Apparent Singularites of D-finite Systems

Yi Zhang

Department of Foundational Mathematics Xi'an Jiaotong-Liverpool University, Suzhou, China

Joint work with Shaoshi Chen, Manuel Kauers and Ziming Li

Singularities (univariate case)

Let
$$\partial = \frac{d}{dx}$$
.

Consider

$$L = p_r \partial^r + p_{r-1} \partial^{r-1} + \dots + p_0 \in \mathbb{C}[x][\partial],$$

where $p_i \in \mathbb{C}[x]$ with $p_r \neq 0$ and $gcd(p_r, p_{r-1}, \dots, p_0) = 1$.

Call r the order of L, denoted by ord(L).

Yi Zhang, XJTLU 2/21

Singularities (univariate case)

Let
$$\partial = \frac{d}{dx}$$
.

Consider

$$L = p_r \partial^r + p_{r-1} \partial^{r-1} + \dots + p_0 \in \mathbb{C}[x][\partial],$$

where $p_i \in \mathbb{C}[x]$ with $p_r \neq 0$ and $gcd(p_r, p_{r-1}, \dots, p_0) = 1$.

Call r the order of L, denoted by ord(L).

Definition. $c \in \mathbb{C}$ is an ordinary point of L if $p_r(c) \neq 0$. Otherwise, c is a singularity of L.

Yi Zhang, XJTLU 2/:

Formal power series (univariate case)

Definition. Let $f \in \mathbb{C}[[x]]$ be of the form

$$f = c_m x^m + c_{m+1} x^{m+1} + \cdots,$$

where $c_m \neq 0$. Call m the initial exponent of f.

Yi Zhang, XJTLU 3/21

Formal power series (univariate case)

Definition. Let $f \in \mathbb{C}[[x]]$ be of the form

$$f = c_m x^m + c_{m+1} x^{m+1} + \cdots,$$

where $c_m \neq 0$. Call m the initial exponent of f.

Theorem (Fuchs, 1866). Let $L \in \mathbb{C}[x][\partial] \setminus \{0\}$. Then

the origin is an ordinary point of L

L has ord(L) sols in $\mathbb{C}[[x]]$ with initial exponents $0, 1, \ldots, ord(L) - 1$.

Yi Zhang, XJTLU 3/:

Apparent singularities

Assume the origin is a singularity of L.

Definition. The origin is apparent if L has ord(L) \mathbb{C} -linearly independent sols in $\mathbb{C}[[x]]$.

Yi Zhang, XJTLU 4/21

Apparent singularities

Assume the origin is a singularity of L.

Definition. The origin is apparent if L has ord(L) \mathbb{C} -linearly independent sols in $\mathbb{C}[[x]]$.

Example. x^5 is a sol of xf'(x) - 5f(x) = 0.

Yi Zhang, XJTLU 4/21

Motivation

Assume the origin is an apparent singularity of L.

Goal. Find $M \in \mathbb{C}[x][\partial] \setminus \{0\}$ s.t.

- ▶ $\operatorname{sol}(L) \subset \operatorname{sol}(M)$;
- the origin is an ordinary point of M.

Yi Zhang, XJTLU 5/21

Motivation

Assume the origin is an apparent singularity of L.

Goal. Find $M \in \mathbb{C}[x][\partial] \setminus \{0\}$ s.t.

- ▶ $sol(L) \subset sol(M)$;
- ▶ the origin is an ordinary point of *M*.

Remark. If so, then sol(L) is spanned by formal power series.

Yi Zhang, XJTLU 5/21

Apparent singularites

L has sols of the form:

$$x^{\alpha_1} + \cdots,$$
 $x^{\alpha_2} + \cdots,$
 \vdots
 $x^{\alpha_r} + \cdots.$

where $\alpha_1 < \alpha_2 < \cdots < \alpha_r \in \mathbb{N}$, $r = \operatorname{ord}(L)$.

Remark. Some exponents are missing!

Yi Zhang, XJTLU 6/21

Apparent singularites

L has sols of the form:

$$x^{\mathbf{e_1}} + \cdots, \quad \mathbf{e_1} = 0, \dots, \alpha_1 - 1,$$
 $x^{\alpha_1} + \cdots,$
 $x^{\mathbf{e_2}} + \cdots, \quad \mathbf{e_2} = \alpha_1 + 1, \dots, \alpha_2 - 1,$
 $x^{\alpha_2} + \cdots,$
 \vdots
 $x^{\mathbf{e_r}} + \cdots, \quad \mathbf{e_r} = \alpha_{r-1} + 1, \dots, \alpha_r - 1,$
 $x^{\alpha_r} + \cdots.$

where $\alpha_1 < \alpha_2 < \cdots < \alpha_r \in \mathbb{N}$, r = ord(L).

Remark. Some exponents are missing!

Yi Zhang, XJTLU 6/21

Desingularization

Given $L \in \mathbb{C}[x][\partial]$, the origin being apparent, find $M \in \mathbb{C}[x][\partial]$ s.t.

