An Algorithm for Contraction of an Ore Ideal

Yi Zhang

Institute for Algebra
Johannes Kepler University Linz, Austria

Krattenthaler's problem

Conjecture: Let $\left(a_{n}\right)_{\geq 0}$ and $\left(b_{n}\right)_{\geq 0}$ be two P -recursive sequences over the integers with leading coefficient n. Show that $\left(n!a_{n} b_{n}\right) \geq 0$ is also a P -recursive sequence over the integers with leading coefficient n.

Example for Krattenthaler's problem

Consider the following P -recursive sequences:

$$
\begin{aligned}
& n a_{n}=(31 n-6) a_{n-1}+(49 n-110) a_{n-2}+(9 n-225) a_{n-3} \\
& n b_{n}=(4 n+13) b_{n-1}+(69 n-122) b_{n-2}+(36 n-67) b_{n-3}
\end{aligned}
$$

The minimal recurrence for $c_{n}:=n!a_{n} b_{n}$ is:

$$
\alpha n c_{n}=(\cdots) c_{n-1}+\ldots+(\cdots) c_{n-9}
$$

where $\alpha \in \mathbb{Z}[n]$, $\operatorname{deg}_{n}(\alpha)=20$.

Example for Krattenthaler's problem

Consider the following P -recursive sequences:

$$
\begin{aligned}
& n a_{n}=(31 n-6) a_{n-1}+(49 n-110) a_{n-2}+(9 n-225) a_{n-3} \\
& n b_{n}=(4 n+13) b_{n-1}+(69 n-122) b_{n-2}+(36 n-67) b_{n-3}
\end{aligned}
$$

The minimal recurrence for $c_{n}:=n!a_{n} b_{n}$ is:

$$
\alpha n c_{n}=(\cdots) c_{n-1}+\ldots+(\cdots) c_{n-9}
$$

where $\alpha \in \mathbb{Z}[n]$, $\operatorname{deg}_{n}(\alpha)=20$.
Known algorithms find:

$$
\beta n c_{n}=(\cdots) c_{n-1}+\ldots+(\cdots) c_{n-10}
$$

where β is a 853 -digit integer.

Example for Krattenthaler's problem

Consider the following P -recursive sequences:

$$
\begin{aligned}
& n a_{n}=(31 n-6) a_{n-1}+(49 n-110) a_{n-2}+(9 n-225) a_{n-3} \\
& n b_{n}=(4 n+13) b_{n-1}+(69 n-122) b_{n-2}+(36 n-67) b_{n-3}
\end{aligned}
$$

The minimal recurrence for $c_{n}:=n!a_{n} b_{n}$ is:

$$
\alpha n c_{n}=(\cdots) c_{n-1}+\ldots+(\cdots) c_{n-9}
$$

where $\alpha \in \mathbb{Z}[n]$, $\operatorname{deg}_{n}(\alpha)=20$.
Known algorithms find:

$$
\beta n c_{n}=(\cdots) c_{n-1}+\ldots+(\cdots) c_{n-10}
$$

where β is a 853 -digit integer.
Our algorithm finds:

$$
1 n c_{n}=(\cdots) c_{n-1}+\ldots+(\cdots) c_{n-14}
$$

Ore algebra (shift case)

Consider the recurrence equation:

$$
f(n+1)-(n+1) f(n)=0 .
$$

Using $\mathbb{Z}[n][\partial]$ with $\partial \bullet f(n):=f(n+1), n \bullet f(n):=n \cdot f(n)$

$$
[\partial-(n+1)] \bullet f=0
$$

- L in $\mathbb{Z}[n][\partial]$ is called a recurrence operator of f if $L \bullet f=0$.
- Assume $L=I_{0}+\ldots+I_{r} \partial^{r}$, we call $\operatorname{deg}_{\partial}(L):=r$ the order of $L, \mathrm{Ic}_{\partial}(L):=I_{r}$ the leading coefficient of L.
- T is called a left multiple of L if $T=P L$, where $P \in \mathbb{Q}(n)[\partial]$.

