this formula approximates $\operatorname{Pr}\left(\lambda_{1}(W) \geq x\right)$ well when x is large because $\operatorname{Pr}\left(\lambda_{i}(W) \geq x\right)(i \geq 2)$ are negligible when x is large. This is
practically sufficient for our purpose since only the upper tail probability is required in testing hypothesis.

In this paper, we deal with the non-central real Wishart matrix. In the multiple-input multiple-output (MIMO) problem, the non-central complex Wishart matrix also plays an important role. The largest eigenvalue of the non-central complex Wishart is much easier to handle in that case because the explicit formula for the cumulative distribution is given by Kang and Alouini [16. The HGM based on Kang and Alouini's formula has been proposed in 5 .

The organization of the paper is as follows. In Section 2, we give an integral representation formula of the expectation of the Euler characteristic for random matrices of a general size. In Section 3, we restrict to the case of 2×2 random matrices and study the integral representation derived in Section 2 with the polar coordinate system and investigate it from numerical point of view. By virtue of the theory of holonomic systems (e.g., [11]), the integral representation given in Section 2 satisfies a holonomic system of linear differential equations. However, its explicit form is not known in general. In Section 4 , we come back to the case of 2×2 random matrices. We derive a differential equation satisfied by the integral representation of the expectation of the Euler characteristic with a help of computer algebra algorithms, systems and perform a numerical analysis of the differential equation. This gives a new efficient method to numerically evaluate the Euler expectation when the numerical integration is hard to perform. Last but not least, in the appendix, we give a closed formula of the expectation of the Euler characteristic for random matrices of a general size for the central and scalar covariance case. The formula is expressed in terms of the Laguerre polynomial.

2 Expectation of an Euler characteristic number

Let $A=\left(a_{i j}\right)$ be a real $m \times n$ matrix valued random variable (random matrix) with the density

$$
p(A) d A, \quad d A=\prod d a_{i j} .
$$

We assume that $p(A)$ is smooth and $n \geq m \geq 2$. Define a manifold

$$
M=\left\{h g^{T} \mid g \in S^{m-1}, h \in S^{n-1}\right\} \simeq S^{m-1} \times S^{n-1} / \sim
$$

where $(h, g) \sim(-h,-g), h$ and g are column vectors, and $h g^{T}$ is a rank $1 m \times n$ matrix. Set

$$
f(U)=\operatorname{tr}(U A)=g^{T} A h, \quad U \in M
$$

and

$$
M_{x}=\left\{h g^{T} \in M \mid f(U)=g^{T} A h \geq x\right\} .
$$

Proposition 1. Let A be a random matrix as above. Then the following claims are equivalent.

1. The function $f(U)$ has a critical point at $U=h g^{T}$;
2. The vectors g^{T}, h are left and right eigenvectors of A, respectively. In other words, there exists a constant c such that $g^{T} A=c h^{T}, A h=c g$.

Moreover, the function f takes the value c at the critical point (g, h).
Proof. We assume that $g \in S^{n-1}$ and $h \in S^{m-1}$ are expressed by local coordinates u_{i} and v_{a}, respectively, where $1 \leq i \leq m-1$ and $1 \leq a \leq n-1$. We denote $\partial / \partial u_{i}$ by ∂_{i} and $\partial / \partial v_{a}$ by ∂_{a}. Since $g^{T} g=1$, we have $g_{i}^{T} g=0$, where $g_{i}=\partial_{i} \bullet g$. We will omit \bullet, which means the action, as long as no confusion arises. Analogously, we have $h_{a}^{T} h_{a}=0$, where $h_{a}=\partial_{a} h$.

Assume that A is a $m \times n$ (random real) matrix. Let us consider the function $f(U)$ expressed by the local coordinate $(g(u), h(v))$

$$
\begin{equation*}
f(g, h)=g^{T} A h, \quad g \in S^{n-1}, \quad h \in S^{m-1} . \tag{1}
\end{equation*}
$$

At the critical point of f, we have

$$
\partial_{i} f=g_{i} A h=0, \quad \partial_{a} f=g A h_{a}=0 .
$$

Since the above equality holds for each i and u is a local coordinate of S^{n-1}, it implies that g_{i} 's are linearly independent. Therefore, there exists a constant c such that $A h=c g$ at the critical point. Analogously, we can see that there exists a constant d such that $A^{T} g=d h$. Let us show $c=d$. We have

$$
\left(g^{T} A\right) h=\left(d h^{T}\right) h=d\left(h^{T} h\right)=d
$$

and

$$
g^{T}(A h)=g^{T}(c g)=c\left(g^{T} g\right)=c .
$$

Therefore, we have $d=c=f(g, h)$ at the critical point.
Conversely, $A h=c g$ and $A^{T} g=d h$ at a point (u, v) imply that $(g(u), h(v))$ is a critical point of $f(g(u), h(v))$.

We take a continuous family of elements of $S O(m)$ parametrized by the first column vector g. In other words, we take a continuous family of orthogonal frames of \mathbb{R}^{m} parametrized by $g \in S^{m-1}$. The element of $S O(m)$ is denoted by $(g, G) \in O(m)$, where G is an $m \times(m-1)$ matrix. Analogously, we take a family $(h, H) \in S O(n)$ parametrized by $h \in S^{n-1}$, where H is an $n \times(n-1)$ matrix parametrized by h. Set

$$
\begin{equation*}
\sigma=g^{T} A h, B=G^{T}(g) A H(h) . \tag{2}
\end{equation*}
$$

Then the matrix A can be expressed as

$$
\begin{equation*}
A=\sigma g h^{T}+G(g) B H(h)^{T}, \tag{3}
\end{equation*}
$$

which is, intuitively speaking, a partial singular value decomposition. We denote the set of the $(m-1) \times(n-1)$ matrices by $M(m-1, n-1)$.

This decomposition above gives coordinate systems for the space of random matrices A 's. Let us introduce them in details. Without loss of generality, we assume that $m \leq n$. We sort the singular values of B by descending order. We denote by $\lambda_{j}(B)$ the j-th singular value of the matrix B. For a real number σ, we define
$\mathcal{B}(i, \sigma)=\{B \in M(m-1, n-1) \mid$ all the singular values of B are different and non-zero. $\lambda_{j}(B)>\sigma$ for all $j<i, \lambda_{j}(B) \leq \sigma$ for all $\left.j \geq i\right\}$.

Set

$$
\mathcal{A}=\{A \in M(m, n) \mid \text { all the singular values of } A \text { are different and non-zero }\},
$$

and

$$
\mathcal{A}_{i}=\left\{(\sigma, g, h, B) \mid \sigma \in \mathbb{R}_{>0},(g, h) \in S^{m-1} \times S^{n-1} / \sim, B \in \mathcal{B}(i, \sigma)\right\}
$$

For a matrix A in $\mathcal{A} \subset M(m, n)$, we sort the singular values of A by descending order

$$
\sigma^{(1)}>\sigma^{(2)}>\cdots>\sigma^{(m)}>0 .
$$

Let $g^{(i)}$ and $h^{(i)}$ be the left and right eigenvectors of A for $\sigma^{(i)}$, respectively. Since $g^{(i)}$ and $h^{(i)}$ are eigenvectors of $A A^{T}$ and $A^{T} A$ for the eigenvalue $\sigma^{(i)}$, respectively, it implies that $g^{(i)}$ and $h^{(i)}$ are uniquely determined modulo the multiplication by ± 1. Define a map φ_{i} from \mathcal{A} to \mathcal{A}_{i} by

$$
\begin{equation*}
\varphi_{i}(A)=\left(\sigma^{(i)}, g^{(i)}, h^{(i)}, G\left(g^{(i)}\right) A H^{T}\left(h^{(i)}\right)\right) \tag{4}
\end{equation*}
$$

Note that the matrix $G\left(g^{(i)}\right) A H^{T}\left(h^{(i)}\right)$ lies in $\mathcal{B}\left(i, \sigma^{(i)}\right)$ because the singular values of $B^{(i)}$ agree with those of A excluding $\sigma^{(i)}$.

Lemma 1. The map φ_{i} is smooth and isomorphic.
Proof. Define a map ψ from \mathcal{A}_{i} to \mathcal{A} by

$$
\psi(\sigma, g, h, B)=g \sigma h^{T}+G(g) B H(h)^{T} .
$$

By calculation, we see that $\varphi_{i} \circ \psi$ and $\psi \circ \varphi_{i}$ are identity maps. Then the map φ_{i} is one-to-one and surjective. Next, we show that the map ψ is smooth. Since we assume that all the singular values are different, the maps of taking i-th singular value of a given A and an eigenvector for the singular value are smooth on an open connected neighborhood $W \subset \mathcal{A}$ of A (by checking the Jacobian does not vanish). Then the inverse map is locally smooth. Hence, φ_{i} is smooth and isomorphism. //

We are interested in the Euler characteristic number of M_{x}.
Theorem 1. Suppose that $x>0$ and $f(U)$ is a Morse function for almost all A 's. We further assume that if a set is measure zero set with respect to the Lebesgue measure, then it is also a measure zero set with respect to the measure $p(A) d A$. Then the expectation of the Euler characteristic number $E\left[\chi\left(M_{x}\right)\right]$ is equal to

$$
\begin{equation*}
\frac{1}{2} \int_{x}^{\infty} \sigma^{n-m} d \sigma \int_{\mathbb{R}^{(m-1)(n-1)}} d B \int_{S^{m-1}} G^{T} d g \int_{S^{n-1}} H^{T} d h \operatorname{det}\left(\sigma^{2} I_{m-1}-B B^{T}\right) p(A) \tag{5}
\end{equation*}
$$

Here, we set $G^{T} d g=\wedge_{i=1}^{m-1} G_{i}^{T} d g, H^{T} d h=\wedge_{i=1}^{n-1} H_{i}^{T} d h$, where G_{i} and H_{i} are the i-th column vectors of G and H, respectively, $d g=\left(d g_{1}, \ldots, d g_{m}\right)^{T}$ and $d h=\left(d h_{1}, \ldots, d h_{n}\right)^{T}$.

