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Linear Mahler equations

Let K be an algebraically closed field of char 0, x be an
indeterminate, and p € Z>».

Consider

r—1

L)y () + boa (y (P ) -+ lo(x)y(x) = F(x), (1)

where ¢;, f € K[x] are given, y(x) is unknown. A solution of (1) is
called a Mahler function.

(Mahler 1929): study Mahler equations to prove the transcendence
of values of some functions.

Fact: the generating series of any p-automatic sequence (such as
the Baum—Sweet and the Rudin-Shapiro sequences) is a Mahler
function.
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Differential Galois Theory

Using differential Galois theory, we can determine the
differential-algebraic relations between solutions of Mahler
equations.

Example (Roques 2018): A Galoisian proof that the generating
series of the Baum-Sweet and Rudin-Shapiro sequences are

algebraic independent over Q(x).

Goal: Design effective algorithms for computing differential Galois
groups of a given linear Mahler equations.
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Discrete residues, telescopers, and Galois theory
Endow K(x) with one of the od-field structures:
(S) o:f(x) > f(x+1)and 6 = Z;
(Q) o: f(x)— f(gx) with g € K* not root of unity and § = xdi
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(Q) o: f(x)— f(gx) with g € K* not root of unity and § = xd%.
Let z1,...,2, € F, a od-extension of K(x) with F7 =K, satisfying

o(zj) = aiz; for some ai,...,a, € K(x)*.

Proposition (Hardouin-Singer 2008) zi, ..., z, are d-dependent
over K(x) iff 3 Lq,..., L, € K[d], linear J-operators with
coefficients in K, not all 0, and g € K(x):
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(S) o:f(x) > f(x+1)and 6 = Z;
(Q) o: f(x)— f(gx) with g € K* not root of unity and § = xd%.
Let z1,...,2, € F, a od-extension of K(x) with F7 =K, satisfying

o(zj) = aiz; for some ai,...,a, € K(x)*.

Proposition (Hardouin-Singer 2008) zi, ..., z, are d-dependent
over K(x) iff 3 Lq,..., L, € K[d], linear J-operators with
coefficients in K, not all 0, and g € K(x):

L1 (%1)) + L, (("’”)) o(g) — g

(Arreche 2017, Arreche-Z. 2022): Using (g-)discrete residues,
there exist constants my,..., m, € K, not all 0, such that

mlM+...+mn (a"):U(g)_g+C

a1 an

for some g € K(x) and ¢ € K (with ¢ = 0 in case (S)).
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Motivation

Proposition (Hardouin-Singer 2008) zi, ..., z, are d-dependent
over K(x) iff 3 Lq,...,L, € K[4], linear d-operators with
coefficients in K, not all 0, and g € K(x):

(%) o, (2)) = o(g) - g

It also holds for the Mahler case. Question: How to derive the
explicit formulae for L1,...,L,?
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Motivation

Proposition (Hardouin-Singer 2008) zi, ..., z, are d-dependent
over K(x) iff 3 Lq,...,L, € K[4], linear d-operators with
coefficients in K, not all 0, and g € K(x):

(%) o, (2)) = o(g) - g

It also holds for the Mahler case. Question: How to derive the
explicit formulae for L1,...,L,?

Idea: Develop the notion of Mahler discrete residues and derive an
effective version of Hardouin-Singer's Proposition in the Mahler
case.
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Continuous residues

Let K be an algebraically closed field of char 0, and let
f(x) € K(x). Make the partial fraction decomposition

ca(k)
SEDIP I

acK k>1

where r(x) € K[x] and c,(k) € K (almost all 0).
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Continuous residues

Let K be an algebraically closed field of char 0, and let
f(x) € K(x). Make the partial fraction decomposition

ca(k

where r(x) € K[x] and c,(k) € K (almost all 0).

Then f(x) is rationally integrable, i.e., there exists g(x) € K(x)
such that g’(x) = f(x), if and only if the (continuous first-order)
residues

res(f,a,1) :==co(1) =0 for every a € K.

Chen and Singer (2012) created a notion of discrete residues that
plays an analogous role (where integrability — summability) for

the shift (x — x + 1) and g-dilation (x — gx) difference operators.
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Discrete residues: shift case

Rewrite the partial fraction decomposition of f(x) € K(x):

OEDIED IID Bt

k>1 [o] €K/Z nGZ

where r(x) € K[x], @ € K is a coset representative for
[a] .= a+Z € K/Z, and c,(k,n) € K.
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where r(x) € K[x], @ € K is a coset representative for
[a] .= a+Z € K/Z, and c,(k,n) € K.