Motivation

Example 1 Consider the recurrence operator of $u(n)$:

$$
L=(1+16 n)^{2} \partial^{2}-(224+512 n) \partial-(1+n)(17+16 n)^{2}
$$

Question: Assume $u(0), u(1) \in \mathbb{Z}$, whether or not $u(n) \in \mathbb{Z}$, for each $n \in \mathbb{N}$?

Motivation

Example 1 Consider the recurrence operator of $u(n)$:

$$
L=(1+16 n)^{2} \partial^{2}-(224+512 n) \partial-(1+n)(17+16 n)^{2}
$$

Question: Assume $u(0), u(1) \in \mathbb{Z}$, whether or not $u(n) \in \mathbb{Z}$, for each $n \in \mathbb{N}$?
(Abramov, Bakatou, van Hoeij) Find a left multiple of L :

$$
T:=(\ldots) L=64 \partial^{3}+\text { lower terms } \in \mathbb{Z}[n][\partial]
$$

Motivation

Example 1 Consider the recurrence operator of $u(n)$:

$$
L=(1+16 n)^{2} \partial^{2}-(224+512 n) \partial-(1+n)(17+16 n)^{2}
$$

Question: Assume $u(0), u(1) \in \mathbb{Z}$, whether or not $u(n) \in \mathbb{Z}$, for each $n \in \mathbb{N}$?
(Abramov, Bakatou, van Hoeij) Find a left multiple of L :

$$
T:=(\ldots) L=64 \partial^{3}+\text { lower terms } \in \mathbb{Z}[n][\partial]
$$

Our algorithm finds another left multiple of L :

$$
\bar{T}:=1 \partial^{3}+\text { lower terms } \in \mathbb{Z}[n][\partial]
$$

Answer: Yes, $u(n)$ is an integer sequence.

Desingularization

Given $L \in \mathbb{Z}[n][\partial], \operatorname{deg}_{\partial}(L)=r$.

- Assume $p \mid \operatorname{lc}_{\partial}(L) . \quad T \in \mathbb{Z}[n][\partial]$ is a p-removed operator for L of order k if
- T is a left multiple of $L, \operatorname{deg}_{\partial}(T)=k$.
- $\mathrm{Ic}_{\partial}(T)=\operatorname{ag}(n)$, where $a \in \mathbb{Z}, g$ is primitive, such that $g \left\lvert\, \frac{1}{\rho} \operatorname{lc}_{\partial}(L)\right.$.

Desingularization

Given $L \in \mathbb{Z}[n][\partial], \operatorname{deg}_{\partial}(L)=r$.

- Assume $p \mid \operatorname{lc}_{\partial}(L) . \quad T \in \mathbb{Z}[n][\partial]$ is a p-removed operator for L of order k if
- T is a left multiple of $L, \operatorname{deg}_{\partial}(T)=k$.
- $\mathrm{Ic}_{\partial}(T)=\operatorname{ag}(n)$, where $a \in \mathbb{Z}, g$ is primitive, such that $g \left\lvert\, \frac{1}{\rho} \mathrm{lc}_{\partial}(L)\right.$.
- If $\operatorname{deg}(g)$ is minimal (\ldots), we call T is weakly desingularized operator (of order k).
- If $\operatorname{deg}(g)$ and a are minimal (...), we call T is strongly desingularized operator (of order k).

Desingularization

Example 1 (continued) Consider the recurrence operator:

$$
L=(1+16 n)^{2} \partial^{2}-(224+512 n) \partial-(1+n)(17+16 n)^{2}
$$

(Abramov, Bakatou, van Hoeij) Find a left multiple of L :

$$
T:=(\ldots) L=64 \partial^{3}+\text { lower terms } \in \mathbb{Z}[n][\partial]
$$

Our algorithm finds another left multiple of L :

$$
\bar{T}:=1 \partial^{3}+\text { lower terms } \in \mathbb{Z}[n][\partial]
$$

T and \bar{T} are weakly and strongly desingularized operator (of order $3)$, respectively.

