Laurent Series Solutions of Algebraic Ordinary Differential Equations

Yi Zhang

Johann Radon Institute for Computational and Applied Mathematics (RICAM) Austrian Academy of Sciences, Austria

Joint work with N. Thieu Vo

Der Wissenschaftsfonds.

Algebraic ordinary differential equations (AODEs)

Let $\mathbb K$ be an algebraic closed field of char 0, and x be an indeterminate.

Consider the AODE:

$$F(x, y, y', \dots, y^{(n)}) = 0,$$
 (1)

where F is a polynomial in $y, y', \ldots, y^{(n)}$ with coeffs in $\mathbb{K}(x)$ and $n \in \mathbb{N}$ is called the order of F. We also simply write (1) as F(y) = 0.

Example 1. Consider the Riccati equation:

$$y'=1+y^2.$$

Background and motivation

Goal: Given an AODE F(y) = 0, find $z = \sum_{i=-r}^{\infty} c_i x^i \in \mathbb{K}((x))$ s.t. F(z) = 0,

where r is called the order of z, and denoted as ord(z).

Background and motivation

Goal: Given an AODE F(y) = 0, find $z = \sum_{i=-r}^{\infty} c_i x^i \in \mathbb{K}((x))$ s.t. F(z) = 0,

where r is called the order of z, and denoted as ord(z).

Feng and Gao (2006): an algorithm for computing Laurent series sols at $x = \infty$ for first-order autonomous AODEs with nontrivial rational sols.

Grasegger, Thieu and Winkler (2016): an algorithm for computing rational sols of first-order AODEs without movable poles.

Background and motivation

Goal: Given an AODE F(y) = 0, find $z = \sum_{i=-r}^{\infty} c_i x^i \in \mathbb{K}((x))$ s.t. F(z) = 0,

where r is called the order of z, and denoted as ord(z).

Feng and Gao (2006): an algorithm for computing Laurent series sols at $x = \infty$ for first-order autonomous AODEs with nontrivial rational sols.

Grasegger, Thieu and Winkler (2016): an algorithm for computing rational sols of first-order AODEs without movable poles.

Our contribution: Construct an order bound for Laurent series sols of arbitrary order AODEs and give a method to compute them.

General idea

Let F(y) = 0 be an AODE, and $m \in \mathbb{N}$.

Assume that $z \in \mathbb{K}((x))$ is a sol of F(y) = 0.

- 1. Derive an order bound B for the order of z.
- 2. Substitute $z = \frac{1}{x^B} w$ with $w \in \mathbb{K}[[x]]$ into F(y) = 0 and get a new AODE

$$G(w)=0. \tag{2}$$

3. Compute formal power series sols of (2) with the form:

$$w = c_0 + c_1 x + \cdots + c_{m-1} x^{m-1} + \mathcal{O}(x^m).$$

4. Return $\frac{1}{x^B}w$.

General idea

Example 2. Consider the AODE:

$$F(y) = xy' + x^2y^2 + y - 1 = 0.$$

Assume that $z \in \mathbb{K}((x))$ is a sol of F(y) = 0.

- 1. An order bound for the order of z is 2.
- 2. Substitute $z = \frac{1}{x^2}w$ with $w \in \mathbb{K}[[x]]$ into F(y) = 0 and get a new AODE

$$G(w) = xw' + w^2 - w - x^2 = 0.$$
 (3)

3. Compute formal power series sols of (3) with the form:

$$w = 1 + 0x + \frac{1}{3}x^2 + 0x^3 - \frac{1}{45}x^4 + \mathcal{O}(x^5).$$

4. Return $\frac{1}{x^2}w$.

Outline

Computing formal power series solutions

Order bound for Laurent series solutions

- Applications
 - Polynomial solutions of noncritical AODEs
 - Rational solutions of maximally comparable AODEs

Conclusion

Let $\mathbb{K}(x)\{y\} = \mathbb{K}(x)[y, y', y'', ...]$ be the ring of differential polynomials over $\mathbb{K}(x)$, where $(y^{(n)})' = y^{(n+1)}$ and x' = 1.

