Laurent Series Solutions of Algebraic Ordinary Differential Equations

Yi Zhang
Johann Radon Institute for Computational and Applied Mathematics (RICAM)
Austrian Academy of Sciences, Austria

Joint work with N. Thieu Vo

FШF

Der Wissenschaftsfonds.

Algebraic ordinary differential equations (AODEs)

Let \mathbb{K} be an algebraic closed field of char 0 , and x be an indeterminate.

Consider the AODE:

$$
\begin{equation*}
F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=0 \tag{1}
\end{equation*}
$$

where F is a polynomial in $y, y^{\prime}, \ldots, y^{(n)}$ with coeffs in $\mathbb{K}(x)$ and $n \in \mathbb{N}$ is called the order of F. We also simply write (1) as $F(y)=0$.

Example 1. Consider the Riccati equation:

$$
y^{\prime}=1+y^{2}
$$

Background and motivation

Goal: Given an AODE $F(y)=0$, find $z=\sum_{i=-r}^{\infty} c_{i} x^{i} \in \mathbb{K}((x))$ s.t.

$$
F(z)=0,
$$

where r is called the order of z, and denoted as $\operatorname{ord}(z)$.

Background and motivation

Goal: Given an $\operatorname{AODE} F(y)=0$, find $z=\sum_{i=-r}^{\infty} c_{i} x^{i} \in \mathbb{K}((x))$ s.t.

$$
F(z)=0,
$$

where r is called the order of z, and denoted as ord (z).
Feng and Gao (2006): an algorithm for computing Laurent series sols at $x=\infty$ for first-order autonomous AODEs with nontrivial rational sols.

Grasegger, Thieu and Winkler (2016): an algorithm for computing rational sols of first-order AODEs without movable poles.

Background and motivation

Goal: Given an $\operatorname{AODE} F(y)=0$, find $z=\sum_{i=-r}^{\infty} c_{i} x^{i} \in \mathbb{K}((x))$ s.t.

$$
F(z)=0,
$$

where r is called the order of z, and denoted as ord (z).
Feng and Gao (2006): an algorithm for computing Laurent series sols at $x=\infty$ for first-order autonomous AODEs with nontrivial rational sols.

Grasegger, Thieu and Winkler (2016): an algorithm for computing rational sols of first-order AODEs without movable poles.

Our contribution: Construct an order bound for Laurent series sols of arbitrary order AODEs and give a method to compute them.

General idea

Let $F(y)=0$ be an AODE, and $m \in \mathbb{N}$.
Assume that $z \in \mathbb{K}((x))$ is a sol of $F(y)=0$.

1. Derive an order bound B for the order of z.
2. Substitute $z=\frac{1}{x^{B}} w$ with $w \in \mathbb{K}[[x]]$ into $F(y)=0$ and get a new AODE

$$
\begin{equation*}
G(w)=0 . \tag{2}
\end{equation*}
$$

3. Compute formal power series sols of (2) with the form:

$$
w=c_{0}+c_{1} x+\cdots+c_{m-1} x^{m-1}+\mathcal{O}\left(x^{m}\right)
$$

4. Return $\frac{1}{x^{B}} w$.

General idea

Example 2. Consider the AODE:

$$
F(y)=x y^{\prime}+x^{2} y^{2}+y-1=0
$$

Assume that $z \in \mathbb{K}((x))$ is a sol of $F(y)=0$.

1. An order bound for the order of z is 2 .
2. Substitute $z=\frac{1}{x^{2}} w$ with $w \in \mathbb{K}[[x]]$ into $F(y)=0$ and get a new AODE

$$
\begin{equation*}
G(w)=x w^{\prime}+w^{2}-w-x^{2}=0 \tag{3}
\end{equation*}
$$

3. Compute formal power series sols of (3) with the form:

$$
w=1+0 x+\frac{1}{3} x^{2}+0 x^{3}-\frac{1}{45} x^{4}+\mathcal{O}\left(x^{5}\right)
$$

4. Return $\frac{1}{x^{2}} w$.

Outline

- Computing formal power series solutions
- Order bound for Laurent series solutions
- Applications
- Polynomial solutions of noncritical AODEs
- Rational solutions of maximally comparable AODEs
- Conclusion

Formal power series solutions

Let $\mathbb{K}(x)\{y\}=\mathbb{K}(x)\left[y, y^{\prime}, y^{\prime \prime}, \ldots\right]$ be the ring of differential polynomials over $\mathbb{K}(x)$, where $\left(y^{(n)}\right)^{\prime}=y^{(n+1)}$ and $x^{\prime}=1$.

