The Restriction Problem for D-finite Functions

Yi Zhang

RISC, Johannes Kepler University, Austria KLMM, Chinese Academy of Sciences, China

work in progress

Outline

- D-finite functions
- ▶ The restriction problem
- Three approaches
- ▶ Examples and discussions on Approach 2

Yi Zhang, RISC, KLMM 2/17

Annihilating operators

Let \mathbf{k} be a field of characteristic 0, and x, y two indeterminates.

Let $f = \exp(x^2 + y^2)$. We have

$$\frac{\partial}{\partial x}f - 2x \cdot f = 0, \qquad \frac{\partial}{\partial y}f - 2y \cdot f = 0.$$

Using $\mathbf{k}(x,y)[\partial_x,\partial_y]$ with $\partial_x=\partial/\partial x$ and $\partial_y=\partial/\partial y$,

$$(\partial_x - 2x) \bullet f = 0, \qquad (\partial_y - 2y) \bullet f = 0.$$

L in $\mathbf{k}(x,y)[\partial_x,\partial_y]$ is called an annihilating operator of f if

$$L \bullet f = 0.$$

For example,

$$\partial_x - 2x$$
, $\partial_y - 2y$

are two annihilating operators of f.

Yi Zhang, RISC, KLMM 3/17

D-finite Functions

Let $R = \mathbf{k}(x, y)[\partial_x, \partial_y]$ be the ring of differential operators.

- ▶ the annihilator of f is ann $(f) := \{L \in R : L \bullet f = 0\}.$
- ▶ A left ideal $I \subseteq R$ is D-finite if $\dim_{\mathbf{k}(x,y)}(R/I) < +\infty$.
- ▶ A function *f* is D-finite if ann(*f*) is D-finite.

Example (continued) Let
$$f=\exp\left(x^2+y^2\right)$$
.
$$\operatorname{ann}(f)=\langle\partial_x\ -\ 2x,\ \partial_y\ -\ 2y\rangle,$$

$$\dim_{\mathbf{k}(x,v)}(R/\mathsf{ann}(f)) = 1 \implies f \text{ is D-finite}$$

Yi Zhang, RISC, KLMM 4/17

Motivation

Let f(x, y) be D-finite

Given: a basis $\{P_1, \ldots, P_s\}$ of $I \subseteq ann(f)$ s.t. I is D-finite

Goal: Find a nonzero operator $P \in \mathbf{k}[x][\partial_x]$ such that

$$P \bullet (f(x,y)|_{y=0}) = 0 \qquad (*)$$

Idea: Compute a nonzero operator $P \in \mathbf{k}[x][\partial_x]$ such that

$$P + yQ \in ann(f)$$
 for some $Q \in \mathbf{k}(x, y)[\partial_x, \partial_y]$ (**)

A sufficient condition:

- $(Q \bullet f(x, y))|_{y=0}$ is well-defined.
- $(P \bullet f(x,y))|_{y=0} = P \bullet (f(x,y)|_{y=0})$

then $(**) \Rightarrow (*)$

Yi Zhang, RISC, KLMM 5/17

Restriction Problem

Let f(x, y) be D-finite

Given: a basis $\{P_1, \ldots, P_s\}$ of $I \subseteq ann(f)$ s.t. I is D-finite

Find: a nonzero operator $P \in \mathbf{k}[x][\partial_x]$ such that

$$P + yQ \in I \subseteq ann(f)$$
 for some suitable Q .

Yi Zhang, RISC, KLMM 6/17

Restriction Problem

Let f(x, y) be D-finite

Given: a basis $\{P_1, \ldots, P_s\}$ of $I \subseteq \operatorname{ann}(f)$ s.t. I is D-finite Find: a nonzero operator $P \in \mathbf{k}[x][\partial_x]$ such that

$$P + yQ \in I \subseteq ann(f)$$
 for some suitable Q .