Contraction

Given $L \in \mathbb{Z}[n][\partial], \operatorname{deg}_{\partial}(L)=r$.
Consider $\langle L\rangle:=\mathbb{Q}(n)[\partial] L$, contraction of $\langle L\rangle$ to $\mathbb{Z}[n][\partial]$ is

$$
\operatorname{Cont}(L):=\langle L\rangle \cap \mathbb{Z}[n][\partial]
$$

Contraction

Given $L \in \mathbb{Z}[n][\partial], \operatorname{deg}_{\partial}(L)=r$.
Consider $\langle L\rangle:=\mathbb{Q}(n)[\partial] L$, contraction of $\langle L\rangle$ to $\mathbb{Z}[n][\partial]$ is

$$
\operatorname{Cont}(L):=\langle L\rangle \cap \mathbb{Z}[n][\partial]
$$

- Cont (L) is a finitely generated left ideal of $\mathbb{Z}[n][\partial]$.
- Every desingularized operator of L belongs to Cont(L).
- Cont (L) contains $\mathbb{Z}[n][\partial] L$, but in general more operators.
- Goal: compute a $\mathbb{Z}[n][\partial]$-basis of $\operatorname{Cont}(L)$.

Contraction

Given $L \in \mathbb{Z}[n][\partial], \operatorname{deg}_{\partial}(L)=r$.
Consider $\langle L\rangle:=\mathbb{Q}(n)[\partial] L$, contraction of $\langle L\rangle$ to $\mathbb{Z}[n][\partial]$ is

$$
\operatorname{Cont}(L):=\langle L\rangle \cap \mathbb{Z}[n][\partial]
$$

- $\operatorname{Cont}(L)$ is a finitely generated left ideal of $\mathbb{Z}[n][\partial]$.
- Every desingularized operator of L belongs to Cont(L).
- Cont (L) contains $\mathbb{Z}[n][\partial] L$, but in general more operators.
- Goal: compute a $\mathbb{Z}[n][\partial]$-basis of $\operatorname{Cont}(L)$.

Example 1 (continued) Consider the recurrence operator:

$$
L=(1+16 n)^{2} \partial^{2}-(224+512 n) \partial-(1+n)(17+16 n)^{2}
$$

$\operatorname{Cont}(L)$ is generated by $\{L, \bar{T}\}$.

Removability of polynomial factors

Given $L \in \mathbb{Z}[n][\partial], \operatorname{deg}_{\partial}(L)=r$.
(Chen, Jaroschek, Kauers, Singer) Assume $p \mid \mathrm{Ic}_{\partial}(L), p$ is primitive.

- If p is removable, then one can compute an upper bound k, such that there exists a p-removed operator T of order k.
- Using Euclidean algorithm, one can compute an upper bound for a weakly desingularized operator.

Removability of constant factors

Given $L \in \mathbb{Z}[n][\partial], \operatorname{deg}_{\partial}(L)=r$. Write it as

$$
L=a_{0} f_{0}(n)+a_{1} f_{1}(n) \partial+\cdots+a_{m} f_{m}(n) \partial^{m}
$$

where $a_{i} \in \mathbb{Z}, f_{i}(n)$ is primitive.
If $\operatorname{gcd}\left(a_{0}, \ldots, a_{m}\right)=1$, then we call L contant-primitive.

Removability of constant factors

Given $L \in \mathbb{Z}[n][\partial], \operatorname{deg}_{\partial}(L)=r$. Write it as

$$
L=a_{0} f_{0}(n)+a_{1} f_{1}(n) \partial+\cdots+a_{m} f_{m}(n) \partial^{m}
$$

where $a_{i} \in \mathbb{Z}, f_{i}(n)$ is primitive.
If $\operatorname{gcd}\left(a_{0}, \ldots, a_{m}\right)=1$, then we call L contant-primitive.
Lemma (Gauss's Lemma for Ore Algebra) Suppose $L, P \in \mathbb{Z}[n][\partial]$. If L and P are constant-primitive, then $P L$ is also constant-primitive.

Theorem 1 Suppose $L \in \mathbb{Z}[n][\partial]$ is constant-primitive, $a \in \mathbb{Z}$, $a \mid \mathrm{Ic}_{\partial}(L)$. Then a is non-removable.