Note that $G^{T} d g$ and $H^{T} d h$ are $O(m)$ and $O(n)$ invariant measures on S^{m-1} and S^{n-1}, respectively.

Proof. Without loss of generality, we assume that $m \leq n$. According to the Morse theory, if $f(U)$ is a Morse function, which is a smooth function without a degenerated critical point, then we have

$$
\begin{align*}
\chi\left(M_{x}\right) & =\sum_{\text {critical point }} \mathbf{1}(f(U) \geq x) \operatorname{sgn} \operatorname{det}\left(\begin{array}{cc}
-\partial_{i} \partial_{j} f & -\partial_{i} \partial_{a} f \\
-\partial_{a} \partial_{i} f & -\partial_{a} \partial_{b} f
\end{array}\right) \tag{6}\\
& =\sum_{\text {eigenvectors }} \mathbf{1}(\sigma \geq x) \operatorname{sgn} \operatorname{det}\left(\begin{array}{cc}
\sigma I_{m} & -G B H^{T} \\
-H B^{T} G^{T} & \sigma I_{n}
\end{array}\right) \tag{7}\\
& =\sum_{i=1}^{m} \mathbf{1}\left(\sigma^{(i)} \geq x\right) \operatorname{sgn} \sigma^{(i)^{n-m}} \sigma^{(i)^{2}} \operatorname{det}\left(\sigma^{(i)^{2}} I_{m-1}-B^{(i)} B^{(i)^{T}}\right), \tag{8}
\end{align*}
$$

where $\sigma^{(i)}$ is the i-th singular value of $A, g^{(i)}$ and $h^{(i)}$ are left and right eigenvectors, and $B^{(i)}=G^{T}\left(g^{(i)}\right) A H\left(h^{(i)}\right)$. The equality (6) is the Morse theorem for manifolds with boundaries. The equalities (6) and (7) can be shown as follows.

Firstly, we have the relation $g_{i}^{T} g=0$. By differentiating it with respect to u_{j}, we have $g_{i j}^{T} g+g_{i}^{T} g_{j}=0$. Let us evaluate $\partial_{i} \partial_{j} f$. By the expression $A=\sigma g h^{T}+G B H^{T}$, it is equal to

$$
\begin{aligned}
& \partial_{i} \partial_{j} f \\
= & g_{i j}^{T} A h \\
= & g_{i j}^{T} \sigma g h^{T} h+g_{i j}^{T} G B H^{T} h \\
= & -\sigma g_{i}^{T} g_{j} \quad \text { by } H^{T} h=0 .
\end{aligned}
$$

Next, we evaluate $\partial_{i} \partial_{a} f$.

$$
\begin{aligned}
& \partial_{i} \partial_{a} f \\
= & g_{i}^{T} A h_{a} \\
= & g_{i}^{T} g \sigma h^{T} h_{a}+g_{i}^{T} G B H^{T} h_{a} \\
= & g_{i}^{T} G B H^{T} h_{a} \text { by } g_{i}^{T} g=h^{T} h_{a}=0 .
\end{aligned}
$$

Thirdly, we evaluate $\partial_{a} \partial_{b} f$.

$$
\begin{aligned}
& \partial_{a} \partial_{b} f \\
= & g^{T} A h_{a b} \\
= & g^{T} g \sigma h^{T} h_{a b}+g^{T} G B H^{T} h_{a b} \\
= & -\sigma h_{a}^{T} h_{b} \text { by } g^{T} G=0 .
\end{aligned}
$$

Summarizing these calculation, we have that the Hessian is equal to

$$
\begin{aligned}
& \left(\begin{array}{cc}
-\partial_{i} \partial_{j} f & -\partial_{i} \partial_{a} f \\
-\partial_{i} \partial_{a} f & -\partial_{a} \partial_{b}
\end{array}\right) \\
= & \left(\begin{array}{cc}
\sigma g_{i}^{T} g_{j} & -g_{i}^{T} G B H^{T} h_{a} \\
-h_{a}^{T} H B^{T} G^{T} g_{i} & \sigma h_{a}^{T} h_{b}
\end{array}\right) \\
= & \left(\begin{array}{cc}
g_{1} \cdots g_{n-1} & 0 \\
0 & h_{1} \cdots h_{m-1}
\end{array}\right)^{T}\left(\begin{array}{cc}
\sigma I_{m} & -G B H^{T} \\
-H B^{T} G^{T} & \sigma I_{n}
\end{array}\right)\left(\begin{array}{cc}
g_{1} \cdots g_{n-1} & 0 \\
0 & h_{1} \cdots h_{m-1}
\end{array}\right) .
\end{aligned}
$$

Since $\operatorname{det}\left(P P^{T}\right)=\operatorname{det}(P)^{2}$, the sign of the determinant of the Hessian is equal to that of the middle of the above 3 matrices.

Let us show the equalities (7) and (8). We fix i and omit the superscript (i) in the following discussion. We consider the product of the following two matrices.

$$
\left(\begin{array}{cc}
\sigma I_{m} & -G B H^{T} \\
-H B^{T} G^{T} & \sigma I_{n}
\end{array}\right)\left(\begin{array}{cc}
\sigma I_{m} & 0 \\
H B^{T} G^{T} & \sigma^{-1} I_{n}
\end{array}\right)
$$

It is equal to

$$
\left(\begin{array}{cc}
\sigma^{2} I_{m}-G B B^{T} G^{T} & -\sigma^{-1} G B H^{T} \\
-\sigma H B^{T} G^{T}+\sigma H B^{T} G^{T} & I_{n}
\end{array}\right)
$$

Since the left-bottom block is $\mathbf{0}$, the determinant of this matrix is $\operatorname{det}\left(\sigma^{2} I_{m}-G B B^{T} G\right)$. Put $C=B B^{T}$ and $\tilde{G}=(g \mid G)$. We have

$$
\sigma^{2} I_{m}-G C G^{T}=\sigma^{2} I_{m}-\tilde{G}\left(\begin{array}{c|c}
0 & 0 \\
\hline 0 & C
\end{array}\right) \tilde{G}^{T}
$$

Since $\tilde{G} \tilde{G}^{T}=E$, the determinant of the matrix above is equal to $\sigma^{2} \operatorname{det}\left(\sigma^{2} I_{m-1}-C\right)$. In summary, we obtain equalities of (7) and (8).

Let us take the expectation of the Euler characteristic number. Exchanging the sum and the integral, we have

$$
\begin{aligned}
& E\left[\chi\left(M_{x}\right)\right] \\
= & \sum_{i=1}^{m} \int d A p(A) \mathbf{1}\left(\sigma^{(i)} \geq x\right) \operatorname{sgn} \sigma^{(i)^{n-m}} \sigma^{(i)^{2}} \operatorname{det}\left(\sigma^{(i)^{2}} I_{m-1}-B^{(i)} B^{(i)^{T}}\right) .
\end{aligned}
$$

To evaluate the expectation of the Euler characteristic number, we needs the Jacobian of (3). According to standard arguments in multivariate analysis (see, e.g., [28, (3.19)]), we have

$$
\begin{equation*}
d A=\left|\operatorname{det}\left(\sigma^{2} I_{m-1}-B B^{T}\right)\right| d \sigma G^{T} d g H^{T} d h d B \tag{9}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
=\frac{1}{2} \sum_{i=1}^{m} \int_{x}^{\infty} \sigma^{n-m} d \sigma \int_{B \in \mathcal{B}\left(i, \sigma^{(i)}\right)} d B \int_{S^{m-1}} G^{T} d g \int_{S^{n-1}} H^{T} d h \operatorname{det}\left(\sigma^{2} I_{m-1}-B B^{T}\right) p(A) . \tag{10}
\end{equation*}
$$

Note that the factor $1 / 2$ comes from the fact that the multiplicity $(g, h) \mapsto g h^{T}$ is 2 . Put $\mathcal{B}^{(i)}=\mathcal{B}\left(i, \sigma^{(i)}\right)$. For $i \neq j$, since $\mathcal{B}^{(i)} \cap \mathcal{B}^{(j)}$ and $\mathbb{R}^{(m-1)(n-1)} \backslash \sum_{i=1}^{m} \mathcal{B}^{(i)}$ are measure zero sets, we may sum up integral domains for B into one domain as

$$
\begin{aligned}
& \sum_{i=1}^{m} \int_{B \in \mathcal{B}\left(i, \sigma^{(i)}\right)} \operatorname{det}\left(\sigma^{2} I_{m-1}-B B^{T}\right) p(A) \\
= & \int_{B \in M(m-1, n-1)} \operatorname{det}\left(\sigma^{2} I_{m-1}-B B^{T}\right) p(A) .
\end{aligned}
$$

Thus, we derive the conclusion.

