# Desingularization in the $q$-Weyl Algebra 

Yi Zhang

Department of Foundational Mathematics<br>Xi'an Jiaotong-Liverpool University, Suzhou, China

Joint work with Christoph Koutschan


## Garoufalidis' conjecture

Conjecture: Let $J_{K}(n) \in \mathbb{Q}(q)$ be the Jones polynomial of a "colored" knot $K$. Then $\left(J_{K}(n)\right)_{n \in \mathbb{N}}$ has the following properties:

1. $\left(1-q^{n}\right) J_{K}(n)$ satisfies a bimonic recurrence relation,
2. $J_{K}(n)$ does not satisfy a monic recurrence relation.

- $J_{K}(n)$ satisfies a nonzero linear $q$-difference equation, i.e., $p_{r}\left(q, q^{n}\right) J_{K}(n+r)+(\cdots) J_{K}(n+r-1)+\cdots+p_{0}\left(q, q^{n}\right) J_{K}(n)=0$, where $p_{i}(n) \in \mathbb{Q}\left[q, q^{n}\right]$.
- If $J_{K}(n)=\sum_{k=0}^{n} \sum_{j=0}^{k} f(j, k)$ with $f(j, k) \in \mathbb{Q}(q)$, one can use "Guess" to find such an equation.


## Example for Garoufalidis' conjecture

$$
\begin{align*}
& \text { Let } f(n)=\left(1-q^{n}\right) J_{K}(n) \text {. Assume that } \\
& p_{r}\left(q, q^{n}\right) f(n+r)+(\cdots) f(n+r-1)+\cdots+p_{0}\left(q, q^{n}\right) f(n)=0 . \tag{1}
\end{align*}
$$

- If $p_{r}(n)=q^{a n+b}$, then we call (1) monic.
- If $p_{r}(n)=q^{a n+b}$ and $p_{0}(n)=q^{c n+d}$, then we call (1) bimonic.


## Example for Garoufalidis' conjecture

Let $f(n)=\left(1-q^{n}\right) J_{K}(n)$. Assume that

$$
\begin{equation*}
p_{r}\left(q, q^{n}\right) f(n+r)+(\cdots) f(n+r-1)+\cdots+p_{0}\left(q, q^{n}\right) f(n)=0 . \tag{1}
\end{equation*}
$$

- If $p_{r}(n)=q^{a n+b}$, then we call (1) monic.
- If $p_{r}(n)=q^{a n+b}$ and $p_{0}(n)=q^{c n+d}$, then we call (1) bimonic.

Example 1 Consider the equation of $\left(1-q^{n}\right) J_{K}(n)$ with $K=K_{-1}^{\text {twist }}$.
$q^{2 n+2}\left(q^{2 n+1}-1\right) f(n+2)+(\cdots) f(n+1)+q^{2 n+2}\left(q^{2 n+3}-1\right) f(n)=0$.

## Example for Garoufalidis' conjecture

Let $f(n)=\left(1-q^{n}\right) J_{K}(n)$. Assume that

$$
\begin{equation*}
p_{r}\left(q, q^{n}\right) f(n+r)+(\cdots) f(n+r-1)+\cdots+p_{0}\left(q, q^{n}\right) f(n)=0 . \tag{1}
\end{equation*}
$$

- If $p_{r}(n)=q^{a n+b}$, then we call (1) monic.
- If $p_{r}(n)=q^{a n+b}$ and $p_{0}(n)=q^{c n+d}$, then we call (1) bimonic.

Example 1 Consider the equation of $\left(1-q^{n}\right) J_{K}(n)$ with $K=K_{-1}^{\text {twist }}$.
$q^{2 n+2}\left(q^{2 n+1}-1\right) f(n+2)+(\cdots) f(n+1)+q^{2 n+2}\left(q^{2 n+3}-1\right) f(n)=0$.
Our algorithm yields:

$$
q^{2 n+4} f(n+3)+(\cdots) f(n+2)+(\cdots) f(n+1)+q^{3 n+7} f(n)=0 .
$$

## Rings of $q$-difference operators

Let $x=q^{n}$.