Given an AODE $F(y)=0$ of order n, then $F(y) \in \mathbb{K}(x)\{y\}$.
Lemma 1. For each $k \geq 1$, there exists $R_{k} \in \mathbb{K}(x)\{y\}$ of order $n+k-1$ such that

$$
F^{(k)}=S_{F} \cdot y^{(n+k)}+R_{k},
$$

where $S_{F}:=\frac{\partial F}{\partial y^{(n)}}$ is the separant of F.
Lemma 2. For $f \in \mathbb{K}[[x]]$ and $k \in \mathbb{N}$, we denote the coeff of x^{k} in f as $\left[x^{k}\right] f$. Then $\left[x^{k}\right] f=\left[x^{0}\right]\left(\frac{1}{k!} f^{(k)}\right)$.

Formal power series solutions

Let $F(y)=0$ be an AODE of order n.
Using Lemmas 1 and 2, we have
Prop 1. Assume that $z=\sum_{i=0}^{\infty} \frac{c_{i}}{i!} x^{i} \in \mathbb{K}[[x]]$. Then:
(i) $\left[x^{0}\right] F\left(x, z, \ldots, z^{(n)}\right)=F\left(0, c_{0}, \ldots, c_{n}\right)$.
(ii) For each $k \geq 1,\left[x^{k}\right] F\left(x, z, \ldots, z^{(n)}\right)$ is equal to

$$
\frac{1}{k!}\left(S_{F}\left(0, c_{0}, \ldots, c_{n}\right) c_{n+k}+R_{k}\left(0, c_{0}, \ldots, c_{n+k-1}\right)\right)
$$

where R_{k} is specified in Lemma 1.

Formal power series solutions

Let $F(y)=0$ be an AODE of order n.
Theorem 1. Let $\left(c_{0}, \ldots, c_{n}\right) \in \mathbb{K}^{n+1}$ s.t. $F\left(0, c_{0}, \ldots, c_{n}\right)=0$ and $S_{F}\left(0, c_{0}, \ldots, c_{n}\right) \neq 0$, and for each $k \geq 1$, we set

$$
c_{n+k}=-\frac{R_{k}\left(0, c_{0}, \ldots, c_{n+k-1}\right)}{S_{F}\left(0, c_{0}, \ldots, c_{n}\right)}
$$

Then $z=\sum_{i=0}^{\infty} \frac{c_{i}}{i!} x^{i}$ is a formal power series sol of $F(y)=0$.

Formal power series solutions

Let $F(y)=0$ be an AODE of order n.
Theorem 1. Let $\left(c_{0}, \ldots, c_{n}\right) \in \mathbb{K}^{n+1}$ s.t. $F\left(0, c_{0}, \ldots, c_{n}\right)=0$ and $S_{F}\left(0, c_{0}, \ldots, c_{n}\right) \neq 0$, and for each $k \geq 1$, we set

$$
c_{n+k}=-\frac{R_{k}\left(0, c_{0}, \ldots, c_{n+k-1}\right)}{S_{F}\left(0, c_{0}, \ldots, c_{n}\right)}
$$

Then $z=\sum_{i=0}^{\infty} \frac{c_{i}}{i!} x^{i}$ is a formal power series sol of $F(y)=0$.
Example 1 (Continued). Consider the Riccati equation:

$$
F(y)=y^{\prime}-1-y^{2}=0
$$

Since $S_{F}=1$, its formal power series sols are in bijection with

$$
\left\{\left(c_{0}, c_{1}\right) \in \mathbb{K}^{2} \mid c_{1}=1+c_{0}^{2}\right\}
$$

Laurent series solutions

Let $z=\sum_{i=-r}^{\infty} c_{i} x^{i} \in \mathbb{K}((x))$. We call c_{-r} the lowest coeff of z, and denote it by $c(z)$.