Note that the integral (5) does not depend on a choice of $G(g)$ nor $H(h)$. The reason is as follows. The column vectors of the matrix $G=G(g)$ have the length 1 and are orthogonal to the vector g. Let \tilde{G} be a matrix which has the same property. In other words, we assume $(g, \tilde{G}) \in S O(m)$. Then there exists an $(m-1) \times(m-1)$ orthogonal matrix P such that $\tilde{G}=G P$ and $|P|=1$ hold. Taking the exterior product of elements of $\tilde{G}^{T} d g=P G^{T} d g$, we have

$$
\wedge_{i=1}^{m} \tilde{g}_{i}^{T} d g=|P| \wedge_{i=1}^{m} g_{i}^{T} d g=\wedge_{i=1}^{m} g_{i}^{T} d g
$$

The case for H can be shown analogously.
One of the most important examples is that A is distributed as a Gaussian distribution $N_{m \times n}\left(M, \Sigma \otimes I_{n}\right)$. In this case, we have

$$
\begin{equation*}
p(A) d A=\frac{1}{(2 \pi)^{m n / 2} \operatorname{det}(\Sigma)^{n / 2}} \exp \left\{-\frac{1}{2} \operatorname{tr}(A-M)^{T} \Sigma^{-1}(A-M)\right\} d A \tag{11}
\end{equation*}
$$

Then the largest singular value of A is the square root of the largest eigenvalue of a noncentral Wishart matrix $W_{m}\left(n, \Sigma, \Sigma^{-1} M M^{T}\right)$. Substituting (3) and (11) into (5), we have

$$
\begin{align*}
& E\left[\chi\left(M_{x}\right)\right]=\frac{1}{2} \int_{x}^{\infty} \sigma^{n-m} d \sigma \int_{\mathbb{R}^{(m-1) \times(n-1)}} d B \int_{\mathbb{S}^{m-1}} G^{T} d g \int_{\mathbb{S}^{n-1}} H^{T} d h \operatorname{det}\left(\sigma^{2} I_{m-1}-B B^{T}\right) \\
& \times \frac{1}{(2 \pi)^{n m / 2} \operatorname{det}(\Sigma)^{n / 2}} \exp \left\{-\frac{1}{2} \operatorname{tr}\left(\sigma h g^{T}+H B^{T} G^{T}-M^{T}\right) \Sigma^{-1}\left(\sigma g h^{T}+G B H^{T}-M\right)\right\} \tag{12}
\end{align*}
$$

In this expression, number of parameters is $m(m+1) / 2+m n$, so it is over-parametrized. Note that

$$
A=\Sigma^{1 / 2} V+M, \quad V=\left(v_{i j}\right)_{m \times n}, \quad v_{i j} \sim N(0,1) \quad \text { i.i.d. }
$$

Let $\Sigma^{1 / 2}=P^{T} D P$ be a spectral decomposition, where $D=\operatorname{diag}\left(d_{i}\right)$. Then we have

$$
P A=D P V+P M
$$

Let $P M=N Q$ be a QR decomposition, where N is $m \times n$ lower triangle matrix with nonnegative diagonal elements and $Q \in O(n)$. Then $P A Q^{T}=D V+N$. Since the largest eigenvalues of A and $P A Q^{T}$ are the same, we can assume that Σ is a diagonal matrix, and M is a lower triangle with nonnegative diagonal elements without loss of generality. That is,

$$
\Sigma^{-1}=\left(\begin{array}{ccc}
s_{1} & & 0 \tag{13}\\
& \ddots & \\
0 & & s_{m}
\end{array}\right), \quad s_{i}>0, \quad M=\left(\begin{array}{cccccc}
m_{11} & & 0 & 0 & \cdots & 0 \\
\vdots & \ddots & & \vdots & & \vdots \\
m_{m n} & \cdots & m_{m m} & 0 & \cdots & 0
\end{array}\right), \quad m_{i i} \geq 0
$$

When Σ has multiple roots, i.e.,

$$
\Sigma^{-1}=\left(\begin{array}{ccc}
s_{1} I_{n_{1}} & & 0 \tag{14}\\
& \ddots & \\
0 & & s_{r} I_{n_{r}}
\end{array}\right), \quad \sum_{i=1}^{r} n_{i}=m
$$

by multiplying $\operatorname{diag}\left(P_{1}, \ldots, P_{r}\right) \in O\left(n_{1}\right) \times \cdots \times O\left(n_{r}\right)$ and its transpose from left and right, we can assume

$$
M=\left(\begin{array}{ccccccc}
m_{1} I_{n_{1}} & & & & 0 & \cdots & 0 \tag{15}\\
M_{21} & m_{2} I_{n_{2}} & & & 0 & \cdots & 0 \\
\vdots & & \ddots & & \vdots & & \vdots \\
M_{r-1,1} & M_{r-1,2} & & m_{r-1} I_{n_{r-1}} & 0 & \cdots & 0 \\
M_{r 1} & M_{r 2} & \cdots & M_{r, r-1} & m_{r} I_{n_{r}} & 0 & \cdots
\end{array}\right), \quad m_{i} \geq 0, \quad M_{i j} \in \mathbb{R}^{n_{j} \times n_{i}} .
$$

Therefore, our problem is formalized as follow: To evaluate (12) with parameters (13) (or (14) and (15)).

In the following sections, we will evaluate the integral representation of the expectation of the Euler characteristic number given in Theorem 1 for some interesting special cases. We can obtain approximate values of the probability of the largest eigenvalue of random matrices by virtue of them. The Euler characteristic heuristic is

$$
P\left(\max _{g \in \mathbb{S}^{m-1}, h \in \mathbb{S}^{n-1}} g^{T} A h \geq x\right)=P\left(\max _{U \in M} f(U) \geq x\right) \approx E\left[\chi\left(M_{x}\right)\right]
$$

The condition that $f(U)$ is a Morse function with probability one holds if A has distinct and non-zero m singular values with probability one.

3 The case of $m=n=2$

We derive Theorem 1 in the special case of $m=n=2$ by taking explicit coordinates. This derivation motivates the proof for the general case discussed in the previous section. The case $m=n=2$ will be studied numerically in the last section with the holonomic gradient method (HGM).

Fix two unit vectors

$$
g=(\cos \theta, \sin \theta)^{T}, h=(\cos \phi, \sin \phi)^{T} \in S^{1}
$$

for $0 \leq \theta, \phi<2 \pi$. Define

$$
G=\left(\cos \left(\theta+\frac{\pi}{2}\right), \sin \left(\theta+\frac{\pi}{2}\right)\right)^{T}=(-\sin \theta, \cos \theta)^{T}
$$

which satisfies

$$
(g, G)=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) \in S O(2)
$$

Similarly, we define $H=\left(\cos \left(\phi+\frac{\pi}{2}\right), \sin \left(\phi+\frac{\pi}{2}\right)\right)^{T}=(-\sin \phi, \cos \phi)^{T}$. Here, both $\theta+\frac{\pi}{2}$ and $\phi+\frac{\pi}{2}$ should be treated as $\bmod 2 \pi$, in case the sum is greater than 2π. Now, any 2×2 matrix, say A, can be recovered by

$$
A=\sigma g h^{T}+b G H^{T}
$$

with 4 variables $(\sigma, \theta, \phi, b)$. We may further assume that $\sigma \in \mathbb{R}_{\geq 0}, b \in \mathbb{R}$ and $\phi, \theta \in[0,2 \pi)$.

Fix $\sigma_{0}, b_{0}, \theta_{0}, \phi_{0}$ and let

$$
A_{0}=\sigma_{0} g\left(\theta_{0}\right) h\left(\phi_{0}\right)^{T}+b_{0} G\left(\theta_{0}\right) H\left(\phi_{0}\right)^{T}
$$

By allowing σ, b vary in \mathbb{R} and ϕ, θ vary in $[0,2 \pi)$, we will recover A_{0} four times:

$$
\left\{\begin{array}{l}
A_{0}=\sigma_{0} g\left(\theta_{0}\right) h\left(\phi_{0}\right)^{T}+b_{0} G\left(\theta_{0}\right) H\left(\phi_{0}\right)^{T} ; \\
A_{0}=\sigma_{0} g\left(-\theta_{0}\right) h\left(-\phi_{0}\right)^{T}+b_{0} G\left(-\theta_{0}\right) H\left(-\phi_{0}\right)^{T} ; \\
A_{0}=b_{0} g\left(\theta_{0}+\frac{\pi}{2}\right) h\left(\phi_{0}+\frac{\pi}{2}\right)^{T}+\sigma_{0} G\left(\theta_{0}+\frac{\pi}{2}\right) H\left(\phi_{0}+\frac{\pi}{2}\right)^{T} ; \\
A_{0}=b_{0} g\left(-\theta_{0}+\frac{\pi}{2}\right) h\left(-\phi_{0}+\frac{\pi}{2}\right)^{T}+\sigma_{0} G\left(-\theta_{0}+\frac{\pi}{2}\right) H\left(-\phi_{0}+\frac{\pi}{2}\right)^{T}
\end{array}\right.
$$

- Here, the first two are easily seen from the symmetry of the manifold M (shown below) that $(h, g) \sim(-h,-g)$.
- The second symmetry is given by $\left(\sigma^{\prime}, b^{\prime}\right)=\left(b_{0}, \sigma_{0}\right)$, i.e., interchanging σ and b. Note that $G(\theta)=g\left(\theta+\frac{\pi}{2}\right)$ and $H(\phi)=h\left(\phi+\frac{\pi}{2}\right)$. Thus, there also exists

$$
\left(\theta^{\prime}, \phi^{\prime}\right)=\left(\theta_{0}+\frac{\pi}{2}, \phi_{0}+\frac{\pi}{2}\right)
$$

recovering A_{0}.
Therefore, to recover A, we could always assume that $\sigma \geq b$, and let $\theta, \phi \in[0,2 \pi)$. See Lemma 1 for a general claim.

Next, we consider the manifold

$$
M=\left\{t s^{T} \mid s=(\cos \alpha, \sin \alpha), t=(\cos \beta, \sin \beta) \in S^{1}, 0 \leq \alpha, \beta<2 \pi\right\}
$$

and the function f on M such that

$$
f\left(t s^{T}\right)=s^{T} A t=s^{T}\left(\sigma g h^{T}+b G H^{T}\right) t
$$

Apparently, A only has two pairs of eigenvectors, which can be verified by the following computations:

$$
\begin{cases}A h=\sigma g h^{T} h+b G H^{T} h & =\sigma g \\ g^{T} A=\sigma g^{T} g h^{T}+b g^{T} G H^{T} & =\sigma h^{T} \\ A H=\sigma g h^{T} H+b G H^{T} H & =b G \\ G^{T} A=\sigma G^{T} g h^{T}+b G^{T} G H^{T} & =b H^{T}\end{cases}
$$

Namely, the function f has two critical points on M, which are at

- the point $P=h g^{T} \in M \Leftrightarrow(\alpha, \beta)=(\theta, \phi)$;
- and the point $Q=H G^{T} \in M \Leftrightarrow(\alpha, \beta)=\left(\theta+\frac{\pi}{2}, \phi+\frac{\pi}{2}\right)$.

