Computations of the Expected Euler Characteristic for the Largest Eigenvalue of a Real Wishart Matrix

Yi Zhang
Department of Mathematical Sciences
University of Texas at Dallas, USA

Joint work with Nobuki Takayama, Lin Jiu and Satoshi Kuriki

Largest Eigenvalue of Real Wishart Matrix

Let $\xi_{i} \in \mathbb{R}^{m}$ be distributed as $N_{m}\left(\mu_{i}, \Sigma\right)$.
The Wishart distribution $W_{m}(n, \Sigma ; \Omega)$ is induced by the random matrix

$$
W=\Xi^{\top}, \quad \equiv=\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathbb{R}^{m \times n}
$$

where $\Omega=\Sigma^{-1} \sum_{i=1}^{n} \mu_{i} \mu_{i}^{\top}$ is the parameter matrix.
We call $W_{m}(n, \Sigma ; \Omega)$ non-central if $\Omega \neq 0$.
Let $\lambda_{1}(W)$ be the largest eigenvalue of W. The distribution of $\lambda_{1}(W)$ is of particular interest in testing hypothesis.

Motivation and Previous works

Let $W_{m}(n, \Sigma ; \Omega)$ be non-central.
Goal: Efficient evaluation of $\operatorname{Pr}\left(\lambda_{1}(W) \geq x\right)$ for many x.

Motivation and Previous works

Let $W_{m}(n, \Sigma ; \Omega)$ be non-central.
Goal: Efficient evaluation of $\operatorname{Pr}\left(\lambda_{1}(W) \geq x\right)$ for many x.

- (James et al., 1954) When $\Omega=0$, express $\operatorname{Pr}\left(\lambda_{1}(W) \geq x\right)$ as a hypergeometric function ${ }_{1} F_{1}$
- (Hashiguchi et al., 2013) Efficient evaluation of ${ }_{1} F_{1}$ using holonomic gradient method
- (Danufane et al., 2017) In MIMO problem, evaluation of $\operatorname{Pr}\left(\lambda_{1}(W) \geq x\right)$ if W is a complex matrix and $\Omega \neq 0$.

Motivation and Previous works

Let $W_{m}(n, \Sigma ; \Omega)$ be non-central.
Goal: Efficient evaluation of $\operatorname{Pr}\left(\lambda_{1}(W) \geq x\right)$ for many x.

- (James et al., 1954) When $\Omega=0$, express $\operatorname{Pr}\left(\lambda_{1}(W) \geq x\right)$ as a hypergeometric function ${ }_{1} F_{1}$
- (Hashiguchi et al., 2013) Efficient evaluation of ${ }_{1} F_{1}$ using holonomic gradient method
- (Danufane et al., 2017) In MIMO problem, evaluation of $\operatorname{Pr}\left(\lambda_{1}(W) \geq x\right)$ if W is a complex matrix and $\Omega \neq 0$.

Our contribution: Efficient evaluation of $\operatorname{Pr}\left(\lambda_{1}(W) \geq x\right)$ if W is a real matrix and $\Omega \neq 0$.

Euler Characteristic Method

Let $W_{m}(n, \Sigma ; \Omega)$ be non-central and W be a real matrix.
Difficulty: No explicit formula for $\operatorname{Pr}\left(\lambda_{1}(W) \geq x\right)$.

Euler Characteristic Method

Let $W_{m}(n, \Sigma ; \Omega)$ be non-central and W be a real matrix.
Difficulty: No explicit formula for $\operatorname{Pr}\left(\lambda_{1}(W) \geq x\right)$.
Adler, Tayler and Takemura (2000, 2005), Kuriki and Takemura (2001, 2008, 2009): Use Euler characteristic heuristic to approximate probabilities of random fields.

Fact: $\lambda_{1}(W)^{1 / 2}$ is the maximum of a Gaussian field

$$
\left\{u^{\top} \equiv v \mid\|u\|_{\mathbb{R}^{m}}=\|v\|_{\mathbb{R}^{n}}=1\right\} .
$$

Idea: Approximation by the expected Euler characteristic heuristic:

$$
\operatorname{Pr}\left(\lambda_{1}(W) \geq x\right) \approx E\left[\chi\left(M_{x}\right)\right] \quad \text { when } x \text { is large, }
$$

where M_{x} is a manifold induced by W and x.

Outline

- Explicit formula for the expectation of th Euler characteristic number of a manifold related to a random matrix
- Numerical evaluation for the integral formula by holonomic gradient method

Manifold of a Random Matrix

Let A be a real 2×2 random matrix. Define a manifold

$$
M=\left\{h g^{T} \mid g \in S, h \in S\right\}
$$

Set

$$
f(U)=\operatorname{tr}(U A), \quad U \in M
$$

and

$$
M_{x}=\{U \in M \mid f(U) \geq x\}
$$

which is a manifold induced by A and x.