Given an AODE F(y) = 0 of order *n*, then $F(y) \in \mathbb{K}(x)\{y\}$.

Lemma 1. For each $k \ge 1$, there exists $R_k \in \mathbb{K}(x)\{y\}$ of order n + k - 1 such that

$$F^{(k)} = S_F \cdot y^{(n+k)} + R_k,$$

where $S_F := \frac{\partial F}{\partial y^{(n)}}$ is the separant of F.

Lemma 2. For $f \in \mathbb{K}[[x]]$ and $k \in \mathbb{N}$, we denote the coeff of x^k in f as $[x^k]f$. Then $[x^k]f = [x^0] \left(\frac{1}{k!}f^{(k)}\right)$.

Let F(y) = 0 be an AODE of order *n*.

Using Lemmas 1 and 2, we have

Prop 1. Assume that $z = \sum_{i=0}^{\infty} \frac{c_i}{i!} x^i \in \mathbb{K}[[x]]$. Then: (i) $[x^0]F(x, z, ..., z^{(n)}) = F(0, c_0, ..., c_n)$.

(ii) For each $k \ge 1$, $[x^k]F(x, z, \dots, z^{(n)})$ is equal to

$$\frac{1}{k!} (S_F(0, c_0, \ldots, c_n) c_{n+k} + R_k(0, c_0, \ldots, c_{n+k-1})),$$

where R_k is specified in Lemma 1.

Let F(y) = 0 be an AODE of order *n*.

Theorem 1. Let $(c_0, \ldots, c_n) \in \mathbb{K}^{n+1}$ s.t. $F(0, c_0, \ldots, c_n) = 0$ and $S_F(0, c_0, \ldots, c_n) \neq 0$, and for each $k \geq 1$, we set

$$c_{n+k} = -\frac{R_k(0, c_0, \dots, c_{n+k-1})}{S_F(0, c_0, \dots, c_n)}$$

Then $z = \sum_{i=0}^{\infty} \frac{c_i}{i!} x^i$ is a formal power series sol of F(y) = 0.

Let F(y) = 0 be an AODE of order *n*.

Theorem 1. Let $(c_0, \ldots, c_n) \in \mathbb{K}^{n+1}$ s.t. $F(0, c_0, \ldots, c_n) = 0$ and $S_F(0, c_0, \ldots, c_n) \neq 0$, and for each $k \geq 1$, we set

$$c_{n+k} = -\frac{R_k(0, c_0, \dots, c_{n+k-1})}{S_F(0, c_0, \dots, c_n)}$$

Then $z = \sum_{i=0}^{\infty} \frac{c_i}{i!} x^i$ is a formal power series sol of F(y) = 0.

Example 1 (Continued). Consider the Riccati equation:

$$F(y) = y' - 1 - y^2 = 0.$$

Since $S_F = 1$, its formal power series sols are in bijection with

$$\{(c_0, c_1) \in \mathbb{K}^2 \mid c_1 = 1 + c_0^2\}.$$

Let $z = \sum_{i=-r}^{\infty} c_i x^i \in \mathbb{K}((x))$. We call c_{-r} the lowest coeff of z, and denote it by c(z).

Let $z = \sum_{i=-r}^{\infty} c_i x^i \in \mathbb{K}((x))$. We call c_{-r} the lowest coeff of z, and denote it by c(z).

For $I = (i_0, i_1, \dots, i_n) \in \mathbb{N}^{n+1}$ and $r \in \{0, \dots, n\}$, set $||I||_r := i_r + \dots + i_n$. Write $||I||_0 = ||I||$. Moreover, set $||I||_{\infty} := i_1 + 2i_2 + \dots + ni_n$.