Further computation shows the following 4 facts.

1. $f(P)=g^{T} A h=\sigma$ and $f(Q)=G^{T} A H=b$.
2. From

$$
\begin{aligned}
\text { Hess } f & =\left(\begin{array}{cc}
\frac{\partial^{2}}{\partial \alpha^{2}} f & \frac{\partial^{2}}{\partial \alpha \partial \beta} f \\
\frac{\partial^{2}}{\partial \beta \partial \alpha} f & \frac{\partial^{2}}{\partial \beta^{2}} f
\end{array}\right) \\
& =\left(\begin{array}{ll}
\frac{(b-\sigma) \cos (\alpha+\beta-\theta-\phi)-(b+\sigma) \cos (\alpha-\beta-\theta+\phi)}{2} & \frac{(b-\sigma) \cos (\alpha+\beta-\theta-\phi)+(b+\sigma) \cos (\alpha-\beta-\theta+\phi)}{2} \\
\frac{(b-\sigma) \cos (\alpha+\beta-\theta-\phi)+(b+\sigma) \cos (\alpha-\beta-\theta+\phi)}{2} & \frac{(b-\sigma) \cos (\alpha+\beta-\theta-\phi)-(b+\sigma) \cos (\alpha-\beta-\theta+\phi)}{2}
\end{array}\right),
\end{aligned}
$$

it follows that $\operatorname{det}\left(\operatorname{Hess}_{P} f\right)=\sigma^{2}-b^{2}$ and $\operatorname{det}\left(\operatorname{Hess}_{Q} f\right)=b^{2}-\sigma^{2}$. Therefore, we see
(a) if $x>\sigma \geq b$, then M_{x} does not contain any critical points, so $\chi\left(M_{x}\right)=0$;
(b) if $x<b \leq \sigma$, then M_{x} contains both critical points, and thus

$$
\chi\left(M_{x}\right)=\operatorname{sgn}\left(\sigma^{2}-b^{2}\right)+\operatorname{sgn}\left(b^{2}-\sigma^{2}\right)=0 ;
$$

(c) the only nontrivial case is $\sigma \geq x \geq b$, then

$$
\chi\left(M_{x}\right)=\mathbf{1}(\sigma \geq x \geq b) \operatorname{sgn}\left(\sigma^{2}-b^{2}\right) .
$$

3. Since

$$
A=\sigma g h^{T}+b G H^{T}=\left(\begin{array}{cc}
b \sin \theta \sin \phi+\sigma \cos \theta \cos \phi & \sigma \cos \theta \sin \phi-b \sin \theta \cos \phi \\
\sigma \sin \theta \cos \phi-b \cos \theta \sin \phi & b \cos \theta \cos \phi+\sigma \sin \theta \sin \phi
\end{array}\right)
$$

we have

$$
\begin{aligned}
(\mathrm{d} A)= & \mathrm{d} b \sin \theta \sin \phi+\sigma \cos \theta \cos \phi \wedge \mathrm{d}(\sigma \cos \theta \sin \phi-b \sin \theta \cos \phi) \\
& \wedge \mathrm{d}(\sigma \sin \theta \cos \phi-b \cos \theta \sin \phi) \wedge \mathrm{d}(b \cos \theta \cos \phi+\sigma \sin \theta \sin \phi) \\
= & \left(b^{2}-\sigma^{2}\right) \mathrm{d} \sigma \mathrm{~d} b \mathrm{~d} \theta \mathrm{~d} \phi
\end{aligned}
$$

4. Let $M=\left(\begin{array}{cc}m_{11} & 0 \\ m_{21} & m_{22}\end{array}\right)$ and $\Sigma=\left(\begin{array}{cc}1 / s_{1} & 0 \\ 0 & 1 / s_{2}\end{array}\right)$ such that

$$
A=\sqrt{\Sigma} V+M, \text { where } V=\left(v_{i j}\right), v_{i j} \sim \mathcal{N}(0,1) \text { i. i. d. }
$$

Then

$$
p(A)=\frac{s_{1} s_{2}}{(2 \pi)^{2}} e^{-\frac{R}{2}},
$$

where

$$
\begin{aligned}
R= & s_{1}\left(b \sin \theta \sin \phi+\sigma \cos \theta \cos \phi-m_{11}\right)^{2}+s_{2}\left(\sigma \sin \theta \cos \phi-b \cos \theta \sin \phi-m_{21}\right)^{2} \\
& +s_{1}(\sigma \cos \theta \sin \phi-b \sin \theta \cos \phi)^{2}+s_{2}\left(b \cos \theta \cos \phi+\sigma \sin \theta \sin \phi-m_{22}\right)^{2} .
\end{aligned}
$$

Hence, we have

$$
\begin{aligned}
E\left(\chi\left(M_{x}\right)\right)= & \frac{1}{2} \int_{\frac{-\infty}{\infty} S_{\underline{-\infty}}^{\infty}} \mathrm{d} \sigma \int_{\frac{s_{1} s s_{2}}{(2 \pi)^{2}} e^{-\frac{R}{2}}} \mathrm{~d} b \int_{0}^{2 \pi} \mathrm{~d} \theta \int_{0}^{2 \pi} \mathrm{~d} \phi(\underline{\mathbf{1}(\sigma \geq x \geq b)} \overbrace{\operatorname{sgn}\left(\sigma^{2}-b^{2}\right)}) \overbrace{\left(b^{2}-\sigma^{2}\right) \mid} \\
= & \frac{1}{2} \int_{x}^{\infty} \mathrm{d} \sigma \int_{-\infty}^{x} \mathrm{~d} b \int_{0}^{2 \pi} \mathrm{~d} \theta \int_{0}^{2 \pi} \mathrm{~d} \phi \overbrace{\left(\sigma^{2}-b^{2}\right)}^{s_{1} s_{2}} \frac{(2 \pi)^{2}}{} e^{-\frac{R}{2}} .
\end{aligned}
$$

Note that we have $\int_{-\infty}^{\infty} d b \cdots=\int_{-\infty}^{x} d b \cdots$ by an anti-symmetry of σ and b in this case. In other words, integrals over $\sigma>x>0, b>x, \sigma>b$ and $\sigma>x>0, b>x, \sigma<b$ are canceled. Thus, we have

$$
\begin{align*}
E\left[\chi\left(M_{x}\right)\right] & =F\left(s_{1}, s_{2}, m_{11}, m_{21}, m_{22} ; x\right) \\
& =\frac{1}{2} \int_{x}^{\infty} d \sigma \int_{-\infty}^{\infty} d b \int_{0}^{2 \pi} d \theta \int_{0}^{2 \pi} d \phi\left(\sigma^{2}-b^{2}\right) \frac{s_{1} s_{2}}{(2 \pi)^{2}} \exp \left\{-\frac{1}{2} R\right\}, \tag{16}
\end{align*}
$$

In summary, we have obtained Theorem 1 in the case that A is distributed as a Gaussian distribution.

Let us give a numerical example.
Example 1. We evaluate (16) with parameters

$$
s_{1}=2, s_{2}=m_{11}=1, m_{21}=-1, m_{22}=1,
$$

and derive the following table:

x	0	1	2	3	4	5
$E\left[\chi\left(M_{x}\right)\right]$	-5.92828×10^{-8}	0.745833	0.567728	0.144874	0.0146727	0.000582529
$P(\sigma>x)$	1.	0.957375	0.576156	0.145001	0.0146561	0.000584400

Here, the probability $P(\sigma>x)$ is estimated by a Monte Carlo study with $10,000,000$ iterations and the expectation of the Euler characteristic is evaluated by a numerical integration function NIntegrate on Mathematica [24]. As expected, $E\left[\chi\left(M_{x}\right)\right] \approx P(\sigma>x)$ when x is large.

4 Computer algebra and the expectation for small m and n

In this section, we will study the non-central case $M \neq 0$ with the help of computer algebra. When $m=n=2$, we can perform a general method of the holonomic gradient method (HGM) [9] to evaluate the integral (5).

In Section 3, we derive an integral formula (16) in the case $m=n=2$. For (16), we set

$$
\sin \theta=\frac{2 s}{1+s^{2}}, \quad \cos \theta=\frac{1-s^{2}}{1+s^{2}}, \quad \sin \phi=\frac{2 t}{1+t^{2}}, \quad \cos \phi=\frac{1-t^{2}}{1+t^{2}} .
$$

Then we have that

$$
\begin{align*}
E\left[\chi\left(M_{x}\right)\right] & =F\left(s_{1}, s_{2}, m_{11}, m_{21}, m_{22} ; x\right) \\
& =\frac{1}{2 \pi^{2}} \int_{x}^{\infty} d \sigma \int_{-\infty}^{\infty} d b \int_{-\infty}^{\infty} d s \int_{-\infty}^{\infty} d t \frac{s_{1} s_{2}\left(\sigma^{2}-b^{2}\right)}{\left(1+s^{2}\right)\left(1+t^{2}\right)} \exp \left\{-\frac{1}{2} \tilde{R}\right\}, \tag{17}
\end{align*}
$$

where \tilde{R} is a rational function in σ, b, s, t. Since the integrand is a holonomic function in σ, b, s, t, we can apply the creative telescoping method [29] to derive holonomic systems for the integrals. It is straightforward to do that for the inner single integral of $E\left[\chi\left(M_{x}\right)\right]$ by the classic methods [17] (such as Zeilberger's algorithm, Takayama's algorithm and Chyzak's algorithm). Below is an example:

Example 2. Consider the inner single integral of (17):

$$
f_{1}(\sigma, b, s)=\int_{-\infty}^{\infty} \frac{s_{1} s_{2}\left(\sigma^{2}-b^{2}\right)}{\left(1+s^{2}\right)\left(1+t^{2}\right)} \exp \left\{-\frac{1}{2} \tilde{R}\right\} d t
$$

where \tilde{R} is a rational function in σ, b, s, t. Since the integrand of f_{1} is a holonomic function, we can compute a holonomic system ann of it by using the Mathematica package HolonomicFunctions [18]. Using ann and Chyzak's algorithm, we can then derive a holonomic system of f_{1}, which is of holonomic rank 2 . The detailed calculation can be found in [22].

