An Algorithm for Contraction of an Ore Ideal

Yi Zhang

Institute for Algebra Johannes Kepler University Linz, Austria

Conjecture: Let $(a_n)_{\geq 0}$ and $(b_n)_{\geq 0}$ be two P-recursive sequences over the integers with leading coefficient n. Show that $(n!a_nb_n)_{\geq 0}$ is also a P-recursive sequence over the integers with leading coefficient n.

Example for Krattenthaler's problem

Consider the following P-recursive sequences:

$$na_n = (31n-6)a_{n-1} + (49n-110)a_{n-2} + (9n-225)a_{n-3}$$

$$nb_n = (4n+13)b_{n-1} + (69n-122)b_{n-2} + (36n-67)b_{n-3}$$

The minimal recurrence for $c_n := n!a_nb_n$ is:

$$\alpha nc_n = (\cdots)c_{n-1} + \ldots + (\cdots)c_{n-9}$$

where $\alpha \in \mathbb{Z}[n]$, deg_n(α) = 20.

Example for Krattenthaler's problem

Consider the following P-recursive sequences:

$$na_n = (31n-6)a_{n-1} + (49n-110)a_{n-2} + (9n-225)a_{n-3}$$

$$nb_n = (4n+13)b_{n-1} + (69n-122)b_{n-2} + (36n-67)b_{n-3}$$

The minimal recurrence for $c_n := n!a_nb_n$ is:

$$\alpha nc_n = (\cdots)c_{n-1} + \ldots + (\cdots)c_{n-9}$$

where $\alpha \in \mathbb{Z}[n]$, deg_n(α) = 20.

Known algorithms find:

$$\beta nc_n = (\cdots)c_{n-1} + \ldots + (\cdots)c_{n-10}$$

where β is a 853-digit integer.

Example for Krattenthaler's problem

Consider the following P-recursive sequences:

$$na_n = (31n-6)a_{n-1} + (49n-110)a_{n-2} + (9n-225)a_{n-3}$$

$$nb_n = (4n+13)b_{n-1} + (69n-122)b_{n-2} + (36n-67)b_{n-3}$$

The minimal recurrence for $c_n := n!a_nb_n$ is:

$$\alpha nc_n = (\cdots)c_{n-1} + \ldots + (\cdots)c_{n-9}$$

where $\alpha \in \mathbb{Z}[n]$, deg_n(α) = 20.

Known algorithms find:

$$\beta nc_n = (\cdots)c_{n-1} + \ldots + (\cdots)c_{n-10}$$

where β is a 853-digit integer.

Our algorithm finds:

$$1nc_n = (\cdots)c_{n-1} + \ldots + (\cdots)c_{n-14}$$

Ore algebra (shift case)

Consider the recurrence equation:

$$f(n+1) - (n+1)f(n) = 0.$$

Using $\mathbb{Z}[n][\partial]$ with $\partial \bullet f(n) := f(n+1)$, $n \bullet f(n) := n \cdot f(n)$
$$[\partial - (n+1)] \bullet f = 0.$$

- L in $\mathbb{Z}[n][\partial]$ is called a recurrence operator of f if $L \bullet f = 0$.
- Assume L = l₀ + ... + l_r∂^r, we call deg_∂(L) := r the order of L, lc_∂(L) := l_r the leading coefficient of L.
- ▶ *T* is called a left multiple of *L* if T = PL, where $P \in \mathbb{Q}(n)[\partial]$.

Motivation

Example 1 Consider the recurrence operator of u(n):

$$L = (1+16n)^2 \partial^2 - (224+512n)\partial - (1+n)(17+16n)^2$$

Question: Assume $u(0), u(1) \in \mathbb{Z}$, whether or not $u(n) \in \mathbb{Z}$, for each $n \in \mathbb{N}$?

Motivation

Example 1 Consider the recurrence operator of u(n):

$$L = (1 + 16n)^2 \partial^2 - (224 + 512n)\partial - (1 + n)(17 + 16n)^2$$

Question: Assume $u(0), u(1) \in \mathbb{Z}$, whether or not $u(n) \in \mathbb{Z}$, for each $n \in \mathbb{N}$?

