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Largest Eigenvalue of Real Wishart Matrix

Let ξi ∈ Rm be distributed as Nm(µi ,Σ).

The Wishart distribution Wm(n,Σ; Ω) is induced by the random
matrix

W = ΞΞ>, Ξ = (ξ1, . . . , ξn) ∈ Rm×n,

where Ω = Σ−1
∑n

i=1 µiµ
>
i is the parameter matrix.

We call Wm(n,Σ; Ω) non-central if Ω 6= 0.

Let λ1(W ) be the largest eigenvalue of W . The distribution of
λ1(W ) is of particular interest in testing hypothesis.
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Motivation and Previous works

Let Wm(n,Σ; Ω) be non-central.

Goal: Efficient evaluation of Pr(λ1(W ) ≥ x) for many x .

(James et al., 1954) When Ω = 0, express Pr(λ1(W ) ≥ x) as
a hypergeometric function 1F1

(Hashiguchi et al., 2013) Efficient evaluation of 1F1 using
holonomic gradient method

(Danufane et al., 2017) In MIMO problem, evaluation of
Pr(λ1(W ) ≥ x) if W is a complex matrix and Ω 6= 0.

Our contribution: Efficient evaluation of Pr(λ1(W ) ≥ x) if W is a
real matrix and Ω 6= 0.
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Euler Characteristic Method
Let Wm(n,Σ; Ω) be non-central and W be a real matrix.

Difficulty: No explicit formula for Pr(λ1(W ) ≥ x).

Adler, Tayler and Takemura (2000, 2005), Kuriki and Takemura
(2001, 2008, 2009): Use Euler characteristic heuristic to
approximate probabilities of random fields.

Fact: λ1(W )1/2 is the maximum of a Gaussian field{
u>Ξv | ‖u‖Rm = ‖v‖Rn = 1

}
.

Idea: Approximation by the expected Euler characteristic heuristic:

Pr(λ1(W ) ≥ x) ≈ E
[
χ(Mx)

]
when x is large,

where Mx is a manifold induced by W and x .
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Outline

Explicit formula for the expectation of th Euler characteristic
number of a manifold related to a random matrix

Numerical evaluation for the integral formula by holonomic
gradient method
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Manifold of a Random Matrix

Let A be a real 2× 2 random matrix. Define a manifold

M = {hgT | g ∈ S , h ∈ S}.

Set
f (U) = tr(UA), U ∈ M,

and
Mx = {U ∈ M | f (U) ≥ x},

which is a manifold induced by A and x .
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Euler Characteristic Number

Let A be a real 2× 2 random matrix and Mx be the related
manifold.

Recall: The Euler characteristic is defined for the surfaces of
polyhedra by

χ = V − E + F .

For convex polyhedron’s surface, χ = 2.

We can also define the Euler characteristic for Mx and denote it by
χ(Mx).
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Expectation of the Euler Characteristic Number

Let A be a real 2× 2 random matrix and Mx be the related
manifold.

Recall: f (U) = tr(UA), U ∈ Mx .

Let hgT be a critical point of f . Take (g ,G ) ∈ SO(2) and
(h,H) ∈ SO(2). Set

σ = gTAh, b = GTAH,

which are singular values of A.

Theorem 1: Assume x > 0 and f (U) is a Morse function for
almost all A’s. Then E [χ(Mx)] is equal to

1

2

∫ ∞
x

dσ

∫ ∞
−∞

db

∫
S
GTdg

∫
S
HTdh(σ2 − b2)p(A).
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Expectation of the Euler Characteristic Number

Recall: Approximation by the expected Euler characteristic
heuristic:

Pr(λ1(W ) ≥ x) ≈ E
[
χ(Mx)

]
when x is large,

where Mx is a manifold induced by W = ΞΞT and x .

Goal: Efficient evaluation of the integral in Theorem 1 when W is
a non-central Wishart matrix and x is large.
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Expectation of the Euler Characteristic Number

Let M =

(
m11 0
m21 m22

)
and Σ =

(
1/s1 0

0 1/s2

)
such that

Ξ =
√

ΣV + M, where V = (vij) , vij ∼ N (0, 1) i. i. d.

Then the integral in Theorem 1 becomes∫ ∞
x

dσ

∫ ∞
−∞

db

∫ ∞
−∞

ds

∫ ∞
−∞

f (σ, b, s, t)dt, (1)

where

f =
s1s2(σ2 − b2)

(1 + s2)(1 + t2)
exp
{
−1

2
R
}
, R ∈ Q(σ, b, s, t)

We denote (1) by F (M,Σ; x).
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Challenge for Evaluation

Assume Ξ =
√

ΣV + M, where V = (vij) , vij ∼ N (0, 1) i. i. d..

F (M,Σ; x) contains parameters M,Σ.

Numerical integration for F (M,Σ; x) is time-consuming and
not reliable for many x .

Observation: the integrand of F (M,Σ; x) is holonomic (D-finite).