In the above example, we use Chyzak's algorithm to derive a holonomic system of the inner single integral of $E\left[\chi\left(M_{x}\right)\right]$. It can be done within 5 seconds in a Linux computer with 15.10 GB RAM. However, experiments show that it is not efficient enough to derive a holonomic system for the inner double integral in the same way within reasonable computational time because of the complexity of this algorithm. In order to speed up the computation, our idea is to utilize Stafford theorem [12, 23] empirically. Let us first recall the theorem. Assume that \mathbb{K} is a field of characteristic 0 and n is a positive integer. Let $R_{n}=\mathbb{K}\left(x_{1}, \ldots, x_{n}\right)\left[\partial_{1}, \ldots, \partial_{n}\right]$ and $D_{n}=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]\left[\partial_{1}, \ldots, \partial_{n}\right]$ be the ring of differential operators with rational coefficients and the Weyl algebra in n variables, respectively.

Theorem 2. Every left ideal in R_{n} or D_{n} can be generated by two elements.
Assume that I is a left ideal in R_{n} or D_{n}. We observe from experiments that for any two random operators $a, b \in I$, it is of high probability that $I=\langle a, b\rangle$. This suggests the following heuristic method for computing a holonomic system for the inner double integral of $E\left[\chi\left(M_{x}\right)\right]$. As a matter of notation, we set

$$
T_{n-1}=\left\{\partial_{1}^{i_{1}} \partial_{2}^{i_{2}} \cdots \partial_{n-1}^{i_{n-1}} \mid\left(i_{1}, \ldots, i_{n-1}\right) \in \mathbb{N}^{n-1}\right\} .
$$

Recall that a D-finte system [3] in R_{n} is a finite set of generators of a zero-dimensional ideal in R_{n}. The relation between D-finite systems and holonomic systems is illustrated in [11, Section 6.9]. For the application of the holonomic gradient method, D-finite systems are alternative to holonomic systems. Here, we use D-finite systems because they are more efficient for computation.

Heuristic 1. Given a D-finite system G in R_{n}, compute another D-finite system G_{1} in R_{n-1} such that $G_{1} \subset\left(R_{n} \cdot G+\partial_{n} R_{n}\right) \cap R_{n-1}$.

1. Choose two finite support set $S_{1}, S_{2} \in T_{n-1}$.
2. Using the polynomial ansatz method [17, Section 3.4], check whether there exist telescopers $P_{1}, P_{2} \in R_{n-1}$ of G with support sets S_{1}, S_{2} or not. If P_{1} and P_{2} exist, then go to next step. Otherwise, go to step 1.
3. Compute the Gröbner basis G_{1} of $\left\{P_{1}, P_{2}\right\}$ with respect to a term order in T_{n-1}. If G_{1} is D-finite, then output G_{1}. Otherwise, go to step 1 .

In the above heuristic method, we need to find two finite support set $S_{1}, S_{2} \in T_{n-1}$ through trial and error so that it will terminate and finish in a reasonable computational time. Next, we show how to use it to derive a D-finite system for the inner double integral of $E\left[\chi\left(M_{x}\right)\right]$.

Example 3. Consider the inner double integral of (17):

$$
\begin{equation*}
f_{2}(\sigma, b)=\int_{-\infty}^{\infty} f_{1}(\sigma, b, s) d s \tag{18}
\end{equation*}
$$

where $f_{1}(\sigma, b, s)$ is defined in Example 2.
Let G be a D-finite system of f_{1}, which is derived from Example 2. Using G and the polynomial ansatz method, we find two nonzero annihilators P_{1} and P_{2} for f_{2} with support sets S_{1} and S_{2}, respectively, where

$$
\begin{aligned}
& S_{1}=\left\{1, \partial_{b}, \partial_{\sigma}, \partial_{b}^{2}, \partial_{b} \partial_{\sigma}, \partial_{\sigma}^{2}, \partial_{\sigma}^{3}\right\}, \\
& S_{2}=S_{1} \cup\left\{\partial_{b}^{2} \partial_{\sigma}, \partial_{b} \partial_{\sigma}^{2}, \partial_{b}^{3}\right\}
\end{aligned}
$$

Then we compute the Gröbner basis G_{1} of $\left\{P_{1}, P_{2}\right\}$ in $\mathbb{Q}(b, \sigma)\left[\partial_{b}, \partial_{\sigma}\right]$ with respect to a total degree lexicographic order. We find that G_{1} is a D-finite system of holonomic rank 6. The details of the calculation can be found in [22].

In the above example, we specify the parameters in the integrand as that in Example 1. Using Heuristic 1, we can further compute a holonomic system for the inner double integral of $E\left[\chi\left(M_{x}\right)\right]$ without specifying those parameters (pars). It is much more efficient than Chyzak's algorithm. Below is a table for the comparison between Chyzak's algorithm (chyzak) and Heuristic 1 (heuristic) for the computational time (seconds).

\# pars	0	1	2	3	4	5
chyzak	976	9.8323×10^{4}	-	-	-	-
heuristic	43.49	394.4	8527	4.3957×10^{5}	-	1.5519×10^{6}

Next, we use Heuristic 1 to derive a D-finite system of the inner triple integral of $E\left[\chi\left(M_{x}\right)\right]$ and then numerically solve the corresponding ordinary differential equation. Finally, we use numerical integration to evaluate $E\left[\chi\left(M_{x}\right)\right]$.

Example 4. Consider

$$
\begin{equation*}
E\left[\chi\left(M_{x}\right)\right]=\frac{1}{2 \pi^{2}} \int_{x}^{\infty} d \sigma \int_{-\infty}^{\infty} d b f_{2}(\sigma, b), \tag{19}
\end{equation*}
$$

where $f_{2}(\sigma, b)$ is specified in (18) with parameters

$$
s_{1}=2, s_{2}=m_{11}=1, m_{21}=-1, m_{22}=1
$$

By Example 3, we have derived a D-finite system for f_{2}. Using Heuristic 1, we derive a D-finite system for the inner first integral f_{3} of (19) of the following form:

$$
P=c_{10} \cdot \partial_{\sigma}^{10}+c_{9} \cdot \partial_{\sigma}^{9}+\cdots+c_{0}
$$

where $c_{i} \in \mathbb{Q}[\sigma], i=0, \ldots, 10$.
Afterwards, we first numerically solve the ordinary differential equation $P\left(f_{3}\right)=0$ to evaluate f_{3}, and then we evaluate $E\left[\chi\left(M_{x}\right)\right]$ by using numerical integration. Below are the results.

x	1	2	3	4	5	6
$H G M$	0.745835	0.567729	0.144879	0.0146728	0.000582526	8.79942×10^{-6}
$m c$	0.745802	0.567623	0.144986	0.0146901	0.0005933	9.6×10^{-6}

where $m c$ is the result for a Monte Carlo study of $E\left[\chi\left(M_{x}\right)\right]$ by the following formula with 10,000,000 iterations:

$$
E\left[\chi\left(M_{x}\right)\right] \approx \frac{\sum_{i=1}^{n} \chi\left(M_{x, i}\right)}{n}
$$

with

$$
\chi\left(M_{x, i}\right)=\mathbf{1}\left(\sigma_{i} \geq x\right)\left(\sigma_{i}^{2}-b_{i}^{2}\right)+\mathbf{1}\left(b_{i} \geq x\right)\left(b_{i}^{2}-\sigma_{i}^{2}\right)
$$

where σ_{i} and b_{i} are singular values of $M_{x, i}, i=1, \ldots, n$.
As expected, the results of HGM are approximate to that of mc. The detailed computation can be found in [22].

Note that the evaluations of $E\left[\chi\left(M_{x}\right)\right]$ in the above example are also approximate to that in Example 1. The source codes for this section and a demo notebook are freely available as part of the supplementary electronic material [22].

Example 5. We consider the evaluation of (17) with parameters

$$
m_{11}=1, m_{21}=2, m_{22}=3, s_{1}=10^{3}, s_{2}=10^{2}
$$

As far as we have tried, it is hard to evaluate (17) for these relatively large parameters s_{i} by numerical integration (even the Monte Carlo integration). Thus, we take a different approach. Using Heuristic 1, we can compute a linear ODE for (17) of rank 11 with respect to the independent variable x. Then we construct series solutions for this differential equation and use them to extrapolate results by simulations.

Although this extrapolation method is well-known, we explain it in a subtle form with application in our evaluation problem. Consider an ODE with coefficients in $\mathbf{Q}(x)$ of rank r.

Let $c \in \mathbf{Q}$ be a point in the x-space and we take r increasing numbers $y_{j} \in \mathbf{Q}$, where $j=0,1, \ldots, r-1$. We construct a series solution $f_{i}(x)$ as a series in $x-\left(c+y_{i}\right)$. We may further assume that $c+y_{i}$ is not a singular point of the ODE for each i. The initial value vector may be taken suitably so that the series is determined uniquely over \mathbf{Q}.

We assume that the vector $\left(f_{i}(x)\right)$ converges in a segment I containing all $c+y_{i}$'s and it is a basis of the solution space. Once we construct such a basis of series solutions, we can construct the solution $f(x)$ which takes values b_{j} at $x=p_{j} \in \mathbf{Q} \cap I, j=0,1, \ldots, r-1$. To be specific, set

$$
f(x)=\sum_{i=0}^{r-1} t_{i} f_{i}(x)
$$

with unknown coefficients t_{i} 's. Then we have

$$
f\left(p_{j}\right)=\sum_{i=0}^{r-1} t_{i} f_{i}\left(p_{j}\right), \quad j=0,1, \ldots, r-1 .
$$

The unknown coefficients t_{i} 's can be determined by solving the system of linear equations

$$
\begin{equation*}
b_{j}=\sum_{i=0}^{r-1} t_{i} f_{i}\left(p_{j}\right) \tag{20}
\end{equation*}
$$

We call f the extrapolation function by series solutions of ODE. We call b_{j} the reference value of f at the reference point p_{j}.