Let $z = \sum_{i=-r}^{\infty} c_i x^i \in \mathbb{K}((x))$. We call c_{-r} the lowest coeff of z, and denote it by c(z).

For $I = (i_0, i_1, \dots, i_n) \in \mathbb{N}^{n+1}$ and $r \in \{0, \dots, n\}$, set $||I||_r := i_r + \dots + i_n$. Write $||I||_0 = ||I||$. Moreover, set $||I||_{\infty} := i_1 + 2i_2 + \dots + ni_n$.

Let
$$F(y) = \sum_{I \in \mathbb{N}^{n+1}} f_I(x) y^{i_0} (y')^{i_1} \cdots (y^{(n)})^{i_n} \in \mathbb{K}(x) \{y\}$$
 be of order *n*. Set:

$$\mathcal{E}(F) := \{I \in \mathbb{N}^{n+1} \mid f_I \neq 0\},\$$

$$d(F) := \max\{||I|| \mid I \in \mathcal{E}(F)\},\$$

$$\mathcal{D}(F) := \{I \in \mathcal{E}(F) \mid ||I|| = d(F)\}.$$

Moreover, we denote

$$m(F) := \max\{ \operatorname{ord}(f_{I}) + ||I||_{\infty} | I \in \mathcal{D}(F) \}, \\ \mathcal{M}(F) := \{ I \in \mathcal{D}(F) | \operatorname{ord}(f_{I}) + ||I||_{\infty} = m(F) \}, \\ \mathcal{P}_{F}(t) := \sum_{I \in \mathcal{M}(F)} c(f_{I}) \cdot \prod_{r=0}^{n-1} (-t-r)^{||I||_{r+1}},$$

and if $\mathcal{E}(F) \setminus \mathcal{D}(F) \neq \emptyset$, set

$$b(F) := \max\left\{\frac{\operatorname{ord}(f_I) + ||I||_{\infty} - m(F)}{d(F) - ||I||} \mid I \in \mathcal{E}(F) \setminus \mathcal{D}(F)\right\}.$$

Moreover, we denote

$$m(F) := \max\{ \operatorname{ord}(f_{I}) + ||I||_{\infty} | I \in \mathcal{D}(F) \}, \\ \mathcal{M}(F) := \{ I \in \mathcal{D}(F) | \operatorname{ord}(f_{I}) + ||I||_{\infty} = m(F) \}, \\ \mathcal{P}_{F}(t) := \sum_{I \in \mathcal{M}(F)} c(f_{I}) \cdot \prod_{r=0}^{n-1} (-t-r)^{||I||_{r+1}},$$

and if $\mathcal{E}(F) \setminus \mathcal{D}(F) \neq \emptyset$, set

$$b(F) := \max\left\{\frac{\operatorname{ord}(f_I) + ||I||_{\infty} - m(F)}{d(F) - ||I||} \mid I \in \mathcal{E}(F) \setminus \mathcal{D}(F)\right\}.$$

Definition 1. We call \mathcal{P}_F the indicial polynomial of F at the origin.

Theorem 2. (main result) Let F(y) = 0 be an AODE. If $r \ge 1$ is the order of a Laurent series sol of F(y) = 0 at the origin, then one of the following claims holds:

(i) $\mathcal{E}(F) \setminus \mathcal{D}(F) \neq \emptyset$, and $r \leq b(F)$;

(ii) r is an integer root of $\mathcal{P}_F(t)$.

Theorem 2. (main result) Let F(y) = 0 be an AODE. If $r \ge 1$ is the order of a Laurent series sol of F(y) = 0 at the origin, then one of the following claims holds:

(i)
$$\mathcal{E}(F) \setminus \mathcal{D}(F) \neq \emptyset$$
, and $r \leq b(F)$;

(ii) r is an integer root of $\mathcal{P}_F(t)$.

The proof is an analog of the Frobenius method for linear ODEs.

Theorem 2 also holds for
$$x = \infty$$
.

