Mahler Discrete Residues and Summability for Rational Functions

Yi Zhang
Department of Foundational Mathematics Xi'an Jiaotong-Liverpool University, Suzhou, China

Joint work with Carlos E. Arreche

Linear Mahler equations

Let \mathbb{K} be an algebraically closed field of char $0, x$ be an indeterminate, and $p \in \mathbb{Z}_{\geq 2}$.

Consider

$$
\begin{equation*}
\ell_{r}(x) y\left(x^{p^{r}}\right)+\ell_{r-1}(x) y\left(x^{p^{r-1}}\right)+\cdots+\ell_{0}(x) y(x)=f(x), \tag{1}
\end{equation*}
$$

where $\ell_{i}, f \in \mathbb{K}[x]$ are given, $y(x)$ is unknown. A solution of (1) is called a Mahler function.
(Mahler 1929): study Mahler equations to prove the transcendence of values of some functions.

Fact: the generating series of any p-automatic sequence (such as the Baum-Sweet and the Rudin-Shapiro sequences) is a Mahler function.

Differential Galois theory

Using differential Galois theory, we can determine the differential-algebraic relations between solutions of Mahler equations.

Example (Roques 2018): A Galoisian proof that the generating series of the Baum-Sweet and Rudin-Shapiro sequences are algebraic independent over $\overline{\mathbb{Q}}(x)$.

Goal: Design effective algorithms for computing differential Galois groups of a given linear Mahler equations.

Discrete residues, telescopers, and Galois theory

Endow $\mathbb{K}(x)$ with one of the $\sigma \delta$-field structures:
(S) $\sigma: f(x) \mapsto f(x+1)$ and $\delta=\frac{d}{d x}$;
(Q) $\sigma: f(x) \mapsto f(q x)$ with $q \in \mathbb{K}^{\times}$not root of unity and $\delta=x \frac{d}{d x}$.

Discrete residues, telescopers, and Galois theory

Endow $\mathbb{K}(x)$ with one of the $\sigma \delta$-field structures:
(S) $\sigma: f(x) \mapsto f(x+1)$ and $\delta=\frac{d}{d x}$;
(Q) $\sigma: f(x) \mapsto f(q x)$ with $q \in \mathbb{K}^{\times}$not root of unity and $\delta=x \frac{d}{d x}$.

Let $z_{1}, \ldots, z_{n} \in F$, a $\sigma \delta$-extension of $\mathbb{K}(x)$ with $F^{\sigma}=\mathbb{K}$, satisfying

$$
\sigma\left(z_{i}\right)=a_{i} z_{i} \quad \text { for some } a_{1}, \ldots, a_{n} \in \mathbb{K}(x)^{\times}
$$

Discrete residues, telescopers, and Galois theory

Endow $\mathbb{K}(x)$ with one of the $\sigma \delta$-field structures:
(S) $\sigma: f(x) \mapsto f(x+1)$ and $\delta=\frac{d}{d x}$;
(Q) $\sigma: f(x) \mapsto f(q x)$ with $q \in \mathbb{K}^{\times}$not root of unity and $\delta=x \frac{d}{d x}$.

Let $z_{1}, \ldots, z_{n} \in F$, a $\sigma \delta$-extension of $\mathbb{K}(x)$ with $F^{\sigma}=\mathbb{K}$, satisfying

$$
\sigma\left(z_{i}\right)=a_{i} z_{i} \quad \text { for some } a_{1}, \ldots, a_{n} \in \mathbb{K}(x)^{\times}
$$

Proposition (Hardouin-Singer 2008) z_{1}, \ldots, z_{n} are δ-dependent over $\mathbb{K}(x)$ iff $\exists \mathcal{L}_{1}, \ldots, \mathcal{L}_{n} \in \mathbb{K}[\delta]$, linear δ-operators with coefficients in \mathbb{K}, not all 0 , and $g \in \mathbb{K}(x)$:

$$
\mathcal{L}_{1}\left(\frac{\delta\left(a_{1}\right)}{a_{1}}\right)+\cdots+\mathcal{L}_{n}\left(\frac{\delta\left(a_{n}\right)}{a_{n}}\right)=\sigma(g)-g .
$$

Discrete residues, telescopers, and Galois theory

Endow $\mathbb{K}(x)$ with one of the $\sigma \delta$-field structures:
(S) $\sigma: f(x) \mapsto f(x+1)$ and $\delta=\frac{d}{d x}$;
(Q) $\sigma: f(x) \mapsto f(q x)$ with $q \in \mathbb{K}^{\times}$not root of unity and $\delta=x \frac{d}{d x}$.

Let $z_{1}, \ldots, z_{n} \in F$, a $\sigma \delta$-extension of $\mathbb{K}(x)$ with $F^{\sigma}=\mathbb{K}$, satisfying

$$
\sigma\left(z_{i}\right)=a_{i} z_{i} \quad \text { for some } a_{1}, \ldots, a_{n} \in \mathbb{K}(x)^{\times}
$$

Proposition (Hardouin-Singer 2008) z_{1}, \ldots, z_{n} are δ-dependent over $\mathbb{K}(x)$ iff $\exists \mathcal{L}_{1}, \ldots, \mathcal{L}_{n} \in \mathbb{K}[\delta]$, linear δ-operators with coefficients in \mathbb{K}, not all 0 , and $g \in \mathbb{K}(x)$:

$$
\mathcal{L}_{1}\left(\frac{\delta\left(a_{1}\right)}{a_{1}}\right)+\cdots+\mathcal{L}_{n}\left(\frac{\delta\left(a_{n}\right)}{a_{n}}\right)=\sigma(g)-g .
$$

(Arreche 2017, Arreche-Z. 2022): Using (q-)discrete residues, there exist constants $m_{1}, \ldots, m_{n} \in \mathbb{K}$, not all 0 , such that

$$
m_{1} \frac{\delta\left(a_{1}\right)}{a_{1}}+\cdots+m_{n} \frac{\delta\left(a_{n}\right)}{a_{n}}=\sigma(g)-g+c
$$

for some $g \in \mathbb{K}(x)$ and $c \in \mathbb{K}$ (with $c=0$ in case (S)).