Laurent series solutions

Let $z=\sum_{i=-r}^{\infty} c_{i} x^{i} \in \mathbb{K}((x))$. We call c_{-r} the lowest coeff of z, and denote it by $c(z)$.

For $I=\left(i_{0}, i_{1}, \ldots, i_{n}\right) \in \mathbb{N}^{n+1}$ and $r \in\{0, \ldots, n\}$, set $\|I\|_{r}:=i_{r}+\ldots+i_{n}$. Write $\|I\|_{0}=\|I\|$. Moreover, set $\|I\|_{\infty}:=i_{1}+2 i_{2}+\ldots+n i_{n}$.

Laurent series solutions

Let $z=\sum_{i=-r}^{\infty} c_{i} x^{i} \in \mathbb{K}((x))$. We call c_{-r} the lowest coeff of z, and denote it by $c(z)$.

For $I=\left(i_{0}, i_{1}, \ldots, i_{n}\right) \in \mathbb{N}^{n+1}$ and $r \in\{0, \ldots, n\}$, set
$\|I\|_{r}:=i_{r}+\ldots+i_{n}$. Write $\|I\|_{0}=\|I\|$. Moreover, set $\|I\|_{\infty}:=i_{1}+2 i_{2}+\ldots+n i_{n}$.

Let $F(y)=\sum_{l \in \mathbb{N}^{n+1}} f_{l}(x) y^{i_{0}}\left(y^{\prime}\right)^{i_{1}} \cdots\left(y^{(n)}\right)^{i_{n}} \in \mathbb{K}(x)\{y\}$ be of order n. Set:

$$
\begin{aligned}
\mathcal{E}(F) & :=\left\{I \in \mathbb{N}^{n+1} \mid f_{I} \neq 0\right\}, \\
d(F) & :=\max \{\|I\| \mid I \in \mathcal{E}(F)\}, \\
\mathcal{D}(F) & :=\{I \in \mathcal{E}(F) \mid\|I\|=d(F)\} .
\end{aligned}
$$

Laurent series solutions

Moreover, we denote

$$
\begin{aligned}
m(F) & :=\max \left\{\operatorname{ord}\left(f_{l}\right)+\|I\|_{\infty} \mid I \in \mathcal{D}(F)\right\}, \\
\mathcal{M}(F) & :=\left\{I \in \mathcal{D}(F) \mid \operatorname{ord}\left(f_{l}\right)+\|I\|_{\infty}=m(F)\right\}, \\
\mathcal{P}_{F}(t) & :=\sum_{I \in \mathcal{M}(F)} c\left(f_{l}\right) \cdot \prod_{r=0}^{n-1}(-t-r)^{\|I\|_{r+1}},
\end{aligned}
$$

and if $\mathcal{E}(F) \backslash \mathcal{D}(F) \neq \emptyset$, set

$$
b(F):=\max \left\{\left.\frac{\operatorname{ord}\left(f_{l}\right)+\|I\|_{\infty}-m(F)}{d(F)-\|I\|} \right\rvert\, I \in \mathcal{E}(F) \backslash \mathcal{D}(F)\right\} .
$$

Laurent series solutions

Moreover, we denote

$$
\begin{aligned}
m(F) & :=\max \left\{\operatorname{ord}\left(f_{l}\right)+\|I\|_{\infty} \mid I \in \mathcal{D}(F)\right\}, \\
\mathcal{M}(F) & :=\left\{I \in \mathcal{D}(F) \mid \operatorname{ord}\left(f_{l}\right)+\|I\|_{\infty}=m(F)\right\}, \\
\mathcal{P}_{F}(t) & :=\sum_{I \in \mathcal{M}(F)} c\left(f_{l}\right) \cdot \prod_{r=0}^{n-1}(-t-r)^{\|I\|_{r+1}},
\end{aligned}
$$

and if $\mathcal{E}(F) \backslash \mathcal{D}(F) \neq \emptyset$, set

$$
b(F):=\max \left\{\left.\frac{\operatorname{ord}\left(f_{l}\right)+\|I\|_{\infty}-m(F)}{d(F)-\|I\|} \right\rvert\, I \in \mathcal{E}(F) \backslash \mathcal{D}(F)\right\} .
$$

Definition 1. We call \mathcal{P}_{F} the indicial polynomial of F at the origin.