Let us come back to our example. The linear ODE for (17) has rank $r=11$. We set $c=370 / 100-1 / 100$ and y_{j} 's are $[0,1 / 100, \ldots, 10 / 100]$. Then we have

$$
c+y_{0}=3.69, c+y_{1}=3.70, \ldots, c+y_{10}=3.79
$$

We construct an approximate series solution $f_{i}(x)$ by taking 20000 terms with the rational arithmetic.

We set the reference points $p_{j}=\frac{38}{100}+\frac{j}{1000}, p_{0}=3.8, \ldots, p_{10}=3.81$ and construct a matrix related to (20). Numbers in the matrix are translated to approximate rational numbers to avoid the unstability problem of solving linear equations (20) with floating point numbers.

We assume that the expectation of the Euler characteristic of M_{x} is almost equal to the probability $P\left(\ell_{1}>x\right)$ of the first eigenvalue is larger than x. In fact, we have the Euler expectation $E\left[\chi\left(M_{x}\right)\right]=P\left(\ell_{1}>x\right)-P\left(\ell_{2}>x\right)$ in this case, where ℓ_{i} is the i-th eigenvalue. We have $P\left(\ell_{2}>3.8\right)=0$ by a Monte-Carlo simulation with with $1,000,000$ tries. Then we may suppose that reference values $f\left(p_{j}\right)$ are estimated by a Monte-Carlo simulation for $P\left(\ell_{1}>x\right)$. We construct a solution $f(x)$ with these reference values. Evaluation of $f(x)$ is done with big float.

The Figure 1 is the table of values of the extrapolation function $f(x)$ obtained by the above method with the big float of 380 digits and that by simulation with $1,000,000$ samples. One simulation takes about $573 s$. $\underset{\sim}{\text {. }}$

The solid line in the Figure 2 is obtained by this extrapolation function. The line goes to a big value at $x=3.866$ because this x is out of the domain of convergence of this

x	$f(x)$	simulation
3.8133	0.051146	0.051176
3.8166	0.047517	0.047695
3.82	0.044120	0.044515

Figure 1: Numerical evaluation by extrapolation series

Figure 2: The extrapolation function with 20000 terms. Solid line is the extrapolation function, which diverges when $x>3.8633$. Dots are values by simulations.
approximate series. Dots are values obtained by simulation and that on the thick solid line are values used as reference values to obtain the extrapolation function.

The time to obtain the series f_{i} with 20,000 terms is 5661 . The time to evaluate the extrapolation function at 61 points is 14.03 s . On the other hand, if we want to obtain simulation values at 61 points, we need about $573 \times 61=34953 \mathrm{~s}$. Thus, our extrapolation method has advantages when we want to evaluate the function $E\left[\chi\left(M_{x}\right)\right]$ for many x.

[^1]
Appendix: The central case with a scalar covariance: Selberg type integral and Laguerre polynomials

In this appendix, we assume that $M=0$ (central) and Σ in (13) is a scalar matrix, and study this case by special functions. Under these assumptions, we will show that the expectation of the Euler characteristic can be expressed in terms of a Selberg type integral, which is equal to a Laguerre polynomial in view of the works by K.Aomoto [2] and J.Kaneko [15]

Theorem 3. Set

$$
M_{x}=\left\{h g^{T} \mid g^{T} A h \geq x, h, g \in S^{m-1}\right\} .
$$

Assume that the distribution of $m \times m$ random matrices A is the Gaussian distribution with average 0 and the covariance I_{m} / s. In other words, we have

$$
p(A) \sim \exp \left(-\frac{1}{2} \operatorname{tr}\left(s A^{T} A\right)\right) .
$$

Then we have

$$
\begin{equation*}
E\left[\chi\left(M_{x}(s)\right)\right]=\prod_{i=1}^{5} c_{i} \int_{x}^{+\infty} \exp \left(-\frac{s}{2} \sigma^{2}\right){ }_{1} F_{1}\left(-(m-1), 1 ; s \sigma^{2}\right) d \sigma \tag{21}
\end{equation*}
$$

where $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}$ are given by (22), (23), (26), (29), (34), respectively.
Proof. For $g, h \in S^{m-1}$, set

$$
\begin{aligned}
& \tilde{G}=(g \mid G) \in O(m), \quad g \text { is a column vector, } \\
& \tilde{H}=(h \mid H) \in O(n), \quad h \text { is a column vector. }
\end{aligned}
$$

Then the $m \times m$ matrix A can be written as

$$
A=\tilde{G}\left(\begin{array}{c|c}
\sigma & 0 \\
\hline 0 & B
\end{array}\right) \tilde{H}^{T} .
$$

We denote by \tilde{B} the middle matrix in the above expression.
Set $\operatorname{etr}(X)=\exp (\operatorname{tr}(X))$ and $S=\Sigma^{-1}$. We consider the central case $M=0$ in (12). Since $\operatorname{tr}(P Q)=\operatorname{tr}(Q P)$ and $\tilde{H}^{T} \tilde{H}=E$, we have

$$
\begin{aligned}
& \operatorname{etr}\left(-\frac{1}{2} A^{T} S A\right) \\
= & \operatorname{etr}\left(-\frac{1}{2} \tilde{H} \tilde{B}^{T} \tilde{G}^{T} S \tilde{G} \tilde{B} \tilde{H}^{T}\right) \\
= & \operatorname{etr}\left(-\frac{1}{2} S \tilde{G} \tilde{B} \tilde{H}^{T} \tilde{H} \tilde{B}^{T} \tilde{G}^{T}\right) \\
= & \operatorname{etr}\left(-\frac{1}{2} S \tilde{G}\left(\tilde{B} \tilde{B}^{T}\right) \tilde{G}^{T}\right)
\end{aligned}
$$

It follows from Theorem 1 with $p(A)$ being the normal distribution that

$$
\begin{gathered}
E\left[\chi\left(M_{x}\right)\right]=c_{1}(S) \int_{x}^{\infty} \sigma^{n-m} d \sigma \int_{\mathbb{R}^{(m-1)(n-1)}} d B \int_{S^{m-1}} G^{T} d g \int_{S^{n-1}} H^{T} d h \\
\operatorname{det}\left(\sigma^{2} I_{m-1}-B B^{T}\right) \operatorname{etr}\left(-\frac{1}{2} S \tilde{G}\left(\tilde{B} \tilde{B}^{T}\right) \tilde{G}^{T}\right)
\end{gathered}
$$

where

$$
\begin{equation*}
c_{1}(S)=\frac{1}{2} \cdot \frac{1}{(2 \pi)^{n m / 2} \operatorname{det}\left(S^{-1}\right)^{n / 2}} . \tag{22}
\end{equation*}
$$

We denote by G_{i} the i-th column vector of G and by $d g$ the column vector of the differential forms $d g_{i}$. Define

$$
G^{T} d g=\wedge_{i=1}^{m-1} G_{i}^{T} \cdot d g .
$$

It is an invariant measure for the rotations on S^{m-1} [13, Theorem 4.2]. We may define $H^{T} d h$ analogously.

Moreover, since $S=s I_{m}$, we have

$$
\operatorname{etr}\left(-\frac{1}{2} S \tilde{G}\left(\tilde{B} \tilde{B}^{T}\right) \tilde{G}^{T}\right)=\operatorname{etr}\left(-\frac{s}{2} \tilde{B} \tilde{B}^{T}\right)
$$

Since there is no G, H involved in the right side of the above identity, we can separate the following integral

$$
\begin{equation*}
c_{2}(m)=\int_{S^{m-1}} G^{T} d g \int_{S^{m-1}} H^{T} d h=\left(\frac{2 \pi^{m / 2}}{\Gamma(m / 2)}\right)^{2} \tag{23}
\end{equation*}
$$

Therefore, we only need to evaluate the integral

$$
\begin{equation*}
\int_{\mathbb{R}^{(m-1)^{2}}} d B \operatorname{det}\left(\sigma^{2} I_{m-1}-B B^{T}\right) \operatorname{etr}\left(-\frac{s}{2} \tilde{B} \tilde{B}^{T}\right) \tag{24}
\end{equation*}
$$

We denote the integral above by $q(s ; \sigma)$. In terms of $q(s ; \sigma)$, we have

$$
E\left[\chi\left(M_{x}\right)\right]=c_{1}(S) c_{2}(m) \int_{x}^{\infty} q(s ; \sigma) d \sigma .
$$