Motivation

Proposition (Hardouin-Singer 2008) z_{1}, \ldots, z_{n} are δ-dependent over $\mathbb{K}(x)$ iff $\exists \mathcal{L}_{1}, \ldots, \mathcal{L}_{n} \in \mathbb{K}[\delta]$, linear δ-operators with coefficients in \mathbb{K}, not all 0 , and $g \in \mathbb{K}(x)$:

$$
\mathcal{L}_{1}\left(\frac{\delta\left(a_{1}\right)}{a_{1}}\right)+\cdots+\mathcal{L}_{n}\left(\frac{\delta\left(a_{n}\right)}{a_{n}}\right)=\sigma(g)-g .
$$

It also holds for the Mahler case. Question: How to derive the explicit formulae for $\mathcal{L}_{1}, \ldots, \mathcal{L}_{n}$?

Motivation

Proposition (Hardouin-Singer 2008) z_{1}, \ldots, z_{n} are δ-dependent over $\mathbb{K}(x)$ iff $\exists \mathcal{L}_{1}, \ldots, \mathcal{L}_{n} \in \mathbb{K}[\delta]$, linear δ-operators with coefficients in \mathbb{K}, not all 0 , and $g \in \mathbb{K}(x)$:

$$
\mathcal{L}_{1}\left(\frac{\delta\left(a_{1}\right)}{a_{1}}\right)+\cdots+\mathcal{L}_{n}\left(\frac{\delta\left(a_{n}\right)}{a_{n}}\right)=\sigma(g)-g .
$$

It also holds for the Mahler case. Question: How to derive the explicit formulae for $\mathcal{L}_{1}, \ldots, \mathcal{L}_{n}$?

Idea: Develop the notion of Mahler discrete residues and derive an effective version of Hardouin-Singer's Proposition in the Mahler case.

Continuous residues

Let \mathbb{K} be an algebraically closed field of char 0 , and let $f(x) \in \mathbb{K}(x)$. Make the partial fraction decomposition

$$
f(x)=r(x)+\sum_{\alpha \in \mathbb{K}} \sum_{k \geq 1} \frac{c_{\alpha}(k)}{(x-\alpha)^{k}}
$$

where $r(x) \in \mathbb{K}[x]$ and $c_{\alpha}(k) \in \mathbb{K}$ (almost all 0$)$.

Continuous residues

Let \mathbb{K} be an algebraically closed field of char 0 , and let $f(x) \in \mathbb{K}(x)$. Make the partial fraction decomposition

$$
f(x)=r(x)+\sum_{\alpha \in \mathbb{K}} \sum_{k \geq 1} \frac{c_{\alpha}(k)}{(x-\alpha)^{k}},
$$

where $r(x) \in \mathbb{K}[x]$ and $c_{\alpha}(k) \in \mathbb{K}$ (almost all 0$)$.
Then $f(x)$ is rationally integrable, i.e., there exists $g(x) \in \mathbb{K}(x)$ such that $g^{\prime}(x)=f(x)$, if and only if the (continuous first-order) residues

$$
\operatorname{res}(f, \alpha, 1):=c_{\alpha}(1)=0 \quad \text { for every } \alpha \in \mathbb{K}
$$

Continuous residues

Let \mathbb{K} be an algebraically closed field of char 0 , and let $f(x) \in \mathbb{K}(x)$. Make the partial fraction decomposition

$$
f(x)=r(x)+\sum_{\alpha \in \mathbb{K}} \sum_{k \geq 1} \frac{c_{\alpha}(k)}{(x-\alpha)^{k}},
$$

where $r(x) \in \mathbb{K}[x]$ and $c_{\alpha}(k) \in \mathbb{K}$ (almost all 0$)$.
Then $f(x)$ is rationally integrable, i.e., there exists $g(x) \in \mathbb{K}(x)$ such that $g^{\prime}(x)=f(x)$, if and only if the (continuous first-order) residues

$$
\operatorname{res}(f, \alpha, 1):=c_{\alpha}(1)=0 \quad \text { for every } \alpha \in \mathbb{K}
$$

Chen and Singer (2012) created a notion of discrete residues that plays an analogous role (where integrability \mapsto summability) for the shift $(x \mapsto x+1)$ and q-dilation $(x \mapsto q x)$ difference operators.

Discrete residues: shift case

Rewrite the partial fraction decomposition of $f(x) \in \mathbb{K}(x)$:

$$
f(x)=r(x)+\sum_{k \geq 1} \sum_{[\alpha] \in \mathbb{K} / \mathbb{Z}} \sum_{n \in \mathbb{Z}} \frac{c_{\alpha}(k, n)}{(x-\alpha+n)^{k}}
$$

where $r(x) \in \mathbb{K}[x], \alpha \in \mathbb{K}$ is a coset representative for $[\alpha]:=\alpha+\mathbb{Z} \in \mathbb{K} / \mathbb{Z}$, and $c_{\alpha}(k, n) \in \mathbb{K}$.

Discrete residues: shift case

Rewrite the partial fraction decomposition of $f(x) \in \mathbb{K}(x)$:

$$
f(x)=r(x)+\sum_{k \geq 1} \sum_{[\alpha] \in \mathbb{K} / \mathbb{Z}} \sum_{n \in \mathbb{Z}} \frac{c_{\alpha}(k, n)}{(x-\alpha+n)^{k}}
$$

where $r(x) \in \mathbb{K}[x], \alpha \in \mathbb{K}$ is a coset representative for $[\alpha]:=\alpha+\mathbb{Z} \in \mathbb{K} / \mathbb{Z}$, and $c_{\alpha}(k, n) \in \mathbb{K}$.

The discrete residue of $f(x) \in \mathbb{K}(x)$ at the \mathbb{Z}-orbit $[\alpha] \in \mathbb{K} / \mathbb{Z}$ of order k is defined as

$$
\operatorname{dres}(f,[\alpha], k):=\sum_{n \in \mathbb{Z}} c_{\alpha}(k, n)
$$

Discrete residues: shift case

Rewrite the partial fraction decomposition of $f(x) \in \mathbb{K}(x)$:

$$
f(x)=r(x)+\sum_{k \geq 1} \sum_{[\alpha] \in \mathbb{K} / \mathbb{Z}} \sum_{n \in \mathbb{Z}} \frac{c_{\alpha}(k, n)}{(x-\alpha+n)^{k}}
$$

where $r(x) \in \mathbb{K}[x], \alpha \in \mathbb{K}$ is a coset representative for $[\alpha]:=\alpha+\mathbb{Z} \in \mathbb{K} / \mathbb{Z}$, and $c_{\alpha}(k, n) \in \mathbb{K}$.