Removability of constant factors

Example 2 Consider

$$
L=3(n+2)(3 n+4)(3 n+5)(7 n+3)\left(25 n^{2}+21 n+2\right) \partial^{2}+
$$ lower terms $\in \mathbb{Z}[n][\partial]$

which is a constant-primitive recurrence operator for $a\binom{4 n}{n}+b 3^{n}$, where $a, b \in \mathbb{Z}$. From Theorem 1, 3 is non-removable.

Desingularization at a fixed order

Given $L \in \mathbb{Z}[n][\partial], \operatorname{deg}_{\partial}(L)=r$.
Question (A): Given a fixed order k, how to find a strongly desingularized operator T of order k ?

Desingularization at a fixed order

Given $L \in \mathbb{Z}[n][\partial], \operatorname{deg}_{\partial}(L)=r$.
Question (A): Given a fixed order k, how to find a strongly desingularized operator T of order k ?
We define

$$
\begin{aligned}
M_{k} & :=\left\{T \mid T \in \operatorname{Cont}(L), \operatorname{deg}_{\partial}(T) \leq k\right\} \\
I_{k} & :=\left\{\operatorname{lc}_{\partial}(T)(n-k) \mid T \in \operatorname{Cont}(L), \operatorname{deg}_{\partial}(T)=k\right\} \cup\{0\}
\end{aligned}
$$

If T is a strongly desingularized operator of order k, then $\operatorname{lc}_{\partial}(T)(n-k) \in I_{k}$. So, we consider

Question (B): Given a fixed order k, how to find a basis \mathbf{b} of I_{k} and its corresponding operator \mathbf{B} in M_{k} ?

Syzygy

Let $V:=\left\{v_{1}, \ldots, v_{m}\right\}$ be a finite set of $\mathbb{Z}[n]^{r}$.
We call the set $\left\{\left(a_{1}, \ldots, a_{m}\right) \in \mathbb{Z}[n]^{m} \mid \sum_{i=1}^{m} a_{i} \cdot v_{i}=0\right\}$ the module of syzygies of V.

Syzygy

Let $V:=\left\{v_{1}, \ldots, v_{m}\right\}$ be a finite set of $\mathbb{Z}[n]^{r}$.
We call the set $\left\{\left(a_{1}, \ldots, a_{m}\right) \in \mathbb{Z}[n]^{m} \mid \sum_{i=1}^{m} a_{i} \cdot v_{i}=0\right\}$ the module of syzygies of V.

Given $L \in \mathbb{Z}[n][\partial], \operatorname{deg}_{\partial}(L)=r$.
Theorem 2 For a fixed order k, one can compute a finite set $V \subseteq \mathbb{Z}[n]^{r}$ such that M_{k} is isomorphic to the module of syzygies of V as $\mathbb{Z}[n]$-module.
For $T=\sum_{i=0}^{k} c_{i} \partial^{i} \in \mathbb{Z}[n][\partial]$, we use $\left[\partial^{i}\right] T:=c_{i}$ to refer the coefficient of ∂^{i} in T.

Proposition If $\mathbf{B}:=\left\{B_{1}, \ldots, B_{t}\right\}$ is a basis of M_{k}, then
$I_{k}=\left\langle\left(\left[\partial^{k}\right] B_{1}\right)(n-k), \ldots,\left(\left[\partial^{k}\right] B_{t}\right)(n-k)\right\rangle$.

An algorithm for desingularization

Algorithm 1 Input: $L \in \mathbb{Z}[n][\partial]$, $\operatorname{deg}_{\partial}(L)=r$ and $k \geq r$. Output: a basis \mathbf{b} of I_{k}, its corresponding operators \mathbf{B} in M_{k}.