Example 2 (Continued). Consider:

$$F(y) = xy' + x^2y^2 + y - 1 = 0.$$

Assume $z \in \mathbb{K}((x))$ is a sol of F(y) = 0.

1. By Theorem 2, an order bound for the order of z is 2.

2. Substitute $z = \frac{1}{x^2}w$ with $w = \sum_{i=0}^{\infty} \frac{c_i}{i!} x^i \in \mathbb{K}[[x]]$ into F(y) = 0 and get a new AODE

$$G(w) = xw' + w^2 - w - w^2 = 0.$$

3. By Prop 1, we have

$$\begin{split} & [x^0]G(w) = c_0^2 - c_0, \\ & [x^k]G(w) = (2c_0 + k - 1)c_k + R_{k-1}(c_0, \dots, c_{k-1}) \text{ for } k \ge 1. \\ & \text{Thus, } w = 1 + 0x + \frac{1}{3}x^2 + 0x^3 - \frac{1}{45}x^4 + \mathcal{O}(x^5). \\ & \text{Return } \frac{1}{x^2}w. \end{split}$$

4.

Theorem 2 gives a sharp order bound in Example 2. However, in general, it is not true.

Theorem 2 gives a sharp order bound in Example 2. However, in general, it is not true.

Example 3. Consider the linear ODE:

$$F(y) = x^2 y'' + 4xy' + (2+x)y = 0.$$

Assume $z \in \mathbb{K}((x))$ is a sol of F(y) = 0.

- 1. By Theorem 2, an order bound for the order of z is 2.
- 2. Substitute $z = \sum_{i=-2}^{\infty} c_i x^i \in \mathbb{K}((x))$ into F(y) = 0 and get $(1+i)(2+i)c_i + c_{i-1} = 0$ for each $i \in \mathbb{Z}$. (4)

Substitute i = -1 into (4) and get $c_{-2} = 0$. Thus, F(y) = 0 has no Laurent series sols of order 2.

3. Assume $c_{-1} = 1$. By (4), we conclude that F(y) = 0 has a sol of the form:

$$\sum_{i=-1}^{\infty} (-1)^{i+1} \frac{x^i}{(1+i)!(2+i)!}.$$

Let F(y) = 0 be an AODE.

If $\mathcal{E}(F) = \mathcal{D}(F)$ and $\mathcal{P}_F(t) = 0$, then Theorem 2 gives no info for order bound of Laurent series sol of F(y) = 0.

Let F(y) = 0 be an AODE.

If $\mathcal{E}(F) = \mathcal{D}(F)$ and $\mathcal{P}_F(t) = 0$, then Theorem 2 gives no info for order bound of Laurent series sol of F(y) = 0.

Example 4. Consider the AODE:

$$F(y) = xyy'' - xy'^2 + yy' = 0.$$

Here, $\mathcal{E}(F) = \mathcal{D}(F)$ and $\mathcal{P}_F(t) = 0$. It has Laurent series sols

$$z = cx^{-n}$$
 for each $c \in \mathbb{K}$ and $n \in \mathbb{N}$.

Let F(y) = 0 be an AODE, and $\mathcal{P}_{\infty,F}(t)$ be the indicial polynomial of F(y) = 0 at infinity.

Definition 2. We call F(y) = 0 noncritical if $\mathcal{P}_{\infty,F}(t) \neq 0$.

Let F(y) = 0 be an AODE, and $\mathcal{P}_{\infty,F}(t)$ be the indicial polynomial of F(y) = 0 at infinity.

Definition 2. We call F(y) = 0 noncritical if $\mathcal{P}_{\infty,F}(t) \neq 0$.

By Theorem 2, if F(y) = 0 is noncritical, then there exists a bound for the degree of its polynomial sols.

Algorithm 1. Given a noncritical AODE F(y) = 0, compute all its polynomial sols.