The discrete residue of f(x) € K(x) at the Z-orbit [a] € K/Z of
order k is defined as

dres(f, [a], k) := Z calk, n).

nez

Proposition (Chen-Singer 2012) f(x) is rationally summable, i.e.,
there exists g(x) € K(x) such that f(x) = g(x + 1) — g(x), if and
only if dres(f, [@], k) = 0 for each [a] € K/Z and k € N.
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Discrete residues: g-dilation case
Fix g € K* not a root of unity, and write (x) € K(x):

R DD D N L

k>1 [a]q = ]K></qZ HEZ

where r(x) = 3, rix) € K[x,x '] and a € K* is a coset
representative for [a], := a - ¢% € K*/q%.
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k>1 [a]q = ]K></qZ nEZ

where r(x) = 3, rix) € K[x,x '] and a € K* is a coset
representative for [a], := a - ¢% € K*/q%.

The g-discrete residue of f(x) at the gZ-orbit [a], € K* /g% of
order k (resp., at infinity) is defined as

g-dres(f, [a]q, k) Zq knco(k,n) (resp., g-dres(f,o0) = rp).
neZ

Proposition (Chen-Singer 2012) f(x) is rationally g-summable, i.e.,
there exists g(x) € K(x) such that f(x) = g(gx) — g(x), if and
only if g-dres(f,00) = 0 and g-dres(f, [a]q, k) = O for each

[a], € KX/q” and k € N.
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Why use residues?

An advantage of using residues is to answer whether (yes/no)

f(x) € K(x) is

b rationally integrable: f(x

)=g'(x); 0
» rationally summable: f(x) = g(x + 1) — g(x); or
» rationally g-summable: f(x) = g(gx) — g(x);

without computing the certificate g(x) € K(x)
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Why use residues?

An advantage of using residues is to answer whether (yes/no)
f(x) € K(x) is

b rationally integrable: f(x) = g’(x); o
» rationally summable: f(x) = g(x + 1) g(x); or
» rationally g-summable: f(x) = g(gx) — g(x);

without computing the certificate g(x) € K(x).

Computing residues from the definition is impractical because it
requires doing partial fraction decompositions.

In the differential case, there is a better way: if f = § with

a,b € K[x], ged(a, b) = 1, deg(a) < deg(b), and b squarefree,
then the roots of the Rothstein-Trager resultant

RT(f) := Resx(a— z- b, b) € K[z]

are precisely the first-order continuous residues of f(x), which
implies f(x) is rationally integrable iff RT(f) is a monomial in z.
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Mahler summability for rational functions

Fix p € Z>> and let the Mahler difference operator
o g(x) — g(xP) for g(x) € K(x).
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We say f(x) € K(x) is Mahler summable if there exists
g(x) € K(x) such that f(x) = g(xP) — g(x).

Mahler Summability Problem: given f(x) € K(x), decide
effectively whether f(x) is Mahler summable.
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Mahler summability for rational functions

Fix p € Z>> and let the Mahler difference operator
o g(x) — g(xP) for g(x) € K(x).

We say f(x) € K(x) is Mahler summable if there exists
g(x) € K(x) such that f(x) = g(xP) — g(x).

Mahler Summability Problem: given f(x) € K(x), decide
effectively whether f(x) is Mahler summable.

» Done by Chyzak-Dreyfus-Dumas-Mezzarobba (2018).

Our Goal: Construct a (K-linear) complete obstruction to the
Mahler summability of f(x) € K(x).
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Mahler summability for rational functions

More precisely, for the K-linear map A : g(x) — g(xP) — g(x),
we wish to construct explicitly a K-linear map V on K(x) such
that im(A) = ker(V), bypassing computation of certificates.

We call V the Mahler reduction operator. Given f € K(x), set
f = V(f). Then f is Mahler summable if and only if f = 0. The
numerators in the partial fraction decomposition of f are Mahler
discrete residues of f.
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Mabhler trajectories and Mahler trees

Let P = {p" | n € Z>o} denote the multiplicative monoid of
non-negative powers of p.
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non-negative powers of p.

We denote by Z/P the set of maximal trajectories for the action of
‘P on Z by multiplication:

7P ={{0}} U{{ip" | n € Zxo} | i € Z such that pti}.

The elements 6 € Z/P are pairwise disjoint subsets of Z whose
union is all of Z.
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Mabhler trajectories and Mahler trees

Let P = {p" | n € Z>o} denote the multiplicative monoid of
non-negative powers of p.

We denote by Z/P the set of maximal trajectories for the action of
‘P on Z by multiplication:

7P ={{0}} U{{ip" | n € Zxo} | i € Z such that pti}.

The elements 6 € Z/P are pairwise disjoint subsets of Z whose
union is all of Z.

We denote by Ty, the set of equivalence classes for the equivalence
relation on K* defined by a ~ 7 if and only if a?” = +P" for some
r,s € ZZO.