Idea: Use holonomic gradient method to evaluate F (M,Σ; x).
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Holonomic Gradient Method

f (θ, t): unnormalized probability distribution function w.r.t.
t = (t1, . . . , tn), where θ = (θ1, . . . , θm) is a parameter vector.

z(θ) =

∫
Ω
f (θ, t)dt

is the normalizing constant. f (t, θ)/z(θ) is a probability
distribution function on Ω. Evaluation of z(θ) is a fundamental
problem in statistics.

Example: f (θ, t) = exp
(
−t2

2θ2

)
with Ω = (−∞,+∞). Then

z(θ) =
√

2πθ2.
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Holonomic Gradient Method

An analytic function f (x) is called holonomic or D-finite when it
satisfies n linear ODE’s (holonomic system)

ri∑
j=0

aij

(
∂

∂xi

)j

f = 0, aij(x) ∈ C[x1, . . . , xn], i = 1, . . . , n.

Theorem (Zeilberger, 1990): If f (x) is holonomic, then the
integral

∫
Ω f (x)dxn is holonomic in (x1, . . . , xn−1) (under some

conditions on Ω).

Holonomic Gradient Method (Nakayama et al., 2011): When
f (θ, t) is holonomic, the normalizing constant z(θ) satisfies a
system of linear PDEs, which can be constructed by Gröbner bases.
Evaluate z(θ) and its derivatives by the system with methods in
numerical analysis.
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3 Steps of Holonomic Gradient Method
1. Construct a Pfaffian system for z(θ).

2. Evaluate numerically z(θ) and its derivatives at θ = θ0.

3. Apply numerical analysis methods for the Pfaffian system.

Example:

z(θ) =

∫
Ω

exp(θt)t1/2(1− t)1/2dt, Ω = [0, 1]

By creative telescoping,(
θ∂2

θ + (3− θ)∂θ − 3/2
)
z = 0, ∂θ =

∂

∂θ

Then ∂
∂θZ = PZ , where

Z =

(
z
∂
∂θ z

)
, P =

(
0 1
3

2θ −3−θ
θ

)
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Evaluation of the Expected Euler Characteristic

Recall: E [χ(Mx)] = F (M,Σ; x) is equal to∫ ∞
x

dσ

∫ ∞
−∞

db

∫ ∞
−∞

ds

∫ ∞
−∞

f (σ, b, s, t)dt,

where f is hyperexponential over Q(σ, b, s, t). Thus, −F ′(M,Σ; x)
is equal to ∫ ∞

−∞
db

∫ ∞
−∞

ds

∫ ∞
−∞

f (x , b, s, t)dt,

Idea: Use creative telescoping method to derive an ODE
for F ′(M,Σ; x)
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Creative Telescoping Method

Given a holonomic function f (θ, t) with annihilator

ann(f ) ⊂ C(θ, t)[∂θ, ∂t ].

Find nontrivial

P(θ, ∂θ) + ∂tQ(θ, t, ∂θ, ∂t) ∈ ann(f )

Then z(θ) =
∫

Ω f (θ, t)dt satisfies P(z) = 0 (under some
conditions on Ω). We call P a telescoper for ann(f ).
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Creative Telescoping Method

(Zeilberger, 1990): Sylvester’s dialytic elimination for multiple
integrals

(Takayama, 1992; Oaku, 1997): D-module theoretical
algorithms for multiple integrals

(Chyzak, 2000): a generalization of Gosper’s algorithm for
single integrals of multivariate holonomic functions

(Koutschan, 2010): rational ansatz approach for multiple
integrals

(Bostan et al., 2010, 2013; Chen et al., 2015, 2016):
reduction-based algorithms for single integrals of bivariate
holonomic functions
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Chyzak’s algorithm
Given a holonomic function f (θ, t) with annihilator

ann(f ) ⊂ R = C(θ, t)[∂θ, ∂t ].

We call dimC(R/ann(f )) the (holonomic) rank of ann(f ).

Goal: Drive an ODE for

G (M,Σ; x) =

∫ ∞
−∞

db

∫ ∞
−∞

ds

∫ ∞
−∞

f (x , b, s, t)dt,

where f is hyperexponential over Q(σ, b, s, t).

Using Chyzak’s algorithm, find a holonomic system of rank 2 for

f1(x , b, s) =

∫ ∞
−∞

f (x , b, s, t)dt

in 5 seconds using a Linux computer with 15.10 GB RAM.
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Chyzak’s algorithm

Goal: Drive an ODE for

G (M,Σ; x) =

∫ ∞
−∞

db

∫ ∞
−∞

f1(x , b, x)ds,

where ann(f1) has holonomic rank 2.

Using Chyzak’s algorithm, find a holonomic system of rank 6 for

f2(x , b) =

∫ ∞
−∞

f1(x , b, s)ds

in 16 mins by specifying M and Σ.

Question: Is it possible to compute a holonomic system for f2
without specifying M and Σ?
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Stafford Heuristic
Consider

Rn = K(x1, . . . , xn)[∂1, . . . , ∂n],

Tn = {∂i11 · · · ∂
in
n | (i1, . . . , in) ∈ Nn}.

Heuristic: Given a holonomic system H in Rn, compute new
holonomic system H1 in Rn−1 s.t. H1 ⊂ (Rn · H + ∂nRn) ∩ Rn−1.