The discrete residue of $f(x) \in \mathbb{K}(x)$ at the \mathbb{Z}-orbit $[\alpha] \in \mathbb{K} / \mathbb{Z}$ of order k is defined as

$$
\operatorname{dres}(f,[\alpha], k):=\sum_{n \in \mathbb{Z}} c_{\alpha}(k, n)
$$

Proposition (Chen-Singer 2012) $f(x)$ is rationally summable, i.e., there exists $g(x) \in \mathbb{K}(x)$ such that $f(x)=g(x+1)-g(x)$, if and only if $\operatorname{dres}(f,[\alpha], k)=0$ for each $[\alpha] \in \mathbb{K} / \mathbb{Z}$ and $k \in \mathbb{N}$.

Discrete residues: q-dilation case

Fix $q \in \mathbb{K}^{\times}$not a root of unity, and write $f(x) \in \mathbb{K}(x)$:

$$
f(x)=r(x)+\sum_{k \geq 1} \sum_{[\alpha]_{q} \in \mathbb{K}^{\times} / q^{\mathbb{Z}}} \sum_{n \in \mathbb{Z}} \frac{c_{\alpha}(k, n)}{\left(x-q^{n} \alpha\right)^{k}}
$$

where $r(x)=\sum_{j \in \mathbb{Z}} r_{j} x^{j} \in \mathbb{K}\left[x, x^{-1}\right]$ and $\alpha \in \mathbb{K}^{\times}$is a coset representative for $[\alpha]_{q}:=\alpha \cdot q^{\mathbb{Z}} \in \mathbb{K}^{\times} / q^{\mathbb{Z}}$.

Discrete residues: q-dilation case

Fix $q \in \mathbb{K}^{\times}$not a root of unity, and write $f(x) \in \mathbb{K}(x)$:

$$
f(x)=r(x)+\sum_{k \geq 1} \sum_{[\alpha]_{q} \in \mathbb{K} \times / q^{\mathbb{Z}}} \sum_{n \in \mathbb{Z}} \frac{c_{\alpha}(k, n)}{\left(x-q^{n} \alpha\right)^{k}}
$$

where $r(x)=\sum_{j \in \mathbb{Z}} r_{j} x^{j} \in \mathbb{K}\left[x, x^{-1}\right]$ and $\alpha \in \mathbb{K}^{\times}$is a coset representative for $[\alpha]_{q}:=\alpha \cdot q^{\mathbb{Z}} \in \mathbb{K}^{\times} / q^{\mathbb{Z}}$.

The q-discrete residue of $f(x)$ at the $q^{\mathbb{Z}}$-orbit $[\alpha]_{q} \in \mathbb{K}^{\times} / q^{\mathbb{Z}}$ of order k (resp., at infinity) is defined as

$$
q-\operatorname{dres}\left(f,[\alpha]_{q}, k\right):=\sum_{n \in \mathbb{Z}} q^{-k n} c_{\alpha}(k, n) \quad\left(\text { resp., } \quad q \text {-dres }(f, \infty):=r_{0}\right) .
$$

Discrete residues: q-dilation case

Fix $q \in \mathbb{K}^{\times}$not a root of unity, and write $f(x) \in \mathbb{K}(x)$:

$$
f(x)=r(x)+\sum_{k \geq 1} \sum_{[\alpha]_{q} \in \mathbb{K}^{\times} / q^{\mathbb{Z}}} \sum_{n \in \mathbb{Z}} \frac{c_{\alpha}(k, n)}{\left(x-q^{n} \alpha\right)^{k}}
$$

where $r(x)=\sum_{j \in \mathbb{Z}} r_{j} x^{j} \in \mathbb{K}\left[x, x^{-1}\right]$ and $\alpha \in \mathbb{K}^{\times}$is a coset representative for $[\alpha]_{q}:=\alpha \cdot q^{\mathbb{Z}} \in \mathbb{K}^{\times} / q^{\mathbb{Z}}$.

The q-discrete residue of $f(x)$ at the $q^{\mathbb{Z}}$-orbit $[\alpha]_{q} \in \mathbb{K}^{\times} / q^{\mathbb{Z}}$ of order k (resp., at infinity) is defined as

$$
q-\operatorname{dres}\left(f,[\alpha]_{q}, k\right):=\sum_{n \in \mathbb{Z}} q^{-k n} c_{\alpha}(k, n) \quad\left(\text { resp., } \quad q \text {-dres }(f, \infty):=r_{0}\right) .
$$

Proposition (Chen-Singer 2012) $f(x)$ is rationally q-summable, i.e., there exists $g(x) \in \mathbb{K}(x)$ such that $f(x)=g(q x)-g(x)$, if and only if q-dres $(f, \infty)=0$ and q-dres $\left(f,[\alpha]_{q}, k\right)=0$ for each $[\alpha]_{q} \in \mathbb{K}^{\times} / q^{\mathbb{Z}}$ and $k \in \mathbb{N}$.

Why use residues?

An advantage of using residues is to answer whether (yes/no) $f(x) \in \mathbb{K}(x)$ is

- rationally integrable: $f(x)=g^{\prime}(x)$; or
- rationally summable: $f(x)=g(x+1)-g(x)$; or
- rationally q-summable: $f(x)=g(q x)-g(x)$; without computing the certificate $g(x) \in \mathbb{K}(x)$.

Why use residues?

An advantage of using residues is to answer whether (yes/no) $f(x) \in \mathbb{K}(x)$ is

- rationally integrable: $f(x)=g^{\prime}(x)$; or
- rationally summable: $f(x)=g(x+1)-g(x)$; or
- rationally q-summable: $f(x)=g(q x)-g(x)$; without computing the certificate $g(x) \in \mathbb{K}(x)$.

Computing residues from the definition is impractical because it requires doing partial fraction decompositions.

Why use residues?

An advantage of using residues is to answer whether (yes/no) $f(x) \in \mathbb{K}(x)$ is

- rationally integrable: $f(x)=g^{\prime}(x)$; or
- rationally summable: $f(x)=g(x+1)-g(x)$; or
- rationally q-summable: $f(x)=g(q x)-g(x)$;
without computing the certificate $g(x) \in \mathbb{K}(x)$.
Computing residues from the definition is impractical because it requires doing partial fraction decompositions.