(Abramov, Bakatou, van Hoeij) Find a left multiple of L:

$$T := (\ldots)L = 64\partial^3 + \text{ lower terms } \in \mathbb{Z}[n][\partial]$$

Motivation

Example 1 Consider the recurrence operator of u(n):

$$L = (1+16n)^2 \partial^2 - (224+512n)\partial - (1+n)(17+16n)^2$$

Question: Assume $u(0), u(1) \in \mathbb{Z}$, whether or not $u(n) \in \mathbb{Z}$, for each $n \in \mathbb{N}$?

(Abramov, Bakatou, van Hoeij) Find a left multiple of L:

$$T := (\ldots)L = 64\partial^3 + \text{ lower terms } \in \mathbb{Z}[n][\partial]$$

Our algorithm finds another left multiple of L:

$$\overline{T} := 1\partial^3 + \text{ lower terms } \in \mathbb{Z}[n][\partial]$$

Answer: Yes, u(n) is an integer sequence.

Desingularization

Given $L \in \mathbb{Z}[n][\partial]$, deg_{∂}(L) = r.

- Assume p | lc_∂(L). T ∈ Z[n][∂] is a p-removed operator for L of order k if
 - T is a left multiple of L, $\deg_{\partial}(T) = k$.
 - ▶ $lc_{\partial}(T) = ag(n)$, where $a \in \mathbb{Z}$, g is primitive, such that $g \mid \frac{1}{p} lc_{\partial}(L)$.

Desingularization

Given $L \in \mathbb{Z}[n][\partial]$, $\deg_{\partial}(L) = r$.

- Assume p | lc_∂(L). T ∈ Z[n][∂] is a p-removed operator for L of order k if
 - T is a left multiple of L, $\deg_{\partial}(T) = k$.
 - ▶ $lc_{\partial}(T) = ag(n)$, where $a \in \mathbb{Z}$, g is primitive, such that $g \mid \frac{1}{p} lc_{\partial}(L)$.
- ▶ If deg(g) is minimal (...), we call T is weakly desingularized operator (of order k).
- If deg(g) and a are minimal (...), we call T is strongly desingularized operator (of order k).

Desingularization

Example 1 (continued) Consider the recurrence operator:

$$L = (1 + 16n)^2 \partial^2 - (224 + 512n)\partial - (1 + n)(17 + 16n)^2$$

(Abramov, Bakatou, van Hoeij) Find a left multiple of L:

$$T := (\ldots)L = 64\partial^3 + \text{ lower terms } \in \mathbb{Z}[n][\partial]$$

Our algorithm finds another left multiple of *L*:

$$\overline{\mathcal{T}} := \mathbf{1}\partial^3 + \text{ lower terms } \in \mathbb{Z}[n][\partial]$$

T and \overline{T} are weakly and strongly desingularized operator (of order 3), respectively.

Contraction

Given $L \in \mathbb{Z}[n][\partial]$, deg_{∂}(L) = r. Consider $\langle L \rangle := \mathbb{Q}(n)[\partial]L$, contraction of $\langle L \rangle$ to $\mathbb{Z}[n][\partial]$ is

 $\mathsf{Cont}(L) := \langle L \rangle \cap \mathbb{Z}[n][\partial]$

Contraction

Given $L \in \mathbb{Z}[n][\partial]$, $\deg_{\partial}(L) = r$. Consider $\langle L \rangle := \mathbb{Q}(n)[\partial]L$, contraction of $\langle L \rangle$ to $\mathbb{Z}[n][\partial]$ is $\operatorname{Cont}(L) := \langle L \rangle \cap \mathbb{Z}[n][\partial]$

• Cont(L) is a finitely generated left ideal of $\mathbb{Z}[n][\partial]$.

- Every desingularized operator of L belongs to Cont(L).
- Cont(L) contains $\mathbb{Z}[n][\partial]L$, but in general more operators.
- Goal: compute a ℤ[n][∂]-basis of Cont(L).