Laurent series solutions

Theorem 2. (main result) Let $F(y)=0$ be an AODE. If $r \geq 1$ is the order of a Laurent series sol of $F(y)=0$ at the origin, then one of the following claims holds:
(i) $\mathcal{E}(F) \backslash \mathcal{D}(F) \neq \emptyset$, and $r \leq b(F)$;
(ii) r is an integer root of $\mathcal{P}_{F}(t)$.

Laurent series solutions

Theorem 2. (main result) Let $F(y)=0$ be an AODE. If $r \geq 1$ is the order of a Laurent series sol of $F(y)=0$ at the origin, then one of the following claims holds:
(i) $\mathcal{E}(F) \backslash \mathcal{D}(F) \neq \emptyset$, and $r \leq b(F)$;
(ii) r is an integer root of $\mathcal{P}_{F}(t)$.

- The proof is an analog of the Frobenius method for linear ODEs.
- Theorem 2 also holds for $x=\infty$.

Laurent series solutions

Example 2 (Continued). Consider:

$$
F(y)=x y^{\prime}+x^{2} y^{2}+y-1=0
$$

Assume $z \in \mathbb{K}((x))$ is a sol of $F(y)=0$.

1. By Theorem 2, an order bound for the order of z is 2 .
2. Substitute $z=\frac{1}{x^{2}} w$ with $w=\sum_{i=0}^{\infty} \frac{c_{i}}{i!} x^{i} \in \mathbb{K}[[x]]$ into $F(y)=0$ and get a new AODE

$$
G(w)=x w^{\prime}+w^{2}-w-w^{2}=0
$$

3. By Prop 1, we have

$$
\begin{aligned}
& \quad\left[x^{0}\right] G(w)=c_{0}^{2}-c_{0} \\
& \quad\left[x^{k}\right] G(w)=\left(2 c_{0}+k-1\right) c_{k}+R_{k-1}\left(c_{0}, \ldots, c_{k-1}\right) \text { for } k \geq 1 \text {. } \\
& \text { Thus, } w=1+0 x+\frac{1}{3} x^{2}+0 x^{3}-\frac{1}{45} x^{4}+\mathcal{O}\left(x^{5}\right) \text {. } \\
& \text { 4. Return } \frac{1}{x^{2}} w \text {. }
\end{aligned}
$$

Laurent series solutions

Theorem 2 gives a sharp order bound in Example 2. However, in general, it is not true.

Laurent series solutions

Theorem 2 gives a sharp order bound in Example 2. However, in general, it is not true.

Example 3. Consider the linear ODE:

$$
F(y)=x^{2} y^{\prime \prime}+4 x y^{\prime}+(2+x) y=0
$$

Assume $z \in \mathbb{K}((x))$ is a sol of $F(y)=0$.

1. By Theorem 2, an order bound for the order of z is 2 .
2. Substitute $z=\sum_{i=-2}^{\infty} c_{i} x^{i} \in \mathbb{K}((x))$ into $F(y)=0$ and get

$$
\begin{equation*}
(1+i)(2+i) c_{i}+c_{i-1}=0 \quad \text { for each } \quad i \in \mathbb{Z} \tag{4}
\end{equation*}
$$

Substitute $i=-1$ into (4) and get $c_{-2}=0$. Thus, $F(y)=0$ has no Laurent series sols of order 2.
3. Assume $c_{-1}=1$. By (4), we conclude that $F(y)=0$ has a sol of the form:

$$
\sum_{i=-1}^{\infty}(-1)^{i+1} \frac{x^{i}}{(1+i)!(2+i)!}
$$

Laurent series solutions

Let $F(y)=0$ be an AODE.
If $\mathcal{E}(F)=\mathcal{D}(F)$ and $\mathcal{P}_{F}(t)=0$, then Theorem 2 gives no info for order bound of Laurent series sol of $F(y)=0$.