Euler Characteristic Number

Let A be a real 2×2 random matrix and M_{x} be the related manifold.

Recall: The Euler characteristic is defined for the surfaces of polyhedra by

$$
\chi=V-E+F
$$

For convex polyhedron's surface, $\chi=2$.
We can also define the Euler characteristic for M_{x} and denote it by $\chi\left(M_{x}\right)$.

Expectation of the Euler Characteristic Number

Let A be a real 2×2 random matrix and M_{x} be the related manifold.

Recall: $f(U)=\operatorname{tr}(U A), \quad U \in M_{x}$.
Let $h g^{T}$ be a critical point of f. Take $(g, G) \in S O(2)$ and $(h, H) \in S O(2)$. Set

$$
\sigma=g^{T} A h, \quad b=G^{T} A H
$$

which are singular values of A.
Theorem 1: Assume $x>0$ and $f(U)$ is a Morse function for almost all A 's. Then $E\left[\chi\left(M_{x}\right)\right]$ is equal to

$$
\frac{1}{2} \int_{x}^{\infty} d \sigma \int_{-\infty}^{\infty} d b \int_{S} G^{T} d g \int_{S} H^{T} d h\left(\sigma^{2}-b^{2}\right) p(A)
$$

Expectation of the Euler Characteristic Number

Recall: Approximation by the expected Euler characteristic heuristic:

$$
\operatorname{Pr}\left(\lambda_{1}(W) \geq x\right) \approx E\left[\chi\left(M_{x}\right)\right] \quad \text { when } x \text { is large, }
$$

where M_{x} is a manifold induced by $W=A A^{T}$ and x.
Goal: Efficient evaluation of the integral in Theorem 1 when $A A^{T}$ is a non-central Wishart matrix and x is large.

Expectation of the Euler Characteristic Number

$$
\text { Let } \begin{aligned}
M & =\left(\begin{array}{cc}
m_{11} & 0 \\
m_{21} & m_{22}
\end{array}\right) \text { and } \Sigma=\left(\begin{array}{cc}
1 / s_{1} & 0 \\
0 & 1 / s_{2}
\end{array}\right) \text { such that } \\
A & =\sqrt{\Sigma} V+M, \text { where } V=\left(v_{i j}\right), \quad v_{i j} \sim \mathcal{N}(0,1) \text { i.i.d. }
\end{aligned}
$$

Then the integral in Theorem 1 becomes

$$
\begin{equation*}
\int_{x}^{\infty} d \sigma \int_{-\infty}^{\infty} d b \int_{-\infty}^{\infty} d s \int_{-\infty}^{\infty} f(\sigma, b, s, t) d t \tag{1}
\end{equation*}
$$

where

$$
f=\frac{s_{1} s_{2}\left(\sigma^{2}-b^{2}\right)}{\left(1+s^{2}\right)\left(1+t^{2}\right)} \exp \left\{-\frac{1}{2} R\right\}, \quad R \in \mathbb{Q}(\sigma, b, s, t)
$$

We denote (1) by $F(M, \Sigma ; x)$.

Challenge for Evaluation

Assume $A=\sqrt{\Sigma} V+M$, where $V=\left(v_{i j}\right), v_{i j} \sim \mathcal{N}(0,1)$ i. i. d..

- $F(M, \Sigma ; x)$ contains parameters M, Σ.
- Numerical integration for $F(M, \Sigma ; x)$ is time-consuming and not reliable for many x.

Observation: the integrand of $F(M, \Sigma ; x)$ is holonomic (D-finite).
Idea: Use holonomic gradient method to evaluate $F(M, \Sigma ; x)$.

Holonomic Gradient Method

$f(\theta, t)$: unnormalized probability distribution function w.r.t. $t=\left(t_{1}, \ldots, t_{n}\right)$, where $\theta=\left(\theta_{1}, \ldots, \theta_{m}\right)$ is a parameter vector.

$$
z(\theta)=\int_{\Omega} f(\theta, t) d t
$$

is the normalizing constant. $f(t, \theta) / z(\theta)$ is a probability distribution function on Ω. Evaluation of $z(\theta)$ is a fundamental problem in statistics.