The elements 7 € Ty, called Mahler trees, are pairwise disjoint
subsets of K* whose union is all of K*. We write 7(«) for the
unique Mahler tree containing o € K*.
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Examples of Mahler trees

We define a digraph on the vertex set 7 for each Mahler tree
T € Ty with one directed edge a@ — v whenever o = #.
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Examples of Mahler trees

We define a digraph on the vertex set 7 for each Mahler tree
T € Ty with one directed edge a@ — v whenever o = #.

With p = 3, the vertices of 7(2) near 2 € K* are
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Examples of Mahler trees

We define a digraph on the vertex set 7 for each Mahler tree
T € Ty with one directed edge a@ — v whenever o = #.

With p = 3, the vertices of 7(2) near 2 € K* are

_—
(anan —=

G2 8 —» 512

e

With p = 3, the vertices of 7((4) near (4 € K* are

{coV2,¢492,¢§

I}H

(@%.¢%.g%n —= gn

{(36 C36 436 } {4376’ 4312' C:%é}
V V ¥ Yvy
\ / dz
Clz / \ C%%
AAA AAA

5 17 29 11 .23 35
{<36’ 36 C36} {C3ev C36 C36
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Mahler decomposition of partial fractions
For f(x) € K(x), we can decompose it uniquely as

f(x) = fr(x) + fr(x):

= erxj and Z Z

JEZ k>1 aEKX

where rj, co (k) € K.
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Mahler decomposition of partial fractions

For f(x) € K(x), we can decompose it uniquely as
f(x) = fr(x) + fr(x):
Yl w0y Y o
JEZ k>1 aGKX
where rj, co (k) € K.

This yields a o-stable K-vector space decomposition of K(x) as
K(x) ~ K[x,x '] ® K(x) .

Then f € K(x) is Mahler summable if and only if f; and fr are

both Mahler summable. We address each component separately.

Moreover, the decompositions f; = ZeeZ/P fpand fr =3 7. fr:

j Ca(k)
fg:erXJ and ZZ (x—a)
jeo k>1 a€T
are also o-stable. Can decide summability of by deciding for each
fo (0 € Z/P) and each £, (7 € Ty) individually.
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Mabhler residues at infinity

Definition (Arreche-Z. 2022) Let f(x) € K(x) and write
fL(x) =2 jez rix) € K[x,x~1]. The Mahler residue of f(x) at
infinity is the vector

dres(f,00) := er € @ K.

jeo 0ecz/P 0P
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Mabhler residues at infinity

Definition (Arreche-Z. 2022) Let f(x) € K(x) and write
fL(x) =2 jez rix) € K[x,x~1]. The Mahler residue of f(x) at
infinity is the vector

dres(f,00) := er € @ K.

jeo 0ecz/P 0ez/P

Proposition (Arreche-Z. 2022) For f(x) € K(x) the component
fi(x) € K[x,x!] is Mahler summable if and only if
dres(f,00) = 0 (the zero vector).
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Mahler residues at Mahler trees
Suppose v € K* is not a root of unity, f € K(x), and h € Z>g s.t.:

sing(f) N 7(7) € {10 < n< h, i€Z/p"L}.
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Mahler residues at Mahler trees

Suppose v € K* is not a root of unity, f € K(x), and h € Z>g s.t.:

sing(f) N 7(y) C {¢hy® " |0 < n<h, i€Z/p"Z}.

Then we can write, for 7 = 7(7),

f ¥ d c (k,n,i)
D N R

Set recursively: & g0 = ¢y(k,0,0), and for 1 <n < h; i € Z/p"Z:

m
~ H ; h—n
Ck ni = C'y k n, ’ + Z Cin—1,m,_1(i) V/i((é”fyp )7
Jj=k

where 7,1 : Z/p"7Z — 7./p" 17 is the canonical projection.
Definition (Arreche-Z. 2022) The Mahler discrete residue at 7 of
order k is the vector dres(f, 7, k) € @, K with a-component
1= 0 except possibly at a = ¢/, for i € Z/p"Z, given by & p ;.
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Mahler residues at Mahler trees

Proposition (Arreche-Z. 2022) For f € K(x) the component fr is
Mahler summable if and only if dres(f, 7, k) = 0 (the zero vector)
for each 7 € Tpy and k € N.
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Mahler residues at Mahler trees

Proposition (Arreche-Z. 2022) For f € K(x) the component fr is
Mahler summable if and only if dres(f, 7, k) = 0 (the zero vector)
for each 7 € Tpy and k € N.

» The definition (and proofs) for Mahler discrete residues at
7(¢) for ¢ € K a root of unity is similar in spirit, but more
technical, due to the perverse (pre-)periodic behavior of roots
of unity under the p-power map.

Yi Zhang, XJTLU

17/19



Main Result

Theorem (Arreche-Z. 2022) Given f € K(x). Then f is Mahler
summable if and only if dres(f,c0) = 0 and dres(f, 7, k) = 0 for
all keNand 7 € Ty.
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Thanks!
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