Laurent series solutions

Let $F(y)=0$ be an AODE.
If $\mathcal{E}(F)=\mathcal{D}(F)$ and $\mathcal{P}_{F}(t)=0$, then Theorem 2 gives no info for order bound of Laurent series sol of $F(y)=0$.

Example 4. Consider the AODE:

$$
F(y)=x y y^{\prime \prime}-x y^{\prime 2}+y y^{\prime}=0
$$

Here, $\mathcal{E}(F)=\mathcal{D}(F)$ and $\mathcal{P}_{F}(t)=0$. It has Laurent series sols

$$
z=c x^{-n} \quad \text { for each } \quad c \in \mathbb{K} \text { and } n \in \mathbb{N} .
$$

Polynomial solutions

Let $F(y)=0$ be an AODE, and $\mathcal{P}_{\infty, F}(t)$ be the indicial polynomial of $F(y)=0$ at infinity.

Definition 2. We call $F(y)=0$ noncritical if $\mathcal{P}_{\infty, F}(t) \neq 0$.

Polynomial solutions

Let $F(y)=0$ be an AODE, and $\mathcal{P}_{\infty, F}(t)$ be the indicial polynomial of $F(y)=0$ at infinity.

Definition 2. We call $F(y)=0$ noncritical if $\mathcal{P}_{\infty, F}(t) \neq 0$.
By Theorem 2, if $F(y)=0$ is noncritical, then there exists a bound for the degree of its polynomial sols.

Algorithm 1. Given a noncritical AODE $F(y)=0$, compute all its polynomial sols.

1. Assume $z \in \mathbb{K}[x]$ is polynomial sol of $F(y)=0$. Compute a degree bound B for z by Theorem 2 .
2. Set $z=\sum_{i=0}^{B} c_{i} X^{B}$, where c_{i} is unknown. Substitute z into $F(y)=0$ and solve the algebraic equations by using Gröbner bases. Return the results.

Polynomial solutions

Example 5 (Kamke 6.234). Consider:

$$
F(y)=a^{2} y^{2} y^{\prime \prime 2}-2 a^{2} y y^{\prime 2} y^{\prime \prime}+a^{2} y^{\prime 4}-b^{2} y^{\prime \prime 2}-y^{\prime 2}=0,
$$

where $a, b \in \mathbb{K}$ and $a \neq 0$. Here, $\mathcal{P}_{\infty, F}(t)=a^{2} t^{2} \neq 0$.

Polynomial solutions

Example 5 (Kamke 6.234). Consider:

$$
F(y)=a^{2} y^{2} y^{\prime \prime 2}-2 a^{2} y y^{\prime 2} y^{\prime \prime}+a^{2} y^{\prime 4}-b^{2} y^{\prime \prime 2}-y^{\prime 2}=0,
$$

where $a, b \in \mathbb{K}$ and $a \neq 0$. Here, $\mathcal{P}_{\infty, F}(t)=a^{2} t^{2} \neq 0$.

1. Assume $z \in \mathbb{K}[x]$ is polynomial sol of $F(y)=0$. By Theorem 2 , a degree bound for z is 1 .
2. Set $z=c_{0}+c_{1} x$, where c_{i} is unknown. Substitute z into $F(y)=0$ and solve the algebraic equations by using Gröbner bases. We find $c, c+\frac{x}{a}$, and $c-\frac{x}{a}$ are sols, where $c \in \mathbb{K}$.

Polynomial solutions

Example 4 (Continued). Consider the AODE:

$$
F(y)=x y y^{\prime \prime}-x y^{\prime 2}+y y^{\prime}=0
$$

Here, $\mathcal{E}(F)=\mathcal{D}(F)$ and $\mathcal{P}_{\infty, F}(t)=0$. It has polynomial sols

$$
z=c x^{n} \quad \text { for each } \quad c \in \mathbb{K} \text { and } n \in \mathbb{N} .
$$

Polynomial solutions

Example 4 (Continued). Consider the AODE:

$$
F(y)=x y y^{\prime \prime}-x y^{\prime 2}+y y^{\prime}=0
$$

Here, $\mathcal{E}(F)=\mathcal{D}(F)$ and $\mathcal{P}_{\infty, F}(t)=0$. It has polynomial sols

$$
z=c x^{n} \quad \text { for each } \quad c \in \mathbb{K} \text { and } n \in \mathbb{N} .
$$

- linear, first-order, quasi-linear second-order AODEs are noncritical.
- In Kamke's collection, all of the 834 AODEs are noncritical.