We make the singular value decomposition of the matrix B as $B=P L Q^{T}$, where the matrices $P, Q \in O(m-1), L=\operatorname{diag}\left(\ell_{1}, \ldots, \ell_{m-1}\right)$ (see, e.g., [13] and [28, (3.1)]). It follows from [28, (3.1)] that

$$
\begin{gathered}
d B=\prod_{1 \leq i<j \leq m-1}\left(\ell_{i}^{2}-\ell_{j}^{2}\right)\left(\prod_{i=1}^{m-1} d \ell_{i}\right) \wedge \omega, \\
\omega=\wedge_{1 \leq i \leq m-1, i<j \leq m-1} P_{j}^{T} d P_{i} \quad \wedge_{1 \leq i \leq m-1, i<j \leq m-1} Q_{j}^{T} d Q_{i},
\end{gathered}
$$

when $\ell_{1} \geq \ell_{2} \geq \cdots \geq \ell_{m-1}$. Here, P_{i} and Q_{i} are i-th column vectors, respectively. Since

$$
\operatorname{det}\left(\sigma^{2} I_{m-1}-P L Q^{T} Q L^{T} P^{T}\right)=\operatorname{det}\left(P\left(\sigma^{2} I_{m-1}-L L^{T}\right) P^{T}\right)=\operatorname{det}\left(\sigma^{2} I_{m-1}-L L^{T}\right),
$$

and

$$
\begin{aligned}
& \operatorname{etr}\left(-\frac{s}{2} \tilde{B} \tilde{B}^{T}\right) \\
= & \exp \left(-\frac{s}{2} \sigma^{2}\right) \operatorname{etr}\left(-\frac{s}{2} B B^{T}\right) \\
= & \exp \left(-\frac{s}{2} \sigma^{2}\right) \operatorname{etr}\left(-\frac{s}{2} P L Q^{T} Q L^{T} P^{T}\right) \\
= & \exp \left(-\frac{s}{2} \sigma^{2}\right) \exp \left(-\frac{s}{2} L L^{T}\right)
\end{aligned}
$$

we have

$$
\begin{equation*}
q(s ; \sigma)=c_{3}(m, \sigma) \int_{L \in \mathbb{R}^{m-1}} \prod_{1 \leq i<j \leq m-1}\left|\ell_{i}^{2}-\ell_{j}^{2}\right| \prod_{i=1}^{m-1}\left(\sigma^{2}-\ell_{i}^{2}\right) \exp \left(-\frac{s}{2} \sum \ell_{i}^{2}\right) \prod_{i=1}^{m-1} d \ell_{i} \tag{25}
\end{equation*}
$$

where

$$
\begin{align*}
c_{3}(m ; \sigma) & =\frac{1}{(m-1)!2^{m-1} 2^{m-1}} \exp \left(-\frac{s}{2} \sigma^{2}\right) \int_{O(m-1)} \int_{O(m-1)} \omega \tag{26}\\
& =\frac{1}{(m-1)!2^{m-1}} \exp \left(-\frac{s}{2} \sigma^{2}\right)\left(2^{m-2} \prod_{k=2}^{m-1} \frac{\pi^{k / 2}}{\Gamma(k / 2)}\right)^{2} .
\end{align*}
$$

In (26), there is a constant $(m-1)!2^{m-1} 2^{m-1}$ involved in the denominator because in this case $(m-1)!2^{m-1}$ copies of the domain $\ell_{1} \geq \ell_{2} \geq \ldots \geq \ell_{m-1} \geq 0$ cover \mathbb{R}^{m-1}, and the correspondence between the coordinates of B and that of its singular value decomposition is $1 / 2^{m-1}$. Moreover, note that the volume of $O(m-1)$ is two times of that of $S O(m-1)$.

In (25), we make a change of variables by $\ell_{i}^{\prime}=\ell_{i}^{2}$. Then we have $d \ell_{i}^{\prime}=2 \ell_{i} d \ell_{i}$, and

$$
d \ell_{i}=\frac{1}{2 \sqrt{\ell_{i}^{\prime}}} d \ell_{i}^{\prime}
$$

Furthermore, we have

$$
\begin{align*}
q(s ; \sigma)= & c_{3}(m ; \sigma) \int_{L^{\prime} \in \mathbb{R}_{\geq 0}^{m-1}} \prod \ell_{i}^{\prime-1 / 2} \prod_{1 \leq i<j \leq m-1}\left|\ell_{i}^{\prime}-\ell_{j}^{\prime}\right| \prod_{i=1}^{m-1}\left(\sigma^{2}-\ell_{i}^{\prime}\right) \\
& \times \exp \left(-\frac{s}{2} \sum \ell_{i}^{\prime}\right) \prod_{i=1}^{m-1} d \ell_{i}^{\prime} . \tag{27}
\end{align*}
$$

Put $\ell_{i}^{\prime}=\frac{2}{s} \ell_{i}^{\prime \prime}$ and factor out $s>0$. Then it follows from $d \ell_{i}^{\prime}=\frac{2}{s} d \ell_{i}^{\prime \prime}$ that

$$
q(s ; \sigma)=c_{3}(m ; \sigma) c_{4}(m, s) \tilde{q}(s ; \sigma),
$$

where

$$
\begin{equation*}
\tilde{q}(s ; \sigma)=\int_{L^{\prime \prime} \in \mathbb{R}_{\geq 0}^{m-1}} \prod \ell_{i}^{\prime \prime-1 / 2} \prod_{1 \leq i<j \leq m-1}\left|\ell_{i}^{\prime \prime}-\ell_{j}^{\prime \prime}\right| \prod_{i=1}^{m-1}\left(\frac{\sigma^{2} s}{2}-\ell_{i}^{\prime \prime}\right) \exp \left(-\sum \ell_{i}^{\prime \prime}\right) \prod_{i=1}^{m-1} d \ell_{i}^{\prime \prime} \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{4}(m, s)=(s / 2)^{(m-1) / 2}(s / 2)^{-\frac{1}{2}(m-1)(m-2)}(s / 2)^{-(m-1)}(s / 2)^{-(m-1)}=(s / 2)^{-\frac{1}{2}\left(m^{2}-1\right)} . \tag{29}
\end{equation*}
$$

This integral (28) can be expressed as a polynomial in σ. Let us derive differential equations for this integral and express it in terms of a special polynomial. We utilize the result by Aomoto [2] and its generalization [15] by Kaneko. In [15], a system of differential equations, special values, and an expansion in terms of Jack polynomials are given for the integral

$$
\begin{gather*}
\int_{[0,1]^{m-1}} \prod_{1 \leq i \leq m-1,1 \leq k \leq r}\left(\ell_{i}-\sigma_{k}\right)^{\mu} D\left(\ell_{1}, \ldots, \ell_{m-1}\right) d \ell_{1} \cdots d \ell_{m-1} \tag{30}\\
D=\prod_{i=1}^{m-1} \ell_{i}^{\lambda_{1}}\left(1-\ell_{i}\right)^{\lambda_{2}} \prod_{1 \leq i<j \leq m-1}\left|\ell_{i}-\ell_{j}\right|^{\lambda}
\end{gather*}
$$

when $\mu=1$ or $\mu=-\lambda / 2$. Let us make the coordinate change $\ell_{i}=y_{i} / N, \lambda_{2}=N, \sigma_{i}=\tau_{i} / N$. Then we have $d \ell_{i}=d y_{i} / N,\left(1-\ell_{i}\right)^{\lambda}=\left(1-y_{i} / N\right)^{N}$,

$$
\left(1-y_{i} / N\right)^{N} \rightarrow \exp \left(-y_{i}\right), \quad N \rightarrow \infty .
$$

The integral (30) becomes

$$
\begin{gathered}
c_{N} \int_{[0, N]^{m-1}} \prod_{1 \leq i \leq m-1,1 \leq k \leq r}\left(y_{i}-\tau_{k}\right)^{\mu} D\left(y_{1}, \ldots, y_{m-1}\right) d y_{1} \cdots d y_{m-1}, \\
D=\prod_{i=1}^{m-1} y_{i}^{\lambda_{1}}\left(1-y_{i} / N\right)^{N} \prod_{1 \leq i<j \leq m-1}\left|y_{i}-y_{j}\right|^{\lambda}, c_{N}=N^{-r(m-1)-(m-1)-\lambda_{1}(m-1)-\lambda(m-1)(m-2) / 2} .
\end{gathered}
$$

When $N \rightarrow \infty$, this above integral divided by c_{N} converges to

$$
\begin{gather*}
\int_{\mathbb{R}_{\geq 0}^{m-1}} \prod_{1 \leq i \leq m-1,1 \leq k \leq r}\left(y_{i}-\tau_{k}\right)^{\mu} D\left(y_{1}, \ldots, y_{m-1}\right) d y_{1} \cdots d y_{m-1}, \tag{31}\\
D=\prod_{i=1}^{m-1} y_{i}^{\lambda_{1}} \exp \left(-\sum_{i=1}^{m-1} y_{i}\right) \prod_{1 \leq i<j \leq m-1}\left|y_{i}-y_{j}\right|^{\lambda} .
\end{gather*}
$$

Let us apply this limiting procedure to derive a differential equation for the above integral. When $r=\mu=1$, the differential equation for the integral (30) is

$$
\begin{equation*}
\sigma(1-\sigma) \partial_{\sigma}^{2}+(c-(a+b+1) \sigma) \partial_{\sigma}-a b \tag{32}
\end{equation*}
$$

where $a=-(m-1), b=\frac{2}{\lambda}\left(\lambda_{1}+\lambda_{2}+2\right)+(m-1)+1, c=\frac{2}{\lambda}\left(\lambda_{1}+1\right)$. This is the Gauss hypergeometric equation. Set $\lambda_{2}=N, \sigma=\frac{z}{N}$. Then we can find the limit of this equation when $N \rightarrow \infty$. In fact, it can be performed as follows. Set $\theta_{z}=z \partial_{z}$. Note that (32) is invariant by the scalar multiplication of z. Then the limit of

$$
\theta_{z}\left(\theta_{z}+\frac{2}{\lambda}\left(\lambda_{1}+1\right)-1\right)-\frac{z}{N}\left(\theta_{z}-(m-1)\right)\left(\theta_{z}+\frac{2}{\lambda}\left(N+\lambda_{1}+2\right)+(m-1)+1\right)
$$

when $N \rightarrow \infty$ is

$$
\theta_{z}\left(\theta_{z}+\frac{2}{\lambda}\left(\lambda_{1}+1\right)-1\right)-\frac{2}{\lambda} z\left(\theta_{z}-(m-1)\right)
$$