$$
\mathbb{Q}(q)[x][\partial] \quad \subset \quad \mathbb{Q}(q, x)[\partial]
$$

$$
q \text {-Weyl algebra } \quad q \text {-rational algebra }
$$

Assume $L=\ell_{r} \partial^{r}+\cdots+\ell_{1} \partial+\ell_{0} \in \mathbb{Q}(q)[x][\partial]$. Then

$$
L \circ f(n)=\ell_{r} f(n+r)+\cdots+\ell_{1} f(n+1)+\ell_{0} f(n)
$$

- Call $L$ an annihilator of $f$ if $L \circ f=0$.
- Call $\operatorname{deg}_{\partial}(L):=r$ the order of $L, \operatorname{lc}_{\partial}(L):=\ell_{r}$ the leading coeff
- Let $T \in \mathbb{Q}(q)[x][\partial]$. Call $T$ a left multiple of $L$ if $T=P L$, where $P \in \mathbb{Q}(q, x)[\partial]$.


## Rings of $q$-difference operators

Example 2 Let $g(n)=[n]_{q}:=\frac{1-q^{n}}{1-q}$. Then

$$
\left(q^{n}-1\right) g(n+1)-\left(q^{n+1}-1\right) g(n)=0
$$

It is equivalent to

$$
[(x-1) \partial-q x+1] \circ g(n)=0
$$

Set $P=(x-1) \partial-q x+1$ and $Q=\frac{1}{q x-1}(\partial-q)$. Then

$$
\begin{aligned}
T & =Q P \\
& =1 \partial^{2}-(q+1) \partial+q
\end{aligned}
$$

is a left multiple of $P$.

## Desingularization

Let $L \in \mathbb{Q}(q)[x][\partial]$ and $p \mid \operatorname{lc}_{\partial}(L)$.
Assume $T \in \mathbb{Q}(q)[x][\partial]$ and $\sigma(x)=q x$. Call $T$ a $p$-removed operator of $L$ if

- $T$ is a left multiple of $L$
- $\sigma^{-k}\left(\mathrm{lc}_{\partial}(T)\right) \left\lvert\, \frac{1}{p} \mathrm{lc}_{\partial}(L)\right.$, where $k=\operatorname{deg}_{\partial}(T)-\operatorname{deg}_{\partial}(L)$.


## Desingularization

Let $L \in \mathbb{Q}(q)[x][\partial]$ and $p \mid \operatorname{lc}_{\partial}(L)$.
Assume $T \in \mathbb{Q}(q)[x][\partial]$ and $\sigma(x)=q x$. Call $T$ a $p$-removed operator of $L$ if

- $T$ is a left multiple of $L$
- $\sigma^{-k}\left(\mathrm{lc}_{\partial}(T)\right) \left\lvert\, \frac{1}{p} \mathrm{lc}_{\partial}(L)\right.$, where $k=\operatorname{deg}_{\partial}(T)-\operatorname{deg}_{\partial}(L)$.

Let $T$ be a $p$-removed operator of $L$. Call $T$ a desingularized operator of $L$ if

$$
\operatorname{deg}\left(\operatorname{lc}_{\partial}(T)\right)=\min \left\{\operatorname{deg}\left(\operatorname{lc}_{\partial}(Q)\right) \mid Q \text { is a p-removed operator }\right\}
$$

## Desingularization

Example 2 (continued) Let $P=(x-1) \partial-q x+1$ and $Q=\frac{1}{q x-1}(\partial-q)$. Then

$$
\begin{aligned}
T & =Q P \\
& =1 \partial^{2}-(q+1) \partial+q
\end{aligned}
$$

is a desingularized operator of $P$.

## Desingularization

Example 2 (continued) Let $P=(x-1) \partial-q x+1$ and $Q=\frac{1}{q x-1}(\partial-q)$. Then

$$
\begin{aligned}
T & =Q P \\
& =1 \partial^{2}-(q+1) \partial+q
\end{aligned}
$$

is a desingularized operator of $P$.
Goal: Given $P \in \mathbb{Q}(q)[x][\partial]$, how to compute a desingularized operator of $P$ ?

## Order bound for desingularized operators

Let $L \in \mathbb{Q}(q)[x][\partial]$.
Assume $p \mid \mathrm{Ic}_{\partial}(L), p$ is irreducible.