1. Compute $\operatorname{rrem}\left(\partial^{j}, L\right):=\sum_{i=1}^{r} u_{i j} \partial^{i-1}, 0 \leq j \leq k$. Let $U:=\left(u_{i j}\right) \in \mathbb{Q}(n)^{r \times(k+1)}$.
2. Compute $d_{i}:=$ the least common multiples of denominators of i-th row vector of U. Let $v_{i j}:=d_{i} u_{i j}, 1 \leq i \leq r, 0 \leq j \leq k$. Let $v_{j}:=\left(v_{1 j}, \ldots, v_{r j}\right)^{T} \in \mathbb{Z}[n]^{r}$ and $V:=\left\{v_{0}, \ldots, v_{k}\right\}$.
3. Compute a basis B of the module of syzygies of V.
4. Let $\mathbf{B}:=\left\{\sum_{i=0}^{k} b_{i} \partial^{i} \mid\left(b_{0}, \ldots, b_{k}\right) \in B\right\}$ and $\mathbf{b}:=\left\{\left(\left[\partial^{k}\right] b\right)(n-k) \mid b \in \mathbf{B}\right\}$.
5. Output: b and B.

Example for desingularization

Example 3 Consider the recurrence operator:

$$
L=(2 n-1)(n-1) \partial^{2}+\left(5 n-1-9 n^{2}+2 n^{3}\right) \partial+n(1+2 n)
$$

Using Algorithm 1, we find

$$
I_{3}=\langle 3, n-4\rangle
$$

The corresponding operators are:

$$
\begin{aligned}
F_{1}= & 3 \partial^{3}+(20 n-31) \partial^{2}+\left(17 n^{2}-76 n+43\right) \partial+17 n+9 \\
F_{2}= & (n-1) \partial^{3}+(n-1)(4 n-9) \partial^{2}+\left(3 n^{3}-19 n^{2}+33 n-13\right) \partial \\
& +3 n^{2}-4 n-3
\end{aligned}
$$

Here, F_{1} is a strongly desingularized operator for L of order 3 .

Desingularization and Contraction

Question (C): Given $L \in \mathbb{Z}[n][\partial], \operatorname{deg}_{\partial}(L)=r$, how to compute a $\mathbb{Z}[n][\partial]$-basis of $\operatorname{Cont}(L):=\langle L\rangle \cap \mathbb{Z}[n][\partial]$?

Desingularization and Contraction

Question (C): Given $L \in \mathbb{Z}[n][\partial], \operatorname{deg}_{\partial}(L)=r$, how to compute a $\mathbb{Z}[n][\partial]$-basis of $\operatorname{Cont}(L):=\langle L\rangle \cap \mathbb{Z}[n][\partial]$?
Idea: Find an order bound $k \geq r$, such that $\operatorname{Cont}(L)=\mathbb{Z}[n][\partial] \cdot M_{k}$.
Lemma 1 Let $L \in \mathbb{Z}[n][\partial], \operatorname{deg}_{\partial}(L)=r$. Then:

- $\mathbb{Z}[n][\partial] \cdot M_{k}=\mathbb{Z}[n][\partial] \cdot M_{k+1}$ iff $I_{k}=I_{k+1}$ for each $k \geq r$.

From Lemma 1, if $\operatorname{Cont}(L)=\mathbb{Z}[n][\partial] \cdot M_{k}$, then $\left\{I_{j}\right\}_{j=k}^{\infty}$ is a stable chain.

Desingularization and Contraction

Question (C): Given $L \in \mathbb{Z}[n][\partial], \operatorname{deg}_{\partial}(L)=r$, how to compute a $\mathbb{Z}[n][\partial]$-basis of $\operatorname{Cont}(L):=\langle L\rangle \cap \mathbb{Z}[n][\partial]$?
Idea: Find an order bound $k \geq r$, such that $\operatorname{Cont}(L)=\mathbb{Z}[n][\partial] \cdot M_{k}$.
Lemma 1 Let $L \in \mathbb{Z}[n][\partial], \operatorname{deg}_{\partial}(L)=r$. Then:

- $\mathbb{Z}[n][\partial] \cdot M_{k}=\mathbb{Z}[n][\partial] \cdot M_{k+1}$ iff $I_{k}=I_{k+1}$ for each $k \geq r$.

From Lemma 1, if $\operatorname{Cont}(L)=\mathbb{Z}[n][\partial] \cdot M_{k}$, then $\left\{I_{j}\right\}_{j=k}^{\infty}$ is a stable chain.