- ▶ M = PL for some $P \in \mathbb{C}(x)[\partial]$;
- ▶ the origin is an ordinary point of *M*.

Call M a desingluaried operator of L.

Yi Zhang, XJTLU 7/21

Desingularization

Given $L \in \mathbb{C}[x][\partial]$, the origin being apparent, find $M \in \mathbb{C}[x][\partial]$ s.t.

- ▶ M = PL for some $P \in \mathbb{C}(x)[\partial]$;
- \blacktriangleright the origin is an ordinary point of M.

Call M a desingluaried operator of L.

A first idea (Fuchs). Assume missing exponents are $k_1, \ldots k_\ell$. Compute the least common left multiple of

$$L, x\partial - k_1, \ldots, x\partial - k_\ell$$

in $\mathbb{C}(x)[\partial]$.

Yi Zhang, XJTLU 7/2

Advanced method

Chen, Jaroschek, Kauers and Singer (2013, 2016), construct a desingularized operator M of L s.t.

- \blacktriangleright all apparent singularities of L are ordinary points of M;
- ▶ all singularities of M are non-apparent ones of L;
- ▶ the degree of leading coeff of *M* is minimal.

Yi Zhang, XJTLU 8/21

Contraction of Ore ideals (Z, 2016)

Theorem. A desingularized operator yields generators of $(\mathbb{C}(x)[\partial]L)\cap \mathbb{C}[x][\partial].$

Yi Zhang, XJTLU 9/21

Contraction of Ore ideals (Z, 2016)

Theorem. A desingularized operator yields generators of $(\mathbb{C}(x)[\partial]L)\cap \mathbb{C}[x][\partial].$

- Determine the contraction ideals of shift operators
- ▶ The ring of constants can replaced by a PID

Yi Zhang, XJTLU 9/21

D-finite systems

Notation.

$$A_n = \mathbb{C}[x_1, \dots, x_n][\partial_1, \dots, \partial_n] \subset R_n = \mathbb{C}(x_1, \dots, x_n)[\partial_1, \dots, \partial_n]$$
 $\uparrow \qquad \qquad \uparrow$

Weyl algebra

Rational algebra

where $\partial_i = \partial/\partial x_i$.

Definition. A left ideal $I \subset R_n$ is D-finite if R_n/I is a finite-dimensional vector space over $\mathbb{C}(x_1, \ldots, x_n)$.

Assume that G_1, \ldots, G_m are generators of I. The system

$$G_i(f) = 0, \quad i = 1, \ldots, m.$$

is called a D-finite system.

Yi Zhang, XJTLU 10/3

D-finite Gröbner bases

Let \prec_{∂} be a graded term order on $\partial_1^{k_1} \cdots \partial_n^{k_n}$, a finite set $G \subset A_n$ is a Gröbner basis w.r.t. \prec_{∂} .

Definition. G is D-finite if $R_n \cdot G$ is D-finite. The set

$$\mathsf{PE}(\mathit{G}) = \left\{ (\mathit{i}_1, \ldots, \mathit{i}_n) \mid \partial_1^{\mathit{i}_1} \cdots \partial_n^{\mathit{i}_n} \text{ is not reducible w.r.t. } \mathit{G} \right\}.$$

is called the set of parametric exponents of G.

|PE(G)| is called the rank of G.

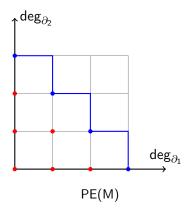
Yi Zhang, XJTLU 11/21

Example 1

Consider

$$M=\{\partial_1^3,\partial_1^2\partial_2,\partial_1\partial_2^2,\partial_2^3\}.$$

Then $PE(M) = \{(0,0), (1,0), (0,1), (2,0), (1,1), (0,2)\}.$



Yi Zhang, XJTLU 12/21

Ordinary points and singularities

Assume that $G \subset A_n$ is a Gröbner basis and its elements are all primitive.

Definition. $c \in \mathbb{C}^n$ is an ordinary point of G if c is not a zero of

$$\prod_{g\in G}\operatorname{lc}(g).$$

Otherwise, c is a singularity of G.

Yi Zhang, XJTLU 13/21

Ordinary points and singularities

Example 1 (cont.) Consider

$$M = \{\partial_1^3, \partial_1^2 \partial_2, \partial_1 \partial_2^2, \partial_2^3\}.$$

where $\prod_{g \in M} lc(g) = 1$. The origin is an ordinary point of M.

Example 2. Consider

$$G = \{x_2^2 \partial_2 - x_1^2 \partial_1 + x_1 - x_2, \partial_1^2\},\$$

where $\prod_{g \in G} lc(g) = x_2^2$. The origin is a singularity of G.

Yi Zhang, XJTLU 14/21

Formal power series

Let \prec_x be the order induced by \prec_∂ on $x_1^{k_1} \cdots x_n^{k_n}$.

Let $f \in \mathbb{C}[[x_1, \dots, x_n]]$ be of form

$$f = c_{i_1,\dots,i_n} x_1^{i_1} \cdots x_n^{i_n} + \text{higher terms w.r.t.} \prec_x,$$

where $c_{i_1,...i_n} \in \mathbb{C}$ is nonzero.