Example Let
$$f = \frac{\sin(x-y)}{x-y}$$
.

By Annihilator in the HolonomicFunctions package,

$$\operatorname{ann}(f) = \langle \partial_x + \partial_y, (x - y)\partial_y^2 - 2\partial_y + (x - y) \rangle$$

We can find
$$P=x\partial_x^2+2\partial_x+x,$$
 $Q=\frac{2}{x-y}\partial_y$ such that
$$P+yQ\in \operatorname{ann}(f).$$

Then

$$P \bullet (f(x, y)|_{y=0}) = 0.$$

Yi Zhang, RISC, KLMM 6/17

Approach 1: Pure Elimination

Let f(x, y) be D-finite. Suppose G is a Gröbner basis of a D-finite left ideal $I \subseteq ann(f)$ w.r.t. a term order \prec .

Each $g \in \mathbf{k}(x,y)[\partial_x,\partial_y]$ can be reduced to a unique element by G, denoted as $\mathsf{nf}(g,I)$.

Find a linear dependence over $\mathbf{k}(x, y)$ among

$$\operatorname{nf}(1, I)$$
 $\operatorname{nf}(\partial_x, I)$
 $\operatorname{nf}(\partial_x^2, I)$

The result is a nonzero operator $T \in \mathbf{k}[x, y][\partial_x]$. Then

$$T|_{v=0} + yQ \in I$$
 for some Q .

Yi Zhang, RISC, KLMM 7/17

Approach 2

Let f(x, y) be D-finite

Find a linear dependence over k(x) among

$$\begin{array}{l}
\operatorname{nf}(1,I)|_{y=0} \\
\operatorname{nf}(\partial_{x},I)|_{y=0} \\
\operatorname{nf}(\partial_{x}^{2},I)|_{y=0} \\
\dots
\end{array}$$

Suppose that the result is $P \in \mathbf{k}[x][\partial_x]$. Then

$$P + yQ \in I$$
 for some Q

Yi Zhang, RISC, KLMM 8/17

Approach 2

Let f(x, y) be D-finite

Find a linear dependence over $\mathbf{k}(x)$ among

$$\begin{array}{l}
\operatorname{nf}(1,I)|_{y=0} \\
\operatorname{nf}(\partial_{x},I)|_{y=0} \\
\operatorname{nf}(\partial_{x}^{2},I)|_{y=0}
\end{array}$$

Suppose that the result is $P \in \mathbf{k}[x][\partial_x]$. Then

$$P + yQ \in I$$
 for some Q

Note: Sometimes we can not get P

Yi Zhang, RISC, KLMM 8/17

Approach 3: Algorithm [Saito and Takayama (1994)]

Let f(x, y) be D-finite

Let
$$J = \{L \in \mathbf{k}[x, y][\partial_x, \partial_y] | L \bullet f = 0\}$$

Find a linear dependence over $\mathbf{k}(x)$ among

$$\text{nf}(1, J|_{y=0})
 \text{nf}(\partial_x, J|_{y=0})
 \text{nf}(\partial_x^2, J|_{y=0})
 \dots$$

The result is $P \in \mathbf{k}[x][\partial_x]$. Then

$$P + yQ \in J$$
 for some Q

Note: $J|_{v=0}$ is a $\mathbf{k}[x][\partial_x]$ -submodule of $\mathbf{k}[x][\partial_x, \partial_v]$

Yi Zhang, RISC, KLMM 9/17

Comparison

Yi Zhang, RISC, KLMM 10/17

Example

Approach 1: Let
$$f = \frac{\sin(x-y)}{x-y}$$
.