- If $p=x$, then $p$ is not removable from $L$.
- If $p \neq x$ and $p$ is removable, then one can compute an integer $k$, s.t. there exists a $p$-removing operator of order $k$.
- Using Euclidean algorithm, one can compute an order bound for desingularized operators.

Koutschan and Z. Desingularization in the $q$-Weyl algebra. Adv. Appl. Math. 97, pp. 80-101, 2018

Chen et al. Desingularization explains order-degree curves for Ore operators. ISSAC 2013.

## Determining the $k$-th submodule

Given $L \in \mathbb{Q}(q)[x][\partial], \operatorname{deg}_{\partial}(L)=r$.
Set $k \geq r$. Call

$$
M_{k}:=\left\{T \mid T \text { is a left multiple of } L, \operatorname{deg}_{\partial}(T) \leq k\right\}
$$ the $k$-th submodule of $L$.

## Determining the $k$-th submodule

Given $L \in \mathbb{Q}(q)[x][\partial], \operatorname{deg}_{\partial}(L)=r$.
Set $k \geq r$. Call

$$
M_{k}:=\left\{T \mid T \text { is a left multiple of } L, \operatorname{deg}_{\partial}(T) \leq k\right\}
$$ the $k$-th submodule of $L$.

Question: Given $k \geq r$, compute a $\mathbb{Q}(q)[x]$-spanning set of $M_{k}$ ?

## Determining the $k$-th submodule

Given $L \in \mathbb{Q}(q)[x][\partial], \operatorname{deg}_{\partial}(L)=r$.
Set $k \geq r$. Call

$$
M_{k}:=\left\{T \mid T \text { is a left multiple of } L, \operatorname{deg}_{\partial}(T) \leq k\right\}
$$ the $k$-th submodule of $L$.

Question: Given $k \geq r$, compute a $\mathbb{Q}(q)[x]$-spanning set of $M_{k}$ ?

1. Make an ansatz: $F=z_{k} \partial^{k}+\ldots+z_{0}$, where $z_{k}, \ldots, z_{0} \in \mathbb{Q}(q)[x]$ are to be determined.
2. Compute $\operatorname{rrem}(F, L)=0$. It gives:

$$
\begin{equation*}
\left(z_{k}, \ldots, z_{0}\right) A=\mathbf{0} \tag{2}
\end{equation*}
$$

where $A \in \mathbb{Q}(q)[x]^{(k+1) \times r}$.
3. Using Gröbner bases or linear algebra, solve (2).

## Computing desingularized operators

Let $L \in \mathbb{Q}(q)[x][\partial], \operatorname{deg}_{\partial}(L)=r$.
Question: Assume $k$ is an order bound for desingularized operators of $L$, compute a desingularized operator?

## Computing desingularized operators

Let $L \in \mathbb{Q}(q)[x][\partial], \operatorname{deg}_{\partial}(L)=r$.
Question: Assume $k$ is an order bound for desingularized operators of $L$, compute a desingularized operator?

Set $k \geq r$. Call

$$
I_{k}:=\left\{\left[\partial^{k}\right] P \mid P \in M_{k}\right\} \cup\{0\}
$$

the $k$-th coefficient ideal of $L$, where $\left[\partial^{k}\right] P$ is the coefficient of $\partial^{k}$ in $P$.

## Computing desingularized operators

Proposition 1 If $\left\{B_{1}, \ldots, B_{t}\right\}$ is a spanning set of $M_{k}$, then

$$
I_{k}=\left\langle\left[\partial^{k}\right] B_{1}, \ldots,\left[\partial^{k}\right] B_{t}\right\rangle
$$

## Computing desingularized operators

Proposition 1 If $\left\{B_{1}, \ldots, B_{t}\right\}$ is a spanning set of $M_{k}$, then

$$
I_{k}=\left\langle\left[\partial^{k}\right] B_{1}, \ldots,\left[\partial^{k}\right] B_{t}\right\rangle
$$

Theorem 1 If $s$ is a nonzero element of $I_{k}$ with minimal degree, then $S$ in $M_{k}$ with $\mathrm{lc}_{\partial}(S)=s$ is a desingularized operator.