Contraction

Given $L \in \mathbb{Z}[n][\partial]$, $\deg_{\partial}(L) = r$. Consider $\langle L \rangle := \mathbb{Q}(n)[\partial]L$, contraction of $\langle L \rangle$ to $\mathbb{Z}[n][\partial]$ is $\operatorname{Cont}(L) := \langle L \rangle \cap \mathbb{Z}[n][\partial]$

Cont(L) is a finitely generated left ideal of Z[n][∂].

- Every desingularized operator of L belongs to Cont(L).
- Cont(L) contains ℤ[n][∂]L, but in general more operators.
- Goal: compute a $\mathbb{Z}[n][\partial]$ -basis of Cont(*L*).

Example 1 (continued) Consider the recurrence operator:

$$L = (1 + 16n)^2 \partial^2 - (224 + 512n)\partial - (1 + n)(17 + 16n)^2$$

Cont(L) is generated by $\{L, \overline{T}\}$.

Removability of polynomial factors

Given $L \in \mathbb{Z}[n][\partial]$, $\deg_{\partial}(L) = r$.

(Chen, Jaroschek, Kauers, Singer) Assume $p \mid lc_{\partial}(L)$, p is primitive.

- If p is removable, then one can compute an upper bound k, such that there exists a p-removed operator T of order k.
- Using Euclidean algorithm, one can compute an upper bound for a weakly desingularized operator.

Removability of constant factors

Given $L \in \mathbb{Z}[n][\partial]$, deg_{∂}(L) = r. Write it as

$$L = a_0 f_0(n) + a_1 f_1(n) \partial + \cdots + a_m f_m(n) \partial^m$$

where $a_i \in \mathbb{Z}$, $f_i(n)$ is primitive. If $gcd(a_0, \ldots, a_m) = 1$, then we call *L* contant-primitive.

Removability of constant factors

Given $L \in \mathbb{Z}[n][\partial]$, deg $_{\partial}(L) = r$. Write it as

$$L = a_0 f_0(n) + a_1 f_1(n) \partial + \cdots + a_m f_m(n) \partial^m$$

where $a_i \in \mathbb{Z}$, $f_i(n)$ is primitive. If $gcd(a_0, \ldots, a_m) = 1$, then we call *L* contant-primitive.

Lemma (Gauss's Lemma for Ore Algebra) Suppose $L, P \in \mathbb{Z}[n][\partial]$. If L and P are constant-primitive, then PL is also constant-primitive.

Theorem 1 Suppose $L \in \mathbb{Z}[n][\partial]$ is constant-primitive, $a \in \mathbb{Z}$, $a \mid lc_{\partial}(L)$. Then *a* is non-removable.

Removability of constant factors

Example 2 Consider

$$L = 3(n+2)(3n+4)(3n+5)(7n+3)(25n^2+21n+2)\partial^2 +$$

lower terms $\in \mathbb{Z}[n][\partial]$

which is a constant-primitive recurrence operator for $a\binom{4n}{n} + b3^n$, where $a, b \in \mathbb{Z}$. From Theorem 1, 3 is non-removable.

Desingularization at a fixed order

Given $L \in \mathbb{Z}[n][\partial]$, $\deg_{\partial}(L) = r$.

Question (A): Given a fixed order k, how to find a strongly desingularized operator T of order k?

Desingularization at a fixed order

Given $L \in \mathbb{Z}[n][\partial]$, $\deg_{\partial}(L) = r$.

Question (A): Given a fixed order k, how to find a strongly desingularized operator T of order k? We define

$$\begin{array}{rcl} M_k & := & \{T \mid T \in \operatorname{Cont}(L), \ \deg_\partial(T) \leq k\} \\ I_k & := & \{\operatorname{lc}_\partial(T)(n-k) \mid T \in \operatorname{Cont}(L), \ \deg_\partial(T) = k\} \cup \{0\} \end{array}$$

If T is a strongly desingularized operator of order k, then $lc_{\partial}(T)(n-k) \in I_k$. So, we consider

Question (B): Given a fixed order k, how to find a basis **b** of I_k and its corresponding operator **B** in M_k ?

Syzygy

Let $V := \{v_1, \ldots, v_m\}$ be a finite set of $\mathbb{Z}[n]^r$. We call the set $\{(a_1, \ldots, a_m) \in \mathbb{Z}[n]^m \mid \sum_{i=1}^m a_i \cdot v_i = 0\}$ the module of syzygies of V.