- 1. Assume $z \in \mathbb{K}[x]$ is polynomial sol of F(y) = 0. Compute a degree bound *B* for *z* by Theorem 2.
- 2. Set $z = \sum_{i=0}^{B} c_i x^B$, where c_i is unknown. Substitute z into F(y) = 0 and solve the algebraic equations by using Gröbner bases. Return the results.

Example 5 (Kamke 6.234). Consider:

$$F(y) = a^2 y^2 y''^2 - 2a^2 y y'^2 y'' + a^2 y'^4 - b^2 y''^2 - y'^2 = 0,$$

where $a, b \in \mathbb{K}$ and $a \neq 0$. Here, $\mathcal{P}_{\infty,F}(t) = a^2 t^2 \neq 0$.

Example 5 (Kamke 6.234). Consider:

$$F(y) = a^2 y^2 y''^2 - 2a^2 y y'^2 y'' + a^2 y'^4 - b^2 y''^2 - y'^2 = 0,$$

where $a, b \in \mathbb{K}$ and $a \neq 0$. Here, $\mathcal{P}_{\infty,F}(t) = a^2 t^2 \neq 0$.

- 1. Assume $z \in \mathbb{K}[x]$ is polynomial sol of F(y) = 0. By Theorem 2, a degree bound for z is 1.
- 2. Set $z = c_0 + c_1 x$, where c_i is unknown. Substitute z into F(y) = 0 and solve the algebraic equations by using Gröbner bases. We find $c, c + \frac{x}{a}$, and $c \frac{x}{a}$ are sols, where $c \in \mathbb{K}$.

Example 4 (Continued). Consider the AODE:

$$F(y) = xyy'' - xy'^2 + yy' = 0.$$

Here, $\mathcal{E}(F) = \mathcal{D}(F)$ and $\mathcal{P}_{\infty,F}(t) = 0$. It has polynomial sols

 $z = cx^n$ for each $c \in \mathbb{K}$ and $n \in \mathbb{N}$.

Example 4 (Continued). Consider the AODE:

$$F(y) = xyy'' - xy'^2 + yy' = 0.$$

Here, $\mathcal{E}(F) = \mathcal{D}(F)$ and $\mathcal{P}_{\infty,F}(t) = 0$. It has polynomial sols

$$z = cx^n$$
 for each $c \in \mathbb{K}$ and $n \in \mathbb{N}$.

- linear, first-order, quasi-linear second-order AODEs are noncritical.
- In Kamke's collection, all of the 834 AODEs are noncritical.

Consider a linear ODE:

$$F(y) = \ell_n y^{(n)} + \ell_{n-1} y^{(n-1)} + \dots + \ell_0 y = 0,$$

where $\ell_i \in \mathbb{K}[x]$. The roots of ℓ_n are singularities of F(y) = 0.

Fact: Poles of rational sols of F(y) = 0 must be roots of ℓ_n .

Consider a linear ODE:

$$F(y) = \ell_n y^{(n)} + \ell_{n-1} y^{(n-1)} + \dots + \ell_0 y = 0,$$

where $\ell_i \in \mathbb{K}[x]$. The roots of ℓ_n are singularities of F(y) = 0.

Fact: Poles of rational sols of F(y) = 0 must be roots of ℓ_n .

This is not true for nonlinear AODEs.

Example 6. Consider

$$F(y)=y'+y^2=0.$$

It has rational sols $z = \frac{1}{x-c}$ for $c \in \mathbb{K}$.

Question: Find a class of (nonlinear) AODEs s.t. the set of poles of rational sols of them is finite and computable.

Question: Find a class of (nonlinear) AODEs s.t. the set of poles of rational sols of them is finite and computable.

For $I, J \in \mathbb{N}^{n+1}$, we say $I \gg J$ if $||I|| \ge ||J||$ and $||I|| + ||I||_{\infty} > ||J|| + ||J||_{\infty}$.