By Annihilator in the HolonomicFunctions package,

$$\operatorname{ann}(f) = \langle \partial_x + \partial_y, (x - y) \partial_y^2 - 2 \partial_y + (x - y) \rangle$$

Find a linear dependence over $\mathbf{k}(x, y)$ among

$$\begin{aligned} &\mathsf{nf}(1,\mathsf{ann}(f)) = 1 \\ &\mathsf{nf}(\partial_x,\mathsf{ann}(f)) = -\partial_y \\ &\mathsf{nf}(\partial_x^2,\mathsf{ann}(f)) = \frac{2}{\mathsf{x}-\mathsf{y}}\partial_y - 1 \end{aligned}$$

The result is
$$T=(x-y)\partial_x^2+2\partial_x+(x-y)$$
. Then,
$$T|_{y=0}+yQ\in \operatorname{ann}(f) \ \text{ for some } \ Q$$

Yi Zhang, RISC, KLMM 11/17

Example (continued)

Approach 2: Let
$$f = \frac{\sin(x-y)}{x-y}$$
.

By Annihilator in the HolonomicFunctions package,

$$\operatorname{ann}(f) = \langle \partial_x + \partial_y, (x - y) \partial_y^2 - 2 \partial_y + (x - y) \rangle$$

Find a linear dependence over $\mathbf{k}(x)$ among

$$\begin{aligned} & \mathsf{nf}(1,\mathsf{ann}(f))|_{y=0} = 1 \\ & \mathsf{nf}(\partial_x,\mathsf{ann}(f))|_{y=0} = -\partial_y \\ & \mathsf{nf}(\partial_x^2,\mathsf{ann}(f))|_{y=0} = \frac{2}{x}\partial_y - 1 \\ & \dots \end{aligned}$$

The result is $P = x\partial_x^2 + 2\partial_x + x$.

Yi Zhang, RISC, KLMM 12/17

Example (continued)

Approach 2: Let
$$f = \frac{\sin(x-y)}{x-y}$$
.

By Annihilator in the HolonomicFunctions package,

$$\operatorname{ann}(f) = \langle \partial_x + \partial_y, (x - y) \partial_y^2 - 2 \partial_y + (x - y) \rangle$$

Find a linear dependence over $\mathbf{k}(x)$ among

$$\begin{aligned} &\mathsf{nf}(1,\mathsf{ann}(f))|_{y=0} = 1 \\ &\mathsf{nf}(\partial_x,\mathsf{ann}(f))|_{y=0} = -\partial_y \\ &\mathsf{nf}(\partial_x^2,\mathsf{ann}(f))|_{y=0} = \frac{2}{x}\partial_y - 1 \\ &\dots \end{aligned}$$

The result is $P = x\partial_x^2 + 2\partial_x + x$.

Note that in this case

$$P = T|_{v=0}$$
.

Yi Zhang, RISC, KLMM 12/17

Example 2

Approach 1: Let $f = \sin(x^2 + y^2)$.

By Annihilator in the HolonomicFunctions package,

$$\operatorname{ann}(f) = \langle y \partial_x - x \partial_y, -y \partial_y^2 + \partial_y - 4y^3 \rangle$$

Find a linear dependence over $\mathbf{k}(x, y)$ among

$$\begin{aligned} &\mathsf{nf}(1,\mathsf{ann}(f)) = 1 \\ &\mathsf{nf}(\partial_x,\mathsf{ann}(f)) = \frac{x}{y}\partial_y \\ &\mathsf{nf}(\partial_x^2,\mathsf{ann}(f)) = \frac{1}{y}\partial_y - 4x^2 \end{aligned}$$

The result is $T = x\partial_x^2 - \partial_x + 4x^3$. Then

$$T|_{y=0} + yQ \in ann(f)$$
 for some Q

Yi Zhang, RISC, KLMM 13/17

Example 2 (continued)

Approach 2: Let $f = \sin(x^2 + y^2)$.