We can compute an order bound k, such that M_{k} contains a weakly desingularized operator T. However, this does not imply that $\operatorname{Cont}(L)=\mathbb{Z}[n][\partial] \cdot M_{k}$.

Desingularization and Contraction

Example 4 Consider the following recurrence operator (Kauers, Krattenthaler, Müller):
$L=(n+10)\left(n^{6}+47 n^{5}+915 n^{4}+9445 n^{3}+54524 n^{2}+166908 n\right.$ $+211696) \partial^{10}+$ lower terms

We can get a weakly desingularized operator at order 11. Using Algorithm 1, we get the following table:

$$
\begin{aligned}
& I_{11}=\left\langle 11104 n, 4 n(n-466), n\left(n^{2}-34 n+1336\right)\right\rangle \\
& I_{12}=\langle 4 n, n(n-24)\rangle \\
& I_{13}=\langle 2 n, n(n-26)\rangle \\
& I_{14}=\langle 1 n\rangle \\
& I_{15}=\langle 1 n\rangle
\end{aligned}
$$

Saturation

Example 4 (Continued) From Lemma 1, we can not conclude that $\operatorname{Cont}(L)=\mathbb{Z}[n][\partial] \cdot M_{11}$. We will show $\operatorname{Cont}(L)=\mathbb{Z}[n][\partial] \cdot M_{14}$. Let I be a left ideal of $\mathbb{Z}[n][\partial]$, $a \in \mathbb{Z} \backslash\{0\}$, we call

$$
I: a^{\infty}=\left\{T \in \mathbb{Z}[n][\partial] \mid a^{k} T \in I, \text { for some } k \in \mathbb{N}\right\}
$$

the saturation of I with respect to a.

Saturation

Example 4 (Continued) From Lemma 1, we can not conclude that $\operatorname{Cont}(L)=\mathbb{Z}[n][\partial] \cdot M_{11}$. We will show $\operatorname{Cont}(L)=\mathbb{Z}[n][\partial] \cdot M_{14}$.
Let I be a left ideal of $\mathbb{Z}[n][\partial]$, $a \in \mathbb{Z} \backslash\{0\}$, we call

$$
I: a^{\infty}=\left\{T \in \mathbb{Z}[n][\partial] \mid a^{k} T \in I, \text { for some } k \in \mathbb{N}\right\}
$$

the saturation of I with respect to a.
Theorem 3 Let $L \in \mathbb{Z}[n][\partial], \operatorname{deg}_{\partial}(L)=r$. Suppose that M_{k} contains a weakly desingularized operator $T, \mathrm{Ic}_{\partial}(T)=a g$, where $a \in \mathbb{Z}, g$ is primitive. Then $\operatorname{Cont}(L)=\left(\mathbb{Z}[n][\partial] \cdot M_{k}\right): a^{\infty}$.

An algorithm for contraction

Algorithm 2 Input: $L \in \mathbb{Z}[n][\partial]$. Output: a basis of $\operatorname{Cont}(L)$.

1. Derive an order bound k such that M_{k} contains a weakly desingularized operator.
2. Compute a basis of M_{k} and a weakly desingularized operator T by using Algorithm 1 , where $\mathrm{Ic}_{\partial}(T)=a g, a \in \mathbb{Z}, g$ is primitive.
3. Compute a basis \mathbf{G} of $\left(\mathbb{Z}[n][\partial] \cdot M_{k}\right): a^{\infty}$ by using Gröbner bases. Output: G

Example for contraction

Example 1 (continued) Consider the recurrence operator:

$$
L=(1+16 n)^{2} \partial^{2}-(224+512 n) \partial-(1+n)(17+16 n)^{2}
$$

M_{3} contains a weakly desingularized operator \bar{T}, such that $\operatorname{lc}_{\partial}(\bar{T})=1$. From Theorem 3,

$$
\operatorname{Cont}(L)=\left(\mathbb{Z}[n][\partial] \cdot M_{3}\right): 1^{\infty}=\mathbb{Z}[n][\partial] \cdot M_{3} .
$$

By Algorithm 2, $\operatorname{Cont}(L)$ is generated by $\{L, \bar{T}\}$.