In the differential case, there is a better way: if $f=\frac{a}{b}$ with $a, b \in \mathbb{K}[x], \operatorname{gcd}(a, b)=1, \operatorname{deg}(a)<\operatorname{deg}(b)$, and b squarefree, then the roots of the Rothstein-Trager resultant

$$
R T(f):=\operatorname{Res}_{x}\left(a-z \cdot b^{\prime}, b\right) \in \mathbb{K}[z]
$$

are precisely the first-order continuous residues of $f(x)$, which implies $f(x)$ is rationally integrable iff $R T(f)$ is a monomial in z.

Mahler summability for rational functions

Fix $p \in \mathbb{Z}_{\geq 2}$ and let the Mahler difference operator $\sigma: g(x) \mapsto g\left(x^{p}\right)$ for $g(x) \in \mathbb{K}(x)$.

Mahler summability for rational functions

Fix $p \in \mathbb{Z}_{\geq 2}$ and let the Mahler difference operator $\sigma: g(x) \mapsto g\left(x^{p}\right)$ for $g(x) \in \mathbb{K}(x)$.

We say $f(x) \in \mathbb{K}(x)$ is Mahler summable if there exists $g(x) \in \mathbb{K}(x)$ such that $f(x)=g\left(x^{p}\right)-g(x)$.

Mahler summability for rational functions

Fix $p \in \mathbb{Z}_{\geq 2}$ and let the Mahler difference operator $\sigma: g(x) \mapsto g\left(x^{p}\right)$ for $g(x) \in \mathbb{K}(x)$.

We say $f(x) \in \mathbb{K}(x)$ is Mahler summable if there exists $g(x) \in \mathbb{K}(x)$ such that $f(x)=g\left(x^{p}\right)-g(x)$.

Mahler Summability Problem: given $f(x) \in \mathbb{K}(x)$, decide effectively whether $f(x)$ is Mahler summable.

- Done by Chyzak-Dreyfus-Dumas-Mezzarobba (2018).

Mahler summability for rational functions

Fix $p \in \mathbb{Z}_{\geq 2}$ and let the Mahler difference operator $\sigma: g(x) \mapsto g\left(x^{p}\right)$ for $g(x) \in \mathbb{K}(x)$.

We say $f(x) \in \mathbb{K}(x)$ is Mahler summable if there exists $g(x) \in \mathbb{K}(x)$ such that $f(x)=g\left(x^{p}\right)-g(x)$.

Mahler Summability Problem: given $f(x) \in \mathbb{K}(x)$, decide effectively whether $f(x)$ is Mahler summable.

- Done by Chyzak-Dreyfus-Dumas-Mezzarobba (2018).

Our Goal: Construct a (\mathbb{K}-linear) complete obstruction to the Mahler summability of $f(x) \in \mathbb{K}(x)$.

Mahler summability for rational functions

More precisely, for the \mathbb{K}-linear map $\Delta: g(x) \mapsto g\left(x^{p}\right)-g(x)$, we wish to construct explicitly a \mathbb{K}-linear map ∇ on $\mathbb{K}(x)$ such that $\operatorname{im}(\Delta)=\operatorname{ker}(\nabla)$, bypassing computation of certificates.

We call ∇ the Mahler reduction operator. Given $f \in \mathbb{K}(x)$, set $\bar{f}=\nabla(f)$. Then f is Mahler summable if and only if $\bar{f}=0$. The numerators in the partial fraction decomposition of \bar{f} are Mahler discrete residues of f.

Mahler trajectories and Mahler trees

Let $\mathcal{P}=\left\{p^{n} \mid n \in \mathbb{Z}_{\geq 0}\right\}$ denote the multiplicative monoid of non-negative powers of p.

Mahler trajectories and Mahler trees

Let $\mathcal{P}=\left\{p^{n} \mid n \in \mathbb{Z}_{\geq 0}\right\}$ denote the multiplicative monoid of non-negative powers of p.

We denote by \mathbb{Z} / \mathcal{P} the set of maximal trajectories for the action of \mathcal{P} on \mathbb{Z} by multiplication:

$$
\mathbb{Z} / \mathcal{P}=\{\{0\}\} \cup\left\{\left\{i p^{n} \mid n \in \mathbb{Z} \geq 0\right\} \mid i \in \mathbb{Z} \text { such that } p \nmid i\right\} .
$$

The elements $\theta \in \mathbb{Z} / \mathcal{P}$ are pairwise disjoint subsets of \mathbb{Z} whose union is all of \mathbb{Z}.

Mahler trajectories and Mahler trees

Let $\mathcal{P}=\left\{p^{n} \mid n \in \mathbb{Z}_{\geq 0}\right\}$ denote the multiplicative monoid of non-negative powers of p.

We denote by \mathbb{Z} / \mathcal{P} the set of maximal trajectories for the action of \mathcal{P} on \mathbb{Z} by multiplication:

$$
\mathbb{Z} / \mathcal{P}=\{\{0\}\} \cup\left\{\left\{i p^{n} \mid n \in \mathbb{Z} \geq 0\right\} \mid i \in \mathbb{Z} \text { such that } p \nmid i\right\} .
$$

The elements $\theta \in \mathbb{Z} / \mathcal{P}$ are pairwise disjoint subsets of \mathbb{Z} whose union is all of \mathbb{Z}.

We denote by \mathcal{T}_{M} the set of equivalence classes for the equivalence relation on \mathbb{K}^{\times}defined by $\alpha \sim \gamma$ if and only if $\alpha^{p^{s}}=\gamma^{p^{r}}$ for some $r, s \in \mathbb{Z}_{\geq 0}$.

The elements $\tau \in \mathcal{T}_{M}$, called Mahler trees, are pairwise disjoint subsets of \mathbb{K}^{\times}whose union is all of \mathbb{K}^{\times}. We write $\tau(\alpha)$ for the unique Mahler tree containing $\alpha \in \mathbb{K}^{\times}$.

Examples of Mahler trees

We define a digraph on the vertex set τ for each Mahler tree $\tau \in \mathcal{T}_{M}$ with one directed edge $\alpha \rightarrow \gamma$ whenever $\alpha^{p}=\gamma$.

Examples of Mahler trees

We define a digraph on the vertex set τ for each Mahler tree $\tau \in \mathcal{T}_{M}$ with one directed edge $\alpha \rightarrow \gamma$ whenever $\alpha^{p}=\gamma$.