By Annihilator in the HolonomicFunctions package,

$$\operatorname{ann}(f) = \langle y \partial_x - x \partial_y, -y \partial_y^2 + \partial_y - 4y^3 \rangle$$

Find a linear dependence over $\mathbf{k}(x)$ among

$$\begin{split} & \mathsf{nf}(1,\mathsf{ann}(f))|_{y=0} = 1 \\ & \mathsf{nf}(\partial_x,\mathsf{ann}(f))|_{y=0} = \left(\frac{\mathsf{x}}{\mathsf{y}}\partial_y\right)|_{y=0} \\ & \mathsf{nf}(\partial_x^2,\mathsf{ann}(f))|_{y=0} = \left(\frac{1}{\mathsf{y}}\partial_y - 4\mathsf{x}^2\right)|_{y=0} \end{split}$$

Approach 2 fails!

Yi Zhang, RISC, KLMM 14/17

Example 2 (continued)

A modified Approach 2: Let $f = \sin(x^2 + y^2)$.

By Annihilator in the HolonomicFunctions package,

$$\operatorname{ann}(f) = \langle y \partial_x - x \partial_y, -y \partial_y^2 + \partial_y - 4y^3 \rangle$$

Find a linear dependence over $\mathbf{k}(x)$ among

$$\begin{aligned}
 &\mathsf{nf}(1,\mathsf{ann}(f)) = 1 \\
 &\mathsf{nf}(\partial_x,\mathsf{ann}(f)) = \left(\frac{\mathsf{x}}{\mathsf{y}}\partial_y\right) \\
 &\mathsf{nf}(\partial_x^2,\mathsf{ann}(f)) = \left(\frac{1}{\mathsf{y}}\partial_y - 4x^2\right) \\
 &\cdots
 \end{aligned}$$

Yi Zhang, RISC, KLMM 15/17

Example 2 (continued)

Let

$$\mathbf{v}_0 = \left(egin{array}{c} 0 \\ 1 \end{array}
ight), \quad \mathbf{v}_1 = \left(egin{array}{c} rac{x}{y} \\ 0 \end{array}
ight), \quad \mathbf{v}_2 = \left(egin{array}{c} rac{1}{y} \\ -4x^2 \end{array}
ight)$$

By Cramer's rule, Let

$$\Delta_0 = \left| egin{array}{cc} rac{1}{y} & rac{x}{y} \ -4x^2 & 0 \end{array}
ight|, \quad \Delta_1 = \left| egin{array}{cc} 0 & rac{1}{y} \ 1 & -4x^2 \end{array}
ight|, \quad \Delta_2 = \left| egin{array}{cc} 0 & rac{x}{y} \ 1 & 0 \end{array}
ight|$$

we have

$$-\Delta_2 \cdot \mathbf{v}_2 + \Delta_1 \cdot \mathbf{v}_1 + \Delta_0 \cdot \mathbf{v}_0 = 0$$

By clearing the denominator, setting y=0 and expanding the determinants,

$$x \cdot \mathbf{v}_2 - \mathbf{v}_1 + 4x^3 \cdot \mathbf{v}_0 = 0$$

Get

$$P = x\partial_x^2 - \partial_x + 4x^3$$

Yi Zhang, RISC, KLMM 16/17

Problem

Question 1: To what extent does the modified Approach 2 work?

Yi Zhang, RISC, KLMM

Problem

Question 1: To what extent does the modified Approach 2 work?

Question 2: What are the necessary and sufficient conditions for:

$$P+yQ\in \operatorname{ann}(f)$$
 for some $Q\in \mathbf{k}(x,y)[\partial_x,\partial_y]$ \updownarrow

$$P \bullet (f(x,y)|_{y=0}) = 0$$

Yi Zhang, RISC, KLMM 17/17

Problem

Question 1: To what extent does the modified Approach 2 work?

Question 2: What are the necessary and sufficient conditions for:

$$P+yQ\in \mathsf{ann}(f)$$
 for some $Q\in \mathbf{k}(x,y)[\partial_x,\partial_y]$
$$\updownarrow$$

$$P\bullet (f(x,y)|_{y=0})=0$$

Thanks!

Yi Zhang, RISC, KLMM 17/17