Krattenthaler's problem

Conjecture: Let $\left(a_{n}\right)_{\geq 0}$ and $\left(b_{n}\right)_{\geq 0}$ be two P-recursive sequences over the integers with leading coefficient n. Show that $\left(n!a_{n} b_{n}\right) \geq 0$ is also a P -recursive sequence over the integers with leading coefficient n.

Krattenthaler's problem

Conjecture: Let $\left(a_{n}\right)_{\geq 0}$ and $\left(b_{n}\right)_{\geq 0}$ be two P-recursive sequences over the integers with leading coefficient n. Show that $\left(n!a_{n} b_{n}\right) \geq 0$ is also a P -recursive sequence over the integers with leading coefficient n.

Given two recurrence equations

$$
\begin{aligned}
n a_{n} & =\alpha_{1} a_{n-1}+\ldots+\alpha_{s} a_{n-s} \\
n b_{n} & =\beta_{1} b_{n-1}+\ldots+\beta_{t} b_{n-t}
\end{aligned}
$$

We construct a minimal recurrence operator L for $c_{n}:=n!a_{n} b_{n}$. Task: Find a strongly desingularized operator for L.

Krattenthaler's problem

Conjecture: Let $\left(a_{n}\right)_{\geq 0}$ and $\left(b_{n}\right)_{\geq 0}$ be two P-recursive sequences over the integers with leading coefficient n. Show that $\left(n!a_{n} b_{n}\right) \geq 0$ is also a P -recursive sequence over the integers with leading coefficient n.

Given two recurrence equations

$$
\begin{aligned}
n a_{n} & =\alpha_{1} a_{n-1}+\ldots+\alpha_{s} a_{n-s} \\
n b_{n} & =\beta_{1} b_{n-1}+\ldots+\beta_{t} b_{n-t}
\end{aligned}
$$

We construct a minimal recurrence operator L for $c_{n}:=n!a_{n} b_{n}$. Task: Find a strongly desingularized operator for L.

Algorithm 2 can be used to search for counterexamples. However, results of experiments suggest that this conjecture might be true!

Special cases

Case 1: Consider the recurrence equations:

$$
\begin{aligned}
n a_{n} & =\alpha a_{n-1} \\
n b_{n} & =\beta_{1} b_{n-1}+\ldots+\beta_{t} b_{n-t}
\end{aligned}
$$

where $\alpha, \beta_{i} \in \mathbb{Z}[n]$. Then $c_{n}:=n!a_{n} b_{n}$ satisfies

$$
n c_{n}=\gamma_{1} c_{n-1}+\ldots+\gamma_{t} c_{n-t}
$$

where $\gamma_{i}:=\beta_{i} \prod_{j=0}^{i-1} \alpha(n-j)$

Special cases

Case 2: Consider the recurrence equations:

$$
\begin{aligned}
n a_{n} & =\alpha_{1} a_{n-1}+\alpha_{2} a_{n-2} \\
n b_{n} & =\beta_{1} b_{n-1}+\beta_{2} b_{n-2}+\beta_{3} b_{n-3}
\end{aligned}
$$

where α_{i}, β_{j} are parameters. Then $c_{n}:=n!a_{n} b_{n}$ satisfies

$$
n c_{n}=\gamma_{1} c_{n-1}+\ldots+\gamma_{9} c_{n-9}
$$

where $\gamma_{i} \in \mathbb{Z}\left[\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}, \beta_{3}, n\right]$.

Special cases

Case 2: Consider the recurrence equations:

$$
\begin{aligned}
n a_{n} & =\alpha_{1} a_{n-1}+\alpha_{2} a_{n-2} \\
n b_{n} & =\beta_{1} b_{n-1}+\beta_{2} b_{n-2}+\beta_{3} b_{n-3}
\end{aligned}
$$

where α_{i}, β_{j} are parameters. Then $c_{n}:=n!a_{n} b_{n}$ satisfies

$$
n c_{n}=\gamma_{1} c_{n-1}+\ldots+\gamma_{9} c_{n-9}
$$

where $\gamma_{i} \in \mathbb{Z}\left[\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}, \beta_{3}, n\right]$.
Thanks!