Example: $f(\theta, t)=\exp \left(\frac{-t^{2}}{2 \theta^{2}}\right)$ with $\Omega=(-\infty,+\infty)$. Then

$$
z(\theta)=\sqrt{2 \pi \theta^{2}}
$$

Holonomic Gradient Method

An analytic function $f(x)$ is called holonomic or D-finite when it satisfies n linear ODE's (holonomic system)

$$
\sum_{j=0}^{r_{i}} a_{i j}\left(\frac{\partial}{\partial x_{i}}\right)^{j} f=0, \quad a_{i j}(x) \in \mathrm{C}\left[x_{1}, \ldots, x_{n}\right], \quad i=1, \ldots, n .
$$

Theorem (Zeilberger, 1990): If $f(x)$ is holonomic, then the integral $\int_{\Omega} f(x) d x_{n}$ is holonomic in $\left(x_{1}, \ldots, x_{n-1}\right)$ (under some conditions on Ω).

Holonomic Gradient Method (Nakayama et al., 2011): When $f(\theta, t)$ is holonomic, the normalizing constant $z(\theta)$ satisfies a system of linear PDEs, which can be constructed by Gröbner bases. Evaluate $z(\theta)$ and its derivatives by the system with methods in numerical analysis.

3 Steps of Holonomic Gradient Method

1. Construct a Pfaffian system for $z(\theta)$.
2. Evaluate numerically $z(\theta)$ and its derivatives at $\theta=\theta_{0}$.
3. Apply numerical analysis methods for the Pfaffian system.

Example:

$$
z(\theta)=\int_{\Omega} \exp (\theta t) t^{1 / 2}(1-t)^{1 / 2} d t, \quad \Omega=[0,1]
$$

By creative telescoping,

$$
\left(\theta \partial_{\theta}^{2}+(3-\theta) \partial_{\theta}-3 / 2\right) z=0, \quad \partial_{\theta}=\frac{\partial}{\partial \theta}
$$

Then $\frac{\partial}{\partial \theta} Z=P Z$, where

$$
Z=\binom{z}{\frac{\partial}{\partial \theta} z}, \quad P=\left(\begin{array}{cc}
0 & 1 \\
\frac{3}{2 \theta} & -\frac{3-\theta}{\theta}
\end{array}\right)
$$

Evaluation of the Expected Euler Characteristic

Recall: $E\left[\chi\left(M_{x}\right)\right]=F(M, \Sigma ; x)$ is equal to

$$
\int_{x}^{\infty} d \sigma \int_{-\infty}^{\infty} d b \int_{-\infty}^{\infty} d s \int_{-\infty}^{\infty} f(\sigma, b, s, t) d t
$$

where f is hyperexponential over $\mathbb{Q}(\sigma, b, s, t)$. Thus, $-F^{\prime}(M, \Sigma ; x)$ is equal to

$$
\int_{-\infty}^{\infty} d b \int_{-\infty}^{\infty} d s \int_{-\infty}^{\infty} f(x, b, s, t) d t
$$

Idea: Use creative telescoping method to derive an ODE for $F^{\prime}(M, \Sigma ; x)$

Creative Telescoping Method

Given a holonomic function $f(\theta, t)$ with annihilator

$$
\operatorname{ann}(f) \subset \mathrm{C}(\theta, t)\left[\partial_{\theta}, \partial_{t}\right]
$$

Find nontrivial

$$
P\left(\theta, \partial_{\theta}\right)+\partial_{t} Q\left(\theta, t, \partial_{\theta}, \partial_{t}\right) \in \operatorname{ann}(f)
$$

Then $z(\theta)=\int_{\Omega} f(\theta, t) d t$ satisfies $P(z)=0$ (under some conditions on Ω). We call P a telescoper for $\operatorname{ann}(f)$.

Creative Telescoping Method

- (Zeilberger, 1990): Sylvester's dialytic elimination for multiple integrals
- (Takayama, 1992; Oaku, 1997): D-module theoretical algorithms for multiple integrals
- (Chyzak, 2000): a generalization of Gosper's algorithm for single integrals of multivariate holonomic functions
- (Koutschan, 2010): rational ansatz approach for multiple integrals
- (Bostan et al., 2010, 2013; Chen et al., 2015, 2016): reduction-based algorithms for single integrals of bivariate holonomic functions

Chyzak's algorithm

Given a holonomic function $f(\theta, t)$ with annihilator

$$
\operatorname{ann}(f) \subset R=\mathrm{C}(\theta, t)\left[\partial_{\theta}, \partial_{t}\right]
$$

We call $\operatorname{dim}_{C}(R / \operatorname{ann}(f))$ the (holonomic) rank of ann (f).
Goal: Drive an ODE for

$$
G(M, \Sigma ; x)=\int_{-\infty}^{\infty} d b \int_{-\infty}^{\infty} d s \int_{-\infty}^{\infty} f(x, b, s, t) d t
$$

where f is hyperexponential over $\mathbb{Q}(\sigma, b, s, t)$.
Using Chyzak's algorithm, find a holonomic system of rank 2 for

$$
f_{1}(x, b, s)=\int_{-\infty}^{\infty} f(x, b, s, t) d t
$$

in 5 seconds using a Linux computer with 15.10 GB RAM.