For $I, J \in \mathbb{N}^{n+1}$, we say I and J are comparable if $I \gg J$ or $J \gg I$.

Given $S \subset \mathbb{N}^{n+1}$, we call $I \in S$ greatest element of S if $I \gg J$ for each $J \in S \setminus \{I\}$.

Definition 3. An AODE F(y) = 0 is called maximally comparable if $\mathcal{E}(F)$ admits a greatest element w.r.t. \gg .

Let
$$F(y) = \sum_{l \in \mathbb{N}^{n+1}} f_l y^{i_0} (y')^{i_1} \dots (y^{(n)})^{i_n} = 0$$
 be an AODE.

Theorem 3. Let F(y) = 0 be maximally comparable and I_0 be the greatest element of $\mathcal{E}(F)$ w.r.t. \gg . Then the poles of rational sols of F(y) = 0 are the zeros of $f_{I_0}(x)$ or infinity.

Let
$$F(y) = \sum_{l \in \mathbb{N}^{n+1}} f_l y^{i_0} (y')^{i_1} \dots (y^{(n)})^{i_n} = 0$$
 be an AODE.

Theorem 3. Let F(y) = 0 be maximally comparable and I_0 be the greatest element of $\mathcal{E}(F)$ w.r.t. \gg . Then the poles of rational sols of F(y) = 0 are the zeros of $f_{I_0}(x)$ or infinity.

 In Kamke's collection, 78.54% of the 834 AODEs are maximally comparable.

Algorithm 2. Given a maximally comparable AODE F(y) = 0, compute all its rational sols.

- 1. Compute the greatest element I_0 of $\mathcal{E}(F)$ w.r.t. \gg . Compute distinct roots x_1, \ldots, x_m of $f_{I_0}(x)$.
- 2. Compute order bounds r_i and N for Laurent series sols of F(y) = 0 at x_i and infinity by Theorem 2, where i = 1, ..., m.
- 3. Set

$$z = \sum_{i=1}^{m} \sum_{j=1}^{r_i} \frac{c_{ij}}{(x - x_i)^j} + \sum_{k=0}^{N} c_i x^i,$$

where c_{ij} , c_i are unknown. Substitute z into F(y) = 0 and solve the algebraic equations by Gröbner bases.

Example 7. Consider the AODE:

$$F(y) = \frac{x^2(x-1)^2 y''^2 + 4x^2(x-1)y'y'' - 4x(x-1)yy'' + 4x^2 y'^2 - 8xyy' + 4y^2 - 2(x-1)y''}{4x^2 y'^2 - 8xyy' + 4y^2 - 2(x-1)y''} = 0.$$

- 1. The greatest element of $\mathcal{E}(F)$ w.r.t. \gg is (0, 0, 2). By Theorem 3, the poles of rational sols of F(y) = 0 might be 0, 1 or infinity.
- 2. By Theorem 2, the order bounds of Laurent series sols of F(y) = 0 at 0, 1 and infinity are 0, 1 and 1.
- 3. Set

$$z = rac{c_1}{x-1} + c_2 + c_3 x$$
 for some $c_1, c_2, c_3 \in \mathbb{K}$.

Substitute z into F(y) = 0 and we find c_3x and $\frac{1}{x-1} + c_3x$ are rational sols of F(y) = 0, where $c_3 \in \mathbb{K}$.

Conclusion

Let F(y) = 0 be an AODE of order *n*.

- Construct an order bound for Laurent series sols of F(y) = 0 and use it to compute them.
- An algorithm for computing polynomial sols of noncritical AODEs.
- An algorithm for computing rational sols of maximally comparable AODEs.

Conclusion

Let F(y) = 0 be an AODE of order *n*.

- Construct an order bound for Laurent series sols of F(y) = 0 and use it to compute them.
- An algorithm for computing polynomial sols of noncritical AODEs.
- An algorithm for computing rational sols of maximally comparable AODEs.

Thanks!