With $p=3$, the vertices of $\tau(2)$ near $2 \in \mathbb{K}^{\times}$are

$$
\begin{aligned}
\left\{\sqrt[9]{2}, \zeta_{3} \sqrt[9]{2}, \zeta_{3}^{2} \sqrt[9]{2}\right\} & \Longrightarrow \sqrt[3]{2} \\
\left\{\zeta_{9}^{9} \sqrt{2}, \zeta_{9}^{4} \sqrt[9]{2}, \zeta_{9}^{7} \sqrt[9]{2}\right\} & \Longrightarrow \zeta_{3} \sqrt[3]{2} \longrightarrow{ }^{2} \longrightarrow 8 \longrightarrow 512 \\
\left\{\zeta_{9}^{2} \sqrt[9]{2}, \zeta_{9}^{5} \sqrt[9]{2}, \zeta_{9}^{8} \sqrt[9]{2}\right\} & \Longrightarrow \zeta_{3}^{2} \sqrt[3]{2}
\end{aligned}
$$

Examples of Mahler trees

We define a digraph on the vertex set τ for each Mahler tree $\tau \in \mathcal{T}_{M}$ with one directed edge $\alpha \rightarrow \gamma$ whenever $\alpha^{p}=\gamma$.

With $p=3$, the vertices of $\tau(2)$ near $2 \in \mathbb{K}^{\times}$are

With $p=3$, the vertices of $\tau\left(\zeta_{4}\right)$ near $\zeta_{4} \in \mathbb{K}^{\times}$are

Mahler decomposition of partial fractions

For $f(x) \in \mathbb{K}(x)$, we can decompose it uniquely as $f(x)=f_{L}(x)+f_{T}(x)$:

$$
f_{L}(x):=\sum_{j \in \mathbb{Z}} r_{j} x^{j} \quad \text { and } \quad f_{T}(x):=\sum_{k \geq 1} \sum_{\alpha \in \mathbb{K}^{\times}} \frac{c_{\alpha}(k)}{(x-\alpha)^{k}},
$$

where $r_{j}, c_{\alpha}(k) \in \mathbb{K}$.

Mahler decomposition of partial fractions

For $f(x) \in \mathbb{K}(x)$, we can decompose it uniquely as $f(x)=f_{L}(x)+f_{T}(x):$

$$
f_{L}(x):=\sum_{j \in \mathbb{Z}} r_{j} x^{j} \quad \text { and } \quad f_{T}(x):=\sum_{k \geq 1} \sum_{\alpha \in \mathbb{K}^{x}} \frac{c_{\alpha}(k)}{(x-\alpha)^{k}},
$$

where $r_{j}, c_{\alpha}(k) \in \mathbb{K}$.
This yields a σ-stable \mathbb{K}-vector space decomposition of $\mathbb{K}(x)$ as

$$
\mathbb{K}(x) \simeq \mathbb{K}\left[x, x^{-1}\right] \oplus \mathbb{K}(x)_{T}
$$

Mahler decomposition of partial fractions

For $f(x) \in \mathbb{K}(x)$, we can decompose it uniquely as $f(x)=f_{L}(x)+f_{T}(x)$:

$$
f_{L}(x):=\sum_{j \in \mathbb{Z}} r_{j} x^{j} \quad \text { and } \quad f_{T}(x):=\sum_{k \geq 1} \sum_{\alpha \in \mathbb{K}^{x}} \frac{c_{\alpha}(k)}{(x-\alpha)^{k}},
$$

where $r_{j}, c_{\alpha}(k) \in \mathbb{K}$.
This yields a σ-stable \mathbb{K}-vector space decomposition of $\mathbb{K}(x)$ as

$$
\mathbb{K}(x) \simeq \mathbb{K}\left[x, x^{-1}\right] \oplus \mathbb{K}(x)_{T}
$$

Then $f \in \mathbb{K}(x)$ is Mahler summable if and only if f_{L} and f_{T} are both Mahler summable. We address each component separately.

Mahler decomposition of partial fractions

For $f(x) \in \mathbb{K}(x)$, we can decompose it uniquely as $f(x)=f_{L}(x)+f_{T}(x)$:

$$
f_{L}(x):=\sum_{j \in \mathbb{Z}} r_{j} x^{j} \quad \text { and } \quad f_{T}(x):=\sum_{k \geq 1} \sum_{\alpha \in \mathbb{K}^{x}} \frac{c_{\alpha}(k)}{(x-\alpha)^{k}},
$$

where $r_{j}, c_{\alpha}(k) \in \mathbb{K}$.
This yields a σ-stable \mathbb{K}-vector space decomposition of $\mathbb{K}(x)$ as

$$
\mathbb{K}(x) \simeq \mathbb{K}\left[x, x^{-1}\right] \oplus \mathbb{K}(x)_{T}
$$

Then $f \in \mathbb{K}(x)$ is Mahler summable if and only if f_{L} and f_{T} are both Mahler summable. We address each component separately.

Moreover, the decompositions $f_{L}=\sum_{\theta \in \mathbb{Z} / \mathcal{P}} f_{\theta}$ and $f_{T}=\sum_{\tau \in \mathcal{T}_{M}} f_{\tau}$:

$$
f_{\theta}:=\sum_{j \in \theta} r_{j} x^{j} \quad \text { and } \quad f_{\tau}:=\sum_{k \geq 1} \sum_{\alpha \in \tau} \frac{c_{\alpha}(k)}{(x-\alpha)^{k}}
$$

are also σ-stable. Can decide summability of f by deciding for each $f_{\theta}(\theta \in \mathbb{Z} / \mathcal{P})$ and each $f_{\tau}\left(\tau \in \mathcal{T}_{M}\right)$ individually.