Syzygy

Let $V := \{v_1, \ldots, v_m\}$ be a finite set of $\mathbb{Z}[n]^r$. We call the set $\{(a_1, \ldots, a_m) \in \mathbb{Z}[n]^m \mid \sum_{i=1}^m a_i \cdot v_i = 0\}$ the module of syzygies of V.

Given $L \in \mathbb{Z}[n][\partial]$, $\deg_{\partial}(L) = r$.

Theorem 2 For a fixed order k, one can compute a finite set $V \subseteq \mathbb{Z}[n]^r$ such that M_k is isomorphic to the module of syzygies of V as $\mathbb{Z}[n]$ -module.

For $T = \sum_{i=0}^{k} c_i \partial^i \in \mathbb{Z}[n][\partial]$, we use $[\partial^i]T := c_i$ to refer the coefficient of ∂^i in T.

Proposition If $\mathbf{B} := \{B_1, \dots, B_t\}$ is a basis of M_k , then $I_k = \langle ([\partial^k]B_1)(n-k), \dots, ([\partial^k]B_t)(n-k) \rangle$.

An algorithm for desingularization

Algorithm 1 Input: $L \in \mathbb{Z}[n][\partial]$, $\deg_{\partial}(L) = r$ and $k \ge r$. Output: a basis **b** of I_k , its corresponding operators **B** in M_k .

1. Compute rrem
$$(\partial^j, L) := \sum_{i=1}^r u_{ij} \partial^{i-1}$$
, $0 \le j \le k$. Let $U := (u_{ij}) \in \mathbb{Q}(n)^{r \times (k+1)}$.

- 2. Compute $d_i :=$ the least common multiples of denominators of *i*-th row vector of *U*. Let $v_{ij} := d_i u_{ij}$, $1 \le i \le r, 0 \le j \le k$. Let $v_j := (v_{1j}, \ldots, v_{rj})^T \in \mathbb{Z}[n]^r$ and $V := \{v_0, \ldots, v_k\}$.
- 3. Compute a basis B of the module of syzygies of V.
- 4. Let $\mathbf{B} := \{\sum_{i=0}^{k} b_i \partial^i \mid (b_0, \dots, b_k) \in B\}$ and $\mathbf{b} := \{([\partial^k]b)(n-k) \mid b \in \mathbf{B}\}.$

5. Output: **b** and **B**.

Example for desingularization

Example 3 Consider the recurrence operator:

$$L = (2n - 1)(n - 1)\partial^{2} + (5n - 1 - 9n^{2} + 2n^{3})\partial + n(1 + 2n)$$

Using Algorithm 1, we find

$$I_3 = \langle \mathbf{3}, n-4 \rangle$$

The corresponding operators are:

$$F_{1} = \frac{3\partial^{3} + (20n - 31)\partial^{2} + (17n^{2} - 76n + 43)\partial + 17n + 9}{F_{2}} = (n - 1)\partial^{3} + (n - 1)(4n - 9)\partial^{2} + (3n^{3} - 19n^{2} + 33n - 13)\partial + 3n^{2} - 4n - 3$$

Here, F_1 is a strongly desingularized operator for L of order 3.

Question (C): Given $L \in \mathbb{Z}[n][\partial]$, deg_{∂}(L) = r, how to compute a $\mathbb{Z}[n][\partial]$ -basis of Cont(L) := $\langle L \rangle \cap \mathbb{Z}[n][\partial]$?

Question (C): Given $L \in \mathbb{Z}[n][\partial]$, deg_{∂}(L) = r, how to compute a $\mathbb{Z}[n][\partial]$ -basis of Cont(L) := $\langle L \rangle \cap \mathbb{Z}[n][\partial]$?

Idea: Find an order bound $k \ge r$, such that $Cont(L) = \mathbb{Z}[n][\partial] \cdot M_k$.

Lemma 1 Let $L \in \mathbb{Z}[n][\partial]$, deg_{∂}(L) = r. Then:

 $\mathbb{Z}[n][\partial] \cdot M_k = \mathbb{Z}[n][\partial] \cdot M_{k+1} \text{ iff } I_k = I_{k+1} \text{ for each } k \ge r.$

From Lemma 1, if $Cont(L) = \mathbb{Z}[n][\partial] \cdot M_k$, then $\{I_j\}_{j=k}^{\infty}$ is a stable chain.