In particular, when $\lambda=1$ and $\lambda_{1}=-1 / 2$, it is

$$
\theta_{z}^{2}-2 z\left(\theta_{z}-(m-1)\right) .
$$

A polynomial solution of the above equation can be written as

$$
c_{5}(m) \cdot{ }_{1} F_{1}(-(m-1), 1 ; 2 z)
$$

with a constant $c_{5}(m)$. Therefore, it follows from (28), (31) and the above argument that

$$
\begin{align*}
q(s ; \sigma)= & c_{3}(m ; \sigma) c_{4}(m, s) c_{5}(m) \cdot{ }_{1} F_{1}\left(-(m-1), 1 ; \sigma^{2} s\right) \tag{33}\\
= & c_{3}(m ; \sigma) c_{4}(m, s) c_{5}(m)\left(1+\frac{-(m-1)}{1}\left(\sigma^{2} s\right)+\frac{(m-1)(m-2)}{(2!)^{2}}\left(\sigma^{2} s\right)^{2}\right. \\
& \left.\quad+\frac{-(m-1)(m-2)(m-3)}{(3!)^{2}}\left(\sigma^{2} s\right)^{3}+\cdots+\frac{(-1)^{m-1}(m-1)!}{((m-1)!)^{2}}\left(\sigma^{2} s\right)^{m-1}\right),
\end{align*}
$$

where

$$
\begin{equation*}
c_{5}(m)=(\text { the expression }(28))_{\left.\right|_{\sigma=0}}=\prod_{i=1}^{m-1} \frac{\Gamma\left(1+\frac{i}{2}\right) \Gamma\left(\frac{3}{2}+\frac{i-1}{2}\right)}{\Gamma\left(\frac{3}{2}\right)} \tag{34}
\end{equation*}
$$

by taking a limit of the Selberg integral formula [27].
Let us make a numerical evaluation by utilizing Theorem 3 when $m=3$. When $m=3$, we have

$$
c_{1} c_{2} c_{3} c_{4} c_{5}=2 \sqrt{2 / \pi} \sqrt{s} \exp \left(-\sigma^{2} s / 2\right)
$$

Since

$$
\begin{aligned}
u(s, k, x) & =\int_{x}^{+\infty} \exp \left(-\sigma^{2} s / 2\right) \sigma^{2 k} d \sigma \\
& =\Gamma(k+1 / 2)\left(\frac{2}{s}\right)^{k+1 / 2} \frac{1}{2} \int_{x^{2}}^{+\infty} \frac{y^{k+1 / 2-1} \exp (-y /(2 / s)) d y}{\Gamma(k+2)(2 / s)^{k+1 / 2}}
\end{aligned}
$$

where the integral of the second line is equal to the upper tail probability of the Gamma distribution with the scale $2 / s$ and the shape $k+1 / 2$. It follows from Theorem 3 that the expectation $E\left[\chi\left(M_{x}\right)\right]$ is equal to

$$
\begin{equation*}
2 \sqrt{2 / \pi} \sqrt{s}\left(u(s, 0, x)-2 s u(s, 1, x)+\frac{s^{2}}{2} u(s, 2, x)\right) . \tag{35}
\end{equation*}
$$

An R code for evaluating $E\left[\chi\left(M_{x}\right)\right]$ in this case is as follows.

```
ug2<-function(s,k,x) {
    return(pgamma(x^2, scale=2/s, shape=k+1/2, lower = FALSE)*
        gamma(k+1/2)*(2/s)^(k+1/2)/2);
}
```

```
ec3<-function(x,s) {
    cc<- 2*(2/pi)^(1/2)*s^(1/2);
    c5<-1;
    return(cc*c5*
        (ug2(s,0,x)-2*s*ug2(s,1,x)+(1/2)*s^2*ug2(s,2,x)));
}
## Draw a graph
curve(ec3(x,1),from=1,to=10)
```

When $s=1$, some values are as follows:

x	$E\left[\chi\left(M_{x}\right)\right]$	simulation (with 100000 tries)
3	0.215428520	0.217072
4	0.016122970	0.016195
5	0.000357368	0.000386

Acknowledgement

We deeply thank Christoph Koutschan, who is the author of the package HolonomicFunctions used in this paper, for his helps and encouragements. We also acknowledge the Austrian Science Fund (FWF): P29467-N32 since the second author and the corresponding author are supported by it.

References

[1] R. J. Adler, J. E. Taylor, Random fields and geometry, Springer, 2007.
[2] K. Aomoto, Jacobi Polynomials associated with Selberg Integrals, SIAM Journal on Mathematical Analysis 18 (1987), 545-549.
[3] S. Chen, M. Kauers, Z. Li, and Y. Zhang, Apparent singularities of D-finite systems, Journal of Symbolic Computation, in press, (2019).
[4] Y. Chikuse, Properties of Hermite and Laguerre polynomials in matrix argument and their applications, Linear Algebra and its Applications 176 (1992), 237-260.
[5] F. H. Danufane, C. Siriteanu, K. Ohara, N. Takayama, Holonomic gradient methodbased CDF evaluation for the largest eigenvalue of a complex noncentral Wishart matrix, arxiv:1707.02564.
[6] A. W. Davis, Invariant polynomials with two matrix arguments extending the zonal polynomials: Applications to multivariate distribution theory, Annals of the Institute of Statistical Mathematics, A31 (1979) 465-485.
[7] A. W. Davis, Invariant polynomials with two matrix arguments: extending the zonal polynomials, in: P. R. Krishnaiah (Ed.), Multivariate Analysis V, North-Holland Publishing Company, 1980, pp. 287-299.
[8] J. A. Díaz-García and R. Gutiérrez-Jáimez, On Wishart distribution: Some extensions, Linear Algebra and its Applications, 435 (6) (2011), 1296-1310.
[9] H. Hashiguchi, Y. Numata, N. Takayama, A. Takemura, Holonomic gradient method for the distribution function of the largest root of a Wishart matrix, Journal of Multivariate Analysis, 117 (2013), 296-312.
[10] T. Hayakawa, On the distribution of the latent roots of a positive definite random symmetric matrix I, Annals of the Institute of Statistical Mathematics 21 (1969), 1-21.
[11] T. Hibi et al., Gröbner Bases: Statistics and Software Systems, Springer, (2013).
[12] A. Hillebrand, W. Schmale, Towards a effective version of a theorem of Stafford, Journal of Symbolic Computation 32 (2001), 699-716.
[13] A. T. James, Normal Multivariate Analysis and the Orthogonal Group, The Annals of Mathematical Statistics (1954), 40-75.
[14] A. T. James, The Non-Central Wishart Distribution, Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 229 (1955), 364-366.
[15] J. Kaneko, Selberg Integrals and Hypergeometric Functions associated with Jack Polynomials, SIAM Journal on Mathematical Analysis 24 (1993), 1086-1110.
[16] M. Kang, M. S. Alouini, Largest eigenvalue of complex Wishart matrices and performance analysis of MIMO MRC systems, IEEE Journal on Selected Areas in Communications 21 (2003), 418-426.
[17] C. Koutschan, Advanced applications of the holonomic systems approach, PhD thesis, Johannes Kepler University Linz, (2009).
[18] C. Koutschan, HolonomicFunctions user's guide, Technical Report 10-01, RISC Report Series, Johannes Kepler University Linz, Austria, (2010). http://www.risc.jku.at/publications/download/risc_3934/hf.pdf
[19] S. Kuriki, A. Takemura, Tail probabilities of the maxima of multilinear forms and their applications, The Annals of Statistics 29 (2001), 328-371.
[20] S. Kuriki, A. Takemura, Euler characteristic heuristic for approximating the distribution of the largest eigenvalue of an orthogonally invariant random matrix, Journal of Statistical Planning and Inference 138 (2008), 3357-3378.
[21] S. Kuriki, A. Takemura, Volume of tubes and the distribution of the maximum of a Gaussian random field, Selected Papers on Probability and Statistics, American Mathematical Society Translations Series 2, 227 (2009), 25-48.
[22] N. Takayama, L. Jiu, S. Kuriki, N. Takayama, Y. Zhang, Supplementary electronic material to the article Euler Characteristic Method for the Largest Eigenvalue of a Random Matrix. https://yzhang1616.github.io/ec1/ec1.html
[23] A. Leykin, Algorithmic proofs of two theorems of Stafford. Journal of Symbolic Computation 38 (2004), 1535-1550.
[24] Mathematica, Version 11.0, Wolfram Research, Inc., Champaign, IL, 2016.
[25] M. Morse, S. S. Cairns, Critical point theory in global analysis and differential topology: an introduction, Academic Press, 1969
[26] R. J. Muirhead, Aspects of multivariate statistical theory, Wiley, 2005.
[27] A. Selberg, Remarks on a multiple integral, Norsk Matematisk Tidsskrift 26 (1944), 71-78.
[28] A. Takemura, S. Kuriki, Shrinkage to smooth non-convex cone: principal component analysis as Stein estimation, Communications in Statistics: Theory and Methods 28 (1999), 651-669.
[29] D. Zeilberger, The method of creative telescoping, Journal of Symbolic Computation 11 (1991), 195-204.

[^0]: *Department of Mathematics, Kobe University, Japan. Email: takayama@math.kobe-u.ac.jp
 ${ }^{\dagger}$ Department of Mathematics and Statistics, Dalhousie University, Canada. Supported by the Austrian Science Fund (FWF): P29467-N32. Email: lin.jiu@dal.ca
 ${ }^{\ddagger}$ The Institute of Statistical Mathematics (ISM), Research Organization of Information and Systems (ROIS), Japan. Supported by JSPS KAKENHI Grant Number 16H02792. Email: kuriki@ism.ac.jp
 ${ }^{\text {§ }}$ Corresponding author, Department of Mathematical Sciences, The University of Texas at Dallas (UTD), USA. Supported by the Austrian Science Fund (FWF): P29467-N32 and the UT Dallas Program: P-1-03246. Email: zhangy@amss.ac.cn

[^1]: *R and the package mnormt on a machine with Intel Xeon CPU(2.70GHz) and 256 G memory.
 ${ }^{\dagger}$ Risa/Asir on a machine with Intel Xeon CPU $(2.70 \mathrm{GHz})$ and 256 G memory.