Chyzak's algorithm

Goal: Drive an ODE for

$$
G(M, \Sigma ; x)=\int_{-\infty}^{\infty} d b \int_{-\infty}^{\infty} f_{1}(x, b, x) d s
$$

where ann $\left(f_{1}\right)$ has holonomic rank 2.
Using Chyzak's algorithm, find a holonomic system of rank 6 for

$$
f_{2}(x, b)=\int_{-\infty}^{\infty} f_{1}(x, b, s) d s
$$

in 16 mins by specifying M and Σ.
Question: Is it possible to compute a holonomic system for f_{2} without specifying M and Σ ?

Stafford Heuristic

Consider

$$
\begin{aligned}
R_{n} & =\mathbb{K}\left(x_{1}, \ldots, x_{n}\right)\left[\partial_{1}, \ldots, \partial_{n}\right] \\
T_{n} & =\left\{\partial_{1}^{i_{1}} \cdots \partial_{n}^{i_{n}} \mid\left(i_{1}, \ldots, i_{n}\right) \in \mathbb{N}^{n}\right\}
\end{aligned}
$$

Heuristic: Given a holonomic system H in R_{n}, compute new holonomic system H_{1} in R_{n-1} s.t. $H_{1} \subset\left(R_{n} \cdot H+\partial_{n} R_{n}\right) \cap R_{n-1}$.

1. Pick $S_{1}, S_{2} \in T_{n-1}$.
2. Using rational ansatz method, check existence of telescoper P_{i} of H with support $S_{i}, i=1,2$. If P_{i} exists, go to step 3 . Otherwise, go to step 1.
3. Compute Gröbner bais H_{1} of $\left\{P_{1}, P_{2}\right\}$. If H_{1} is holonomic, then output G_{1}. Otherwise, go to step 1.

Stafford Theorem: Every lefy ideal in R_{n} can be generated by 2 elements.

Stafford Heuristic

Goal: Drive an ODE for

$$
G(M, \Sigma ; x)=\int_{-\infty}^{\infty} d b \int_{-\infty}^{\infty} f_{1}(x, b, x) d s
$$

where $\operatorname{ann}\left(f_{1}\right)=\langle H\rangle$ has holonomic rank 2.

1. Pick

$$
\begin{aligned}
& S_{1}=\left\{1, \partial_{b}, \partial_{x}, \partial_{b}^{2}, \partial_{b} \partial_{x}, \partial_{x}^{2}, \partial_{x}^{3}\right\} \\
& S_{2}=S_{1} \cup\left\{\partial_{b}^{2} \partial_{x}, \partial_{b} \partial_{x}^{2}, \partial_{b}^{3}\right\}
\end{aligned}
$$

2. Using rational ansatz method, find telescoper P_{i} of H with support $S_{i}, i=1,2$.
3. Compute Gröbner bais H_{1} of $\left\{P_{1}, P_{2}\right\}$. We find that H_{1} has holonomic rank 6.

Chyzak's algorithm vs Stafford Heuristic

Goal: Drive an ODE for

$$
G(M, \Sigma ; x)=\int_{-\infty}^{\infty} d b \int_{-\infty}^{\infty} f_{1}(x, b, x) d s
$$

where ann $\left(f_{1}\right)$ has holonomic rank 2.
Below is a table of time (seconds) for deriving holonomic systems of

$$
f_{2}(x, b)=\int_{-\infty}^{\infty} f_{1}(x, b, s) d s
$$

\# pars	0	1	2	3	4	5
Chyzak	976	9.8×10^{4}	-	-	-	-
Heuristic	43.49	394.4	8527	4.3957×10^{5}	-	1.5×10^{6}

Conclusion

Let $W_{m}(n, \Sigma ; \Omega)$ be non-central and W be a real matrix.

- Approximate formula of $\operatorname{Pr}\left(\lambda_{1}(W) \geq x\right)$ by Euler characteristic method
- Numerical evaluation for the integral formula by holonomic gradient method

Conclusion

Let $W_{m}(n, \Sigma ; \Omega)$ be non-central and W be a real matrix.

- Approximate formula of $\operatorname{Pr}\left(\lambda_{1}(W) \geq x\right)$ by Euler characteristic method
- Numerical evaluation for the integral formula by holonomic gradient method