Question (C): Given $L \in \mathbb{Z}[n][\partial]$, deg_{∂}(L) = r, how to compute a $\mathbb{Z}[n][\partial]$ -basis of Cont(L) := $\langle L \rangle \cap \mathbb{Z}[n][\partial]$?

Idea: Find an order bound $k \ge r$, such that $Cont(L) = \mathbb{Z}[n][\partial] \cdot M_k$.

Lemma 1 Let $L \in \mathbb{Z}[n][\partial]$, deg_{∂}(L) = r. Then:

▶ $\mathbb{Z}[n][\partial] \cdot M_k = \mathbb{Z}[n][\partial] \cdot M_{k+1}$ iff $I_k = I_{k+1}$ for each $k \ge r$.

From Lemma 1, if $Cont(L) = \mathbb{Z}[n][\partial] \cdot M_k$, then $\{I_j\}_{j=k}^{\infty}$ is a stable chain.

We can compute an order bound k, such that M_k contains a weakly desingularized operator T. However, this does not imply that $Cont(L) = \mathbb{Z}[n][\partial] \cdot M_k$.

Example 4 Consider the following recurrence operator (Kauers, Krattenthaler, Müller):

 $L = (n+10)(n^6 + 47n^5 + 915n^4 + 9445n^3 + 54524n^2 + 166908n + 211696)\partial^{10} + \text{ lower terms}$

We can get a weakly desingularized operator at order 11. Using Algorithm 1, we get the following table:

$$I_{11} = \langle 11104n, 4n(n-466), n(n^2 - 34n + 1336) \rangle$$

$$I_{12} = \langle 4n, n(n-24) \rangle$$

$$I_{13} = \langle 2n, n(n-26) \rangle$$

$$I_{14} = \langle 1n \rangle$$

$$I_{15} = \langle 1n \rangle$$

Saturation

Example 4 (Continued) From Lemma 1, we can not conclude that $Cont(L) = \mathbb{Z}[n][\partial] \cdot M_{11}$. We will show $Cont(L) = \mathbb{Z}[n][\partial] \cdot M_{14}$. Let *I* be a left ideal of $\mathbb{Z}[n][\partial]$, $a \in \mathbb{Z} \setminus \{0\}$, we call

$$I: a^{\infty} = \{T \in \mathbb{Z}[n][\partial] \mid a^{k}T \in I, \text{for some } k \in \mathbb{N}\}$$

the saturation of I with respect to a.

Saturation

Example 4 (Continued) From Lemma 1, we can not conclude that $Cont(L) = \mathbb{Z}[n][\partial] \cdot M_{11}$. We will show $Cont(L) = \mathbb{Z}[n][\partial] \cdot M_{14}$. Let I be a left ideal of $\mathbb{Z}[n][\partial]$, $a \in \mathbb{Z} \setminus \{0\}$, we call

$$I: a^{\infty} = \{T \in \mathbb{Z}[n][\partial] \mid a^{k}T \in I, \text{for some } k \in \mathbb{N}\}$$

the saturation of I with respect to a.

Theorem 3 Let $L \in \mathbb{Z}[n][\partial]$, deg_{∂}(L) = r. Suppose that M_k contains a weakly desingularized operator T, lc_{∂}(T) = ag, where $a \in \mathbb{Z}$, g is primitive. Then Cont(L) = ($\mathbb{Z}[n][\partial] \cdot M_k$) : a^{∞} .

An algorithm for contraction

Algorithm 2 Input: $L \in \mathbb{Z}[n][\partial]$. Output: a basis of Cont(L).