Mahler residues at infinity

Definition (Arreche-Z. 2022) Let $f(x) \in \mathbb{K}(x)$ and write $f_{L}(x)=\sum_{j \in \mathbb{Z}} r_{j} x^{j} \in \mathbb{K}\left[x, x^{-1}\right]$. The Mahler residue of $f(x)$ at infinity is the vector

$$
\operatorname{dres}(f, \infty):=\left(\sum_{j \in \theta} r_{j}\right)_{\theta \in \mathbb{Z} / \mathcal{P}} \in \bigoplus_{\theta \in \mathbb{Z} / \mathcal{P}} \mathbb{K}
$$

Mahler residues at infinity

Definition (Arreche-Z. 2022) Let $f(x) \in \mathbb{K}(x)$ and write $f_{L}(x)=\sum_{j \in \mathbb{Z}} r_{j} x^{j} \in \mathbb{K}\left[x, x^{-1}\right]$. The Mahler residue of $f(x)$ at infinity is the vector

$$
\operatorname{dres}(f, \infty):=\left(\sum_{j \in \theta} r_{j}\right)_{\theta \in \mathbb{Z} / \mathcal{P}} \in \bigoplus_{\theta \in \mathbb{Z} / \mathcal{P}} \mathbb{K}
$$

Proposition (Arreche-Z. 2022) For $f(x) \in \mathbb{K}(x)$ the component $f_{L}(x) \in \mathbb{K}\left[x, x^{-1}\right]$ is Mahler summable if and only if $\operatorname{dres}(f, \infty)=0$ (the zero vector).

Mahler residues at infinity

Definition (Arreche-Z. 2022) Let $f(x) \in \mathbb{K}(x)$ and write $f_{L}(x)=\sum_{j \in \mathbb{Z}} r_{j} x^{j} \in \mathbb{K}\left[x, x^{-1}\right]$. The Mahler residue of $f(x)$ at infinity is the vector

$$
\operatorname{dres}(f, \infty):=\left(\sum_{j \in \theta} r_{j}\right)_{\theta \in \mathbb{Z} / \mathcal{P}} \in \bigoplus_{\theta \in \mathbb{Z} / \mathcal{P}} \mathbb{K}
$$

Proposition (Arreche-Z. 2022) For $f(x) \in \mathbb{K}(x)$ the component $f_{L}(x) \in \mathbb{K}\left[x, x^{-1}\right]$ is Mahler summable if and only if $\operatorname{dres}(f, \infty)=0$ (the zero vector).
Proof sketch: For $\theta=\left\{i p^{n}\right\}$ with $p \nmid i$, let $\bar{f}_{\theta}^{(n)}=f_{\theta}+\Delta\left(g_{\theta}^{(n)}\right)$ with $g_{\theta}^{(0)}:=0$ and $g_{\theta}^{(n+1)}:=g_{\theta}^{(n)}+\left(\sum_{\ell=0}^{n} r_{i p^{\ell}}\right) x^{i p^{n}}$. Then, for h largest s.t. $r_{i p^{h}} \neq 0, \bar{f}^{(h)}=\operatorname{dres}(f, \infty)_{\theta} \cdot x^{i p^{h}}$. A dispersion argument shows $\bar{f}_{\theta}^{(h)}=0$ iff f_{θ} is Mahler summable.

Mahler residues at Mahler trees (1 of 3): coefficients

For $\alpha \in \mathbb{K}^{\times}, \zeta_{p}$ a primitive p-th root of unity, let $V_{k}^{m}\left(\zeta_{p}^{i} \alpha\right) \in \mathbb{K}$:

$$
\sigma\left(\frac{1}{\left(x-\alpha^{p}\right)^{m}}\right)=\frac{1}{\left(x^{p}-\alpha^{p}\right)^{m}}=\sum_{k=1}^{m} \sum_{i=0}^{p-1} \frac{V_{k}^{m}\left(\zeta_{p}^{i} \alpha\right)}{\left(x-\zeta_{p}^{i} \alpha\right)^{k}}
$$

Mahler residues at Mahler trees (1 of 3): coefficients

For $\alpha \in \mathbb{K}^{\times}, \zeta_{p}$ a primitive p-th root of unity, let $V_{k}^{m}\left(\zeta_{p}^{i} \alpha\right) \in \mathbb{K}$:

$$
\sigma\left(\frac{1}{\left(x-\alpha^{p}\right)^{m}}\right)=\frac{1}{\left(x^{p}-\alpha^{p}\right)^{m}}=\sum_{k=1}^{m} \sum_{i=0}^{p-1} \frac{V_{k}^{m}\left(\zeta_{p}^{i} \alpha\right)}{\left(x-\zeta_{p}^{i} \alpha\right)^{k}}
$$

The definition of Mahler residues is more complicated because applying $\sigma: f(x) \mapsto f\left(x^{p}\right)$ at poles of order m "leaks" into the poles of order $k \leq m$.

Mahler residues at Mahler trees (1 of 3): coefficients

For $\alpha \in \mathbb{K}^{\times}, \zeta_{p}$ a primitive p-th root of unity, let $V_{k}^{m}\left(\zeta_{p}^{i} \alpha\right) \in \mathbb{K}$:

$$
\sigma\left(\frac{1}{\left(x-\alpha^{p}\right)^{m}}\right)=\frac{1}{\left(x^{p}-\alpha^{p}\right)^{m}}=\sum_{k=1}^{m} \sum_{i=0}^{p-1} \frac{V_{k}^{m}\left(\zeta_{p}^{i} \alpha\right)}{\left(x-\zeta_{p}^{i} \alpha\right)^{k}} .
$$

The definition of Mahler residues is more complicated because applying $\sigma: f(x) \mapsto f\left(x^{p}\right)$ at poles of order m "leaks" into the poles of order $k \leq m$.
Lemma (Arreche-Z. 2022)

$$
V_{k}^{m}\left(\zeta_{p}^{i} \alpha\right)=\mathbb{V}_{k}^{m} \cdot \frac{\left(\zeta_{p}^{i} \alpha\right)^{k}}{\alpha^{p m}}
$$

where $\mathbb{V}_{k}^{m} \in \mathbb{Q}$ are obtained from the Taylor coefficients at $x=1$:

$$
\left(x^{p-1}+\cdots+x+1\right)^{-m}=\sum_{k=1}^{m} \mathbb{V}_{k}^{m} \cdot(x-1)^{m-k}+O\left((x-1)^{m}\right)
$$

Mahler residues at Mahler trees (1 of 3): coefficients

For $\alpha \in \mathbb{K}^{\times}, \zeta_{p}$ a primitive p-th root of unity, let $V_{k}^{m}\left(\zeta_{p}^{i} \alpha\right) \in \mathbb{K}$:

$$
\sigma\left(\frac{1}{\left(x-\alpha^{p}\right)^{m}}\right)=\frac{1}{\left(x^{p}-\alpha^{p}\right)^{m}}=\sum_{k=1}^{m} \sum_{i=0}^{p-1} \frac{V_{k}^{m}\left(\zeta_{p}^{i} \alpha\right)}{\left(x-\zeta_{p}^{i} \alpha\right)^{k}} .
$$