Definition. Call (i_1, \ldots, i_n) the initial exponent of f.

Yi Zhang, XJTLU 15/2

Main result

Let G be a D-finite Gröbner basis and its elements are all primitive.

Theorem 1. The origin of \mathbb{C}^n is an ordinary point of G

 \forall $(i_1,\ldots,i_n) \in PE(G)$, \exists $f \in \mathbb{C}[[x_1,\ldots,x_n]]$ with initial exponent (i_1,\ldots,i_n) s.t. f is a solution of G.

Yi Zhang, XJTLU 16/21

Main result

Let G be a D-finite Gröbner basis and its elements are all primitive.

Theorem 1. The origin of \mathbb{C}^n is an ordinary point of G

 \forall $(i_1,\ldots,i_n) \in \mathsf{PE}(G), \exists f \in \mathbb{C}[[x_1,\ldots,x_n]]$ with initial exponent (i_1,\ldots,i_n) s.t. f is a solution of G.

Remark. an algorithm for computing formal power series sols of D-finite systems at ordinary points.

Yi Zhang, XJTLU 16/21

Apparent singularities

Assume the origin is a singularity of G.

Definition. The origin is apparent if G has |PE(G)| \mathbb{C} -linearly independent sols in $\mathbb{C}[[x_1,\ldots,x_n]]$.

Example 2 (cont.) Consider

$$G = \{x_2^2 \partial_2 - x_1^2 \partial_1 + x_1 - x_2, \partial_1^2\},\$$

 $\{x_1 + x_2, x_1x_2\}$ are sols of G. The origin is apparent.

We can decide whether a given point is apparent or not and remove it using "a first idea".

Yi Zhang, XJTLU 17/2

Detecting and removing apparent singularities

Example 2 (cont.) Consider

$$G = \{x_2^2 \partial_2 - x_1^2 \partial_1 + x_1 - x_2, \partial_1^2\},\$$

Set

$$S = \{(0,0), (0,1), (2,0), (0,2)\}.$$

Let $M \subset A_2$ be a Gröbner basis with

$$R_2M = R_2G \cap \left(\bigcap_{(s,t)\in S} R_2\{x_1\partial_1 - s, x_2\partial_2 - t\}\right)$$

We find

$$M = \{\partial_1^3, \partial_1^2 \partial_2, \partial_1 \partial_2^2, \partial_2^3\}.$$

The origin is an ordinary point of M.

Yi Zhang, XJTLU 18/21

Formal power series solutions at apparent singularities

Example 3 Consider the D-finite Gröbner basis of rank 2:

$$H = \{x_2\partial_2 + \partial_1 - x_2 - 1, \partial_1^2 - \partial_1\}.$$

▶ Let $M \subset A_2$ be a Gröbner basis of the left ideal

$$R_2H \cap R_2\{x_1\partial_1 - 1, \partial_2\}.$$

Then the origin is an ordinary point of M, which is of rank 3.

 \blacktriangleright By Theorem 1, sol(M) at the origin is spanned by

$$f_1 = \exp(x_1 + x_2) - x_1 - x_2 \exp(x_2), \quad f_2 = x_1,$$

 $f_3 = x_2 \exp(x_2).$

Yi Zhang, XJTLU 19/21

Formal power series solutions at apparent singularities

Make an ansatz $f = \sum_{i=1}^{3} c_i f_i$, where c_i is unknown. Then one can show that f is a solution of

$$H_1(f) = 0, \quad H_2(f) = 0,$$

if and only if $(c_1, c_2, c_3)^t$ is a solution of $A\mathbf{x} = \mathbf{0}$, where

$$A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

A basis of its right kernel is $\{(1,1,0)^t,(0,0,1)^t\}$. It give rise to a basis of sol(H) at the origin:

$$\{\exp(x_1+x_2)-x_2\exp(x_2), x_2\exp(x_2)\}.$$

Yi Zhang, XJTLU 20/2

Conclusion

- ▶ Characterization of ordinary points of D-finite systems
- ▶ Detect and remove apparent singularities of D-finite systems
- An algorithm for computing formal power series sols of D-finite systems at apparent singularities.

Yi Zhang, XJTLU 21/21

Conclusion

- Characterization of ordinary points of D-finite systems
- ▶ Detect and remove apparent singularities of D-finite systems
- An algorithm for computing formal power series sols of D-finite systems at apparent singularities.

Remark: for arbitrary singularities, Takayama (2003) gives an algorithm by using D-module theory. No elementary proof!

Yi Zhang, XJTLU 21/23

Conclusion

- ▶ Characterization of ordinary points of D-finite systems
- Detect and remove apparent singularities of D-finite systems
- An algorithm for computing formal power series sols of D-finite systems at apparent singularities.

Remark: for arbitrary singularities, Takayama (2003) gives an algorithm by using D-module theory. No elementary proof!

Thanks!

Yi Zhang, XJTLU 21/21