1. Pick S1, S2 ∈ Tn−1.

2. Using rational ansatz method, check existence of telescoper
Pi of H with support Si , i = 1, 2. If Pi exists, go to step 3.
Otherwise, go to step 1.

3. Compute Gröbner basis H1 of {P1,P2}. If H1 is holonomic,
then output G1. Otherwise, go to step 1.

Stafford Theorem: Every left ideal in Rn can be generated by 2
elements.
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Stafford Heuristic

Goal: Drive an ODE for

G (M,Σ; x) =

∫ ∞
−∞

db

∫ ∞
−∞

f1(x , b, x)ds,

where ann(f1) = 〈H〉 has holonomic rank 2.

1. Pick

S1 = {1, ∂b, ∂x , ∂2
b , ∂b∂x , ∂

2
x , ∂

3
x},

S2 = S1 ∪ {∂2
b∂x , ∂b∂

2
x , ∂

3
b}.

2. Using rational ansatz method, find telescoper Pi of H with
support Si , i = 1, 2.

3. Compute Gröbner basis H1 of {P1,P2}. We find that H1 has
holonomic rank 6.
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Chyzak’s algorithm vs Stafford Heuristic

Goal: Drive an ODE for

G (M,Σ; x) =

∫ ∞
−∞

db

∫ ∞
−∞

f1(x , b, x)ds,

where ann(f1) has holonomic rank 2.

Below is a table of time (seconds) for deriving holonomic systems
of

f2(x , b) =

∫ ∞
−∞

f1(x , b, s)ds.

# pars 0 1 2 3 4 5

Chyzak 976 9.8× 104 - - - -
Heuristic 43.49 394.4 8527 4.3957× 105 - 1.5× 106
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Evaluation of the Expected Euler Characteristic
Goal: Drive an ODE for

G (M,Σ; x) =

∫ ∞
−∞

f2(x , b)db,

where ann(f2) has rank 6 (Recall: G (M,Σ; x) = −F ′(M,Σ; x)).

Example 1: Set

Σ−1 =

(
2 0
0 1

)
M =

(
1 0
−1 1

)
.

Using Heuristic, find an 11-th order ODE P(F ) = 0 of F (M,Σ; x).
By numerical solving of P(F ) = 0, get

x 1 2 3 4 5
HGM 0.745835 0.567729 0.144879 0.0146728 0.000582526

mc 0.745802 0.567623 0.144986 0.0146901 0.0005933

where mc is the result for a Monte Carlo study of E [χ(Mx)] with
10, 000, 000 iterations.
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Evaluation of the Expected Euler Characteristic
Example 2: Set

Σ−1 =

(
103 0
0 102

)
M =

(
1 0
2 3

)
.

Using Heuristic, find an 11-th order ODE P(F ) = 0 of F (M,Σ; x).

Difficulty:

Initial value: numerical integration is time-consuming and not
reliable.

Numerical solving of ODEs: the Runge-Kutta method only
works locally since F (M,Σ; x) is not dominant among
solutions of P(F ) = 0.

Recall: Let f1, . . . , fn be a basis of solutions of a linear ODE
L(y) = 0. A solution f of L(y) = 0 is dominant if

lim
x→∞

|fi (x)|
|f (x)|

<∞, i = 1, . . . , n.
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Evaluation of the Expected Euler Characteristic

Let P(y) = 0 be the r -th order linear ODE of F (M,Σ; x).

Idea: Compute approximation series solutions of the linear ODE
P(y) = 0 and use them to extrapolate results by simulations.

1. Construct approximation series solutions f1, . . . , fr of
P(y) = 0 up to 20, 000 terms.

2. Make an ansatz f (x) =
∑r−1

i=0 ti fi (x), where ti ’s are unknown.
Chose x = pj for j = 0, . . . , r − 1. Then

f (pj) =
r−1∑
i=0

ti fi (pj), j = 0, 1, . . . , r − 1.
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Evaluation of the Expected Euler Characteristic

f (pj) =
r−1∑
i=0

ti fi (pj), j = 0, 1, . . . , r − 1.

3. Compute f (pj) by Monte-Carlo simulation and then determine
ti ’s by solving linear equations.

4. Use f (x) =
∑r−1

i=0 ti fi (x) to extrapolate F (M,Σ; x) at target
points.

x f (x) simulation

3.8133 0.051146 0.051176
3.8166 0.047517 0.047695
3.82 0.044120 0.044515
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Evaluation of the Expected Euler Characteristic

3.6 3.7 3.8 3.9 4.0

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

3.6 3.7 3.8 3.9 4.0

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

3.6 3.7 3.8 3.9 4.0

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

x

E
[c

h
i(
M

x
)]

The extrapolation function f (x) with 20, 000 terms. Solid line is f (x),

which diverges when x > 3.8633. Dots are values by simulations.
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Conclusion

Let Wm(n,Σ; Ω) be non-central and W be a real matrix.

Approximate formula of Pr(λ1(W ) ≥ x) by Euler
characteristic method

Numerical evaluation for the integral formula by holonomic
gradient method

Thanks!
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