The definition of Mahler residues is more complicated because applying $\sigma: f(x) \mapsto f\left(x^{p}\right)$ at poles of order m "leaks" into the poles of order $k \leq m$.
Lemma (Arreche-Z. 2022)

$$
V_{k}^{m}\left(\zeta_{p}^{i} \alpha\right)=\mathbb{V}_{k}^{m} \cdot \frac{\left(\zeta_{p}^{i} \alpha\right)^{k}}{\alpha^{p m}}
$$

where $\mathbb{V}_{k}^{m} \in \mathbb{Q}$ are obtained from the Taylor coefficients at $x=1$:

$$
\left(x^{p-1}+\cdots+x+1\right)^{-m}=\sum_{k=1}^{m} \mathbb{V}_{k}^{m} \cdot(x-1)^{m-k}+O\left((x-1)^{m}\right)
$$

The "universal coefficients" \mathbb{V}_{k}^{m} can be computed directly (as a sum over partitions) using the Faà di Bruno's formula.

Small example of Mahler coefficients

Let $p=3, m=2$, and $\alpha^{3}=1$. Then

$$
\sigma\left(\frac{1}{(x-1)^{2}}\right)=\frac{1}{\left(x^{3}-1\right)^{2}}=\sum_{k=1}^{2} \sum_{i=0}^{2} \frac{V_{k}^{2}\left(\zeta_{3}^{i}\right)}{\left(x-\zeta_{3}^{i}\right)^{k}},
$$

By the previous Lemma, $V_{k}^{2}\left(\zeta_{3}^{i}\right)=\mathbb{V}_{k}^{2} \cdot\left(\zeta_{3}^{i}\right)^{k-6}=\mathbb{V}_{k}^{2} \cdot \zeta_{3}^{k i}$ for $k=1,2$. We find that

$$
\mathbb{V}_{2}^{2}=\left.\left(x^{2}+x+1\right)^{-2}\right|_{x=1}=\frac{1}{9} ; \text { and } \mathbb{V}_{1}^{2}=\left.\left(\left(x^{2}+x+1\right)^{-2}\right)^{\prime}\right|_{x=1}=-\frac{2}{9}
$$

Using a computer algebra system (or by hand!), one can very that the partial fraction decomposition of $9 \cdot\left(x^{3}-1\right)^{-2}$ is indeed

$$
\frac{1}{(x-1)^{2}}+\frac{\zeta_{3}^{2}}{\left(x-\zeta_{3}\right)^{2}}+\frac{\zeta_{3}}{\left(x-\zeta_{3}^{2}\right)^{2}}+\frac{-2}{x-1}+\frac{-2 \zeta_{3}}{x-\zeta_{3}}+\frac{-2 \zeta_{3}^{2}}{x-\zeta_{3}^{2}}
$$

Mahler residues at Mahler trees (2 of 3): definition

 Suppose $\gamma \in \mathbb{K}^{\times}$is not a root of unity, $f \in \mathbb{K}(x)$, and $h \in \mathbb{Z}_{\geq 0}$ s.t.:$$
\operatorname{sing}(f) \cap \tau(\gamma) \subseteq\left\{\zeta_{p^{n}}^{i} \gamma^{p^{h-n}} \mid 0 \leq n \leq h, i \in \mathbb{Z} / p^{n} \mathbb{Z}\right\}
$$

Mahler residues at Mahler trees (2 of 3): definition

Suppose $\gamma \in \mathbb{K}^{\times}$is not a root of unity, $f \in \mathbb{K}(x)$, and $h \in \mathbb{Z}_{\geq 0}$ s.t.:

$$
\operatorname{sing}(f) \cap \tau(\gamma) \subseteq\left\{\zeta_{p^{n}}^{i} \gamma^{p^{h-n}} \mid 0 \leq n \leq h, i \in \mathbb{Z} / p^{n} \mathbb{Z}\right\}
$$

Then we can write, for $\tau=\tau(\gamma)$,

$$
f_{\tau}=\sum_{k=1}^{m} \sum_{n=0}^{h} \sum_{i \in \mathbb{Z} / p^{n} \mathbb{Z}} \frac{c_{\gamma}(k, n, i)}{\left(x-\zeta_{p^{n}}^{i} \gamma^{p^{h-n}}\right)^{k}} .
$$

Mahler residues at Mahler trees (2 of 3): definition

Suppose $\gamma \in \mathbb{K}^{\times}$is not a root of unity, $f \in \mathbb{K}(x)$, and $h \in \mathbb{Z}_{\geq 0}$ s.t.:

$$
\operatorname{sing}(f) \cap \tau(\gamma) \subseteq\left\{\zeta_{p^{n}}^{i} \gamma^{p^{h-n}} \mid 0 \leq n \leq h, i \in \mathbb{Z} / p^{n} \mathbb{Z}\right\}
$$

Then we can write, for $\tau=\tau(\gamma)$,

$$
f_{\tau}=\sum_{k=1}^{m} \sum_{n=0}^{h} \sum_{i \in \mathbb{Z} / p^{n} \mathbb{Z}} \frac{c_{\gamma}(k, n, i)}{\left(x-\zeta_{p^{n}}^{i} \gamma^{p^{h-n}}\right)^{k}} .
$$

Set recursively: $\tilde{c}_{k, 0,0}:=c_{\gamma}(k, 0,0)$, and for $1 \leq n \leq h ; i \in \mathbb{Z} / p^{n} \mathbb{Z}$:

$$
\tilde{c}_{k, n, i}:=c_{\gamma}(k, n, i)+\sum_{j=k}^{m} \tilde{c}_{j, n-1, \pi_{n-1}(i)} V_{k}^{j}\left(\zeta_{p^{n}}^{i} \gamma^{p^{n-n}}\right)
$$

where $\pi_{n-1}: \mathbb{Z} / p^{n} \mathbb{Z} \rightarrow \mathbb{Z} / p^{n-1} \mathbb{Z}$ is the canonical projection.