## Computing desingularized operators

Proposition 1 If $\left\{B_{1}, \ldots, B_{t}\right\}$ is a spanning set of $M_{k}$, then

$$
I_{k}=\left\langle\left[\partial^{k}\right] B_{1}, \ldots,\left[\partial^{k}\right] B_{t}\right\rangle
$$

Theorem 1 If $s$ is a nonzero element of $I_{k}$ with minimal degree, then $S$ in $M_{k}$ with $\mathrm{lc}_{\partial}(S)=s$ is a desingularized operator.

Note: Using Euclidean algorithm over $\mathbb{Q}(q)[x]$, one can compute an operator $S$ with $\operatorname{lc}_{\partial}(S)=s$.

## Computing desingularized operators

Algorithm 1: Given $L \in \mathbb{Q}(q)[x][\partial]$, compute a desingularized operator of $L$.

1. Compute an order bound $k$ for desingularized operators of $L$.
2. Compute a spanning set of $M_{k}$.
3. Using Euclidean algorithm over $\mathbb{Q}(q)[x]$, compute an operator $S \in M_{k}$ with $\operatorname{lc}_{\partial}(S)=s$ such that $s$ is a nonzero element of $I_{k}$ with minimal degree.
4. Output $S$.

## Garoufalidis' conjecture

Conjecture: Let $J_{K}(n) \in \mathbb{Q}(q)$ be the Jones polynomial of a "colored" knot $K$. Then $\left(J_{K}(n)\right)_{n \in \mathbb{N}}$ has:

1. $\left(1-q^{n}\right) J_{K}(n)$ satisfies a bimonic recurrence relation,
2. $J_{K}(n)$ does not satisfy a monic recurrence relation.

Example 1 (Continued) Consider the equation of $\left(1-q^{n}\right) J_{K}(n)$ with $K=K_{-1}^{\text {twist }}$.
$q^{2 n+2}\left(q^{2 n+1}-1\right) f(n+2)+(\cdots) f(n+1)+q^{2 n+2}\left(q^{2 n+3}-1\right) f(n)=0$.
It is equivalent to

$$
\begin{aligned}
& \quad\left[q^{2} x^{2}\left(q x^{2}-1\right) \partial^{2}+(\cdots) \partial+q^{2} x^{2}\left(q^{3} x^{2}-1\right)\right] \circ f(n)=0 . \\
& \text { Set } L=q^{2} x^{2}\left(q x^{2}-1\right) \partial^{2}+(\cdots) \partial+q^{2} x^{2}\left(q^{3} x^{2}-1\right) .
\end{aligned}
$$

## Garoufalidis' conjecture

Using Algorithm 1, we have

1. An order bound for desingularized operators of $L$ is 3 .
2. A spanning set of $M_{3}$ over $\mathbb{Q}(q)[x]$ is $\{S, L\}$ with

$$
S=q^{4} x^{2} \partial^{3}+(\cdots) \partial^{2}+(\cdots) \partial+q^{7} x^{3}
$$

3. By Theorem 1,S is a desingularized operator of $L$.
4. Output $S \circ f(n)=0$, which is equivalent to

$$
q^{2 n+4} f(n+3)+(\cdots) f(n+2)+(\cdots) f(n+1)+q^{3 n+7} f(n)=0 .
$$

## Garoufalidis' conjecture

Using Algorithm 1, we have

1. An order bound for desingularized operators of $L$ is 3 .
2. A spanning set of $M_{3}$ over $\mathbb{Q}(q)[x]$ is $\{S, L\}$ with

$$
S=q^{4} x^{2} \partial^{3}+(\cdots) \partial^{2}+(\cdots) \partial+q^{7} x^{3}
$$

3. By Theorem 1,S is a desingularized operator of $L$.
4. Output $S \circ f(n)=0$, which is equivalent to

$$
q^{2 n+4} f(n+3)+(\cdots) f(n+2)+(\cdots) f(n+1)+q^{3 n+7} f(n)=0
$$

- Algorithm 1 can be used for desingularization of trailing coeff of $L$.
- Algorithm 1 can be used for verification of item 2 of Garoufalidis' conjecture.


## Conclusion

- Order bound for desingularized operators
- An algorithm for computing desingularized operators
- Certify special cases of Garouifalids' conjecture


## Conclusion

- Order bound for desingularized operators
- An algorithm for computing desingularized operators
- Certify special cases of Garouifalids' conjecture


## Thanks!