- 1. Derive an order bound k such that M_k contains a weakly desingularized operator.
- 2. Compute a basis of M_k and a weakly desingularized operator T by using Algorithm 1, where $lc_\partial(T) = ag$, $a \in \mathbb{Z}$, g is primitive.
- 3. Compute a basis **G** of $(\mathbb{Z}[n][\partial] \cdot M_k) : a^{\infty}$ by using Gröbner bases. Output: **G**

Example for contraction

Example 1 (continued) Consider the recurrence operator:

$$L = (1 + 16n)^2 \partial^2 - (224 + 512n)\partial - (1 + n)(17 + 16n)^2$$

 M_3 contains a weakly desingularized operator \overline{T} , such that $lc_{\partial}(\overline{T}) = 1$. From Theorem 3,

$$\operatorname{Cont}(L) = (\mathbb{Z}[n][\partial] \cdot M_3) : 1^{\infty} = \mathbb{Z}[n][\partial] \cdot M_3.$$

By Algorithm 2, Cont(L) is generated by $\{L, \overline{T}\}$.

Conjecture: Let $(a_n)_{\geq 0}$ and $(b_n)_{\geq 0}$ be two P-recursive sequences over the integers with leading coefficient n. Show that $(n!a_nb_n)_{\geq 0}$ is also a P-recursive sequence over the integers with leading coefficient n.

Conjecture: Let $(a_n)_{\geq 0}$ and $(b_n)_{\geq 0}$ be two P-recursive sequences over the integers with leading coefficient n. Show that $(n!a_nb_n)_{\geq 0}$ is also a P-recursive sequence over the integers with leading coefficient n.

Given two recurrence equations

$$na_n = \alpha_1 a_{n-1} + \ldots + \alpha_s a_{n-s}$$
$$nb_n = \beta_1 b_{n-1} + \ldots + \beta_t b_{n-t}$$

We construct a minimal recurrence operator L for $c_n := n!a_nb_n$. Task: Find a strongly desingularized operator for L.

Conjecture: Let $(a_n)_{\geq 0}$ and $(b_n)_{\geq 0}$ be two P-recursive sequences over the integers with leading coefficient n. Show that $(n!a_nb_n)_{\geq 0}$ is also a P-recursive sequence over the integers with leading coefficient n.

Given two recurrence equations

$$na_n = \alpha_1 a_{n-1} + \ldots + \alpha_s a_{n-s}$$
$$nb_n = \beta_1 b_{n-1} + \ldots + \beta_t b_{n-t}$$

We construct a minimal recurrence operator L for $c_n := n!a_nb_n$. Task: Find a strongly desingularized operator for L.

Algorithm 2 can be used to search for counterexamples. However, results of experiments suggest that this conjecture might be true!

Special cases

Case 1: Consider the recurrence equations:

$$na_n = \alpha a_{n-1}$$

$$nb_n = \beta_1 b_{n-1} + \ldots + \beta_t b_{n-t}$$

where α , $\beta_i \in \mathbb{Z}[n]$. Then $c_n := n!a_nb_n$ satisfies

$$nc_n = \gamma_1 c_{n-1} + \ldots + \gamma_t c_{n-t}$$

where $\gamma_i := \beta_i \prod_{j=0}^{i-1} \alpha(n-j)$

Special cases

Case 2: Consider the recurrence equations:

$$na_n = \alpha_1 a_{n-1} + \alpha_2 a_{n-2}$$

 $nb_n = \beta_1 b_{n-1} + \beta_2 b_{n-2} + \beta_3 b_{n-3}$

where α_i, β_i are parameters. Then $c_n := n!a_nb_n$ satisfies

$$nc_n = \gamma_1 c_{n-1} + \ldots + \gamma_9 c_{n-9}$$

where $\gamma_i \in \mathbb{Z}[\alpha_1, \alpha_2, \beta_1, \beta_2, \beta_3, n]$.

Special cases

Case 2: Consider the recurrence equations:

$$na_n = \alpha_1 a_{n-1} + \alpha_2 a_{n-2}$$

$$nb_n = \beta_1 b_{n-1} + \beta_2 b_{n-2} + \beta_3 b_{n-3}$$

where α_i, β_j are parameters. Then $c_n := n!a_nb_n$ satisfies

$$nc_n = \gamma_1 c_{n-1} + \ldots + \gamma_9 c_{n-9}$$

where $\gamma_i \in \mathbb{Z}[\alpha_1, \alpha_2, \beta_1, \beta_2, \beta_3, n]$.

Thanks!