Mahler residues at Mahler trees (2 of 3): definition

Suppose $\gamma \in \mathbb{K}^{\times}$is not a root of unity, $f \in \mathbb{K}(x)$, and $h \in \mathbb{Z}_{\geq 0}$ s.t.:

$$
\operatorname{sing}(f) \cap \tau(\gamma) \subseteq\left\{\zeta_{p^{n}}^{i} \gamma^{p^{h-n}} \mid 0 \leq n \leq h, i \in \mathbb{Z} / p^{n} \mathbb{Z}\right\}
$$

Then we can write, for $\tau=\tau(\gamma)$,

$$
f_{\tau}=\sum_{k=1}^{m} \sum_{n=0}^{h} \sum_{i \in \mathbb{Z} / p^{n} \mathbb{Z}} \frac{c_{\gamma}(k, n, i)}{\left(x-\zeta_{p^{n}}^{i} \gamma^{p^{h-n}}\right)^{k}} .
$$

Set recursively: $\tilde{c}_{k, 0,0}:=c_{\gamma}(k, 0,0)$, and for $1 \leq n \leq h ; i \in \mathbb{Z} / p^{n} \mathbb{Z}$:

$$
\tilde{c}_{k, n, i}:=c_{\gamma}(k, n, i)+\sum_{j=k}^{m} \tilde{c}_{j, n-1, \pi_{n-1}(i)} V_{k}^{j}\left(\zeta_{p^{n}}^{i} \gamma^{p^{n-n}}\right)
$$

where $\pi_{n-1}: \mathbb{Z} / p^{n} \mathbb{Z} \rightarrow \mathbb{Z} / p^{n-1} \mathbb{Z}$ is the canonical projection.

Mahler residues at Mahler trees (2 of 3): definition

 Suppose $\gamma \in \mathbb{K}^{\times}$is not a root of unity, $f \in \mathbb{K}(x)$, and $h \in \mathbb{Z}_{\geq 0}$ s.t.:$$
\operatorname{sing}(f) \cap \tau(\gamma) \subseteq\left\{\zeta_{p^{n}}^{i} \gamma^{p^{h-n}} \mid 0 \leq n \leq h, i \in \mathbb{Z} / p^{n} \mathbb{Z}\right\}
$$

Then we can write, for $\tau=\tau(\gamma)$,

$$
f_{\tau}=\sum_{k=1}^{m} \sum_{n=0}^{h} \sum_{i \in \mathbb{Z} / p^{n} \mathbb{Z}} \frac{c_{\gamma}(k, n, i)}{\left(x-\zeta_{p^{n}}^{i} \gamma^{p^{h-n}}\right)^{k}} .
$$

Set recursively: $\tilde{c}_{k, 0,0}:=c_{\gamma}(k, 0,0)$, and for $1 \leq n \leq h ; i \in \mathbb{Z} / p^{n} \mathbb{Z}$:

$$
\tilde{c}_{k, n, i}:=c_{\gamma}(k, n, i)+\sum_{j=k}^{m} \tilde{c}_{j, n-1, \pi_{n-1}(i)} V_{k}^{j}\left(\zeta_{p^{n}}^{i} \gamma^{p^{n-n}}\right)
$$

where $\pi_{n-1}: \mathbb{Z} / p^{n} \mathbb{Z} \rightarrow \mathbb{Z} / p^{n-1} \mathbb{Z}$ is the canonical projection. Definition (Arreche-Z. 2022) The Mahler discrete residue at τ of order k is the vector $\operatorname{dres}(f, \tau, k) \in \bigoplus_{\alpha \in \tau} \mathbb{K}$ with α-component $:=0$ except possibly at $\alpha=\zeta_{p^{h}}^{i} \gamma$ for $i \in \mathbb{Z} / p^{h} \mathbb{Z}$, given by $\tilde{c}_{k, h, i}$.

Mahler residues at Mahler trees (3 of 3): proof

Proposition (Arreche-Z. 2022) For $f \in \mathbb{K}(x)$ the component f_{T} is Mahler summable if and only if $\operatorname{dres}(f, \tau, k)=0$ (the zero vector) for each $\tau \in \mathcal{T}_{M}$ and $k \in \mathbb{N}$.

Mahler residues at Mahler trees (3 of 3): proof

Proposition (Arreche-Z. 2022) For $f \in \mathbb{K}(x)$ the component f_{T} is Mahler summable if and only if $\operatorname{dres}(f, \tau, k)=0$ (the zero vector) for each $\tau \in \mathcal{T}_{M}$ and $k \in \mathbb{N}$.
Proof idea. Similar to the Laurent polynomial case, one adds to f_{τ} a sequence of "small" summable elements until one obtains a "remainder"

$$
\bar{f}_{\tau}=\sum_{k \geq 1} \sum_{\alpha \in \tau} \frac{\operatorname{dres}(f, \tau, k)_{\alpha}}{(x-\alpha)^{k}}
$$

such that f_{τ} is Mahler summable iff $\bar{f}_{\tau}=0$.

Mahler residues at Mahler trees (3 of 3): proof

Proposition (Arreche-Z. 2022) For $f \in \mathbb{K}(x)$ the component f_{T} is Mahler summable if and only if $\operatorname{dres}(f, \tau, k)=0$ (the zero vector) for each $\tau \in \mathcal{T}_{M}$ and $k \in \mathbb{N}$.
Proof idea. Similar to the Laurent polynomial case, one adds to f_{τ} a sequence of "small" summable elements until one obtains a "remainder"

$$
\bar{f}_{\tau}=\sum_{k \geq 1} \sum_{\alpha \in \tau} \frac{\operatorname{dres}(f, \tau, k)_{\alpha}}{(x-\alpha)^{k}}
$$

such that f_{τ} is Mahler summable iff $\bar{f}_{\tau}=0$.

- The definition (and proofs) for Mahler discrete residues at $\tau(\zeta)$ for $\zeta \in \mathbb{K}_{t}^{\times}$a root of unity is similar in spirit, but more technical, due to the perverse (pre-) periodic behavior of roots of unity under the p-power map.

Main Result

Theorem (Arreche-Z. 2022) Given $f \in \mathbb{K}(x)$. Then f is Mahler summable if and only if $\operatorname{dres}(f, \infty)=0$ and $\operatorname{dres}(f, \tau, k)=0$ for all $k \in \mathbb{N}$ and $\tau \in \mathcal{T}_{M}$.

Thanks!