Rational function solutions

Consider a linear ODE:

$$
F(y)=\ell_{n} y^{(n)}+\ell_{n-1} y^{(n-1)}+\cdots+\ell_{0} y=0
$$

where $\ell_{i} \in \mathbb{K}[x]$. The roots of ℓ_{n} are singularities of $F(y)=0$.
Fact: Poles of rational sols of $F(y)=0$ must be roots of ℓ_{n}.

Rational function solutions

Consider a linear ODE:

$$
F(y)=\ell_{n} y^{(n)}+\ell_{n-1} y^{(n-1)}+\cdots+\ell_{0} y=0
$$

where $\ell_{i} \in \mathbb{K}[x]$. The roots of ℓ_{n} are singularities of $F(y)=0$.
Fact: Poles of rational sols of $F(y)=0$ must be roots of ℓ_{n}.
This is not true for nonlinear AODEs.
Example 6. Consider

$$
F(y)=y^{\prime}+y^{2}=0
$$

It has rational sols $z=\frac{1}{x-c}$ for $c \in \mathbb{K}$.

Rational function solutions

Question: Find a class of (nonlinear) AODEs s.t. the set of poles of rational sols of them is finite and computable.

Rational function solutions

Question: Find a class of (nonlinear) AODEs s.t. the set of poles of rational sols of them is finite and computable.

For $I, J \in \mathbb{N}^{n+1}$, we say $I \gg J$ if $\|I\| \geq\|J\|$ and $\|I\|+\|I\|_{\infty}>\|J\|+\|J\|_{\infty}$.

For $I, J \in \mathbb{N}^{n+1}$, we say I and J are comparable if $I \gg J$ or $J \gg I$.
Given $S \subset \mathbb{N}^{n+1}$, we call $I \in S$ greatest element of S if $I \gg J$ for each $J \in S \backslash\{I\}$.

Definition 3. An AODE $F(y)=0$ is called maximally comparable if $\mathcal{E}(F)$ admits a greatest element w.r.t. \gg.

Rational function solutions

Let $F(y)=\sum_{I \in \mathbb{N}^{n+1}} f_{l} y^{i_{0}}\left(y^{\prime}\right)^{i_{1}} \ldots\left(y^{(n)}\right)^{i_{n}}=0$ be an AODE.
Theorem 3. Let $F(y)=0$ be maximally comparable and I_{0} be the greatest element of $\mathcal{E}(F)$ w.r.t. \gg. Then the poles of rational sols of $F(y)=0$ are the zeros of $f_{10}(x)$ or infinity.

Rational function solutions

Let $F(y)=\sum_{I \in \mathbb{N}^{n+1}} f_{l} y^{i_{0}}\left(y^{\prime}\right)^{i_{1}} \ldots\left(y^{(n)}\right)^{i_{n}}=0$ be an AODE.
Theorem 3. Let $F(y)=0$ be maximally comparable and I_{0} be the greatest element of $\mathcal{E}(F)$ w.r.t. \gg. Then the poles of rational sols of $F(y)=0$ are the zeros of $f_{l_{0}}(x)$ or infinity.

- In Kamke's collection, 78.54% of the 834 AODEs are maximally comparable.

Rational function solutions

Algorithm 2. Given a maximally comparable AODE $F(y)=0$, compute all its rational sols.

1. Compute the greatest element I_{0} of $\mathcal{E}(F)$ w.r.t. \gg. Compute distinct roots x_{1}, \ldots, x_{m} of $f_{l_{0}}(x)$.
2. Compute order bounds r_{i} and N for Laurent series sols of $F(y)=0$ at x_{i} and infinity by Theorem 2 , where $i=1, \ldots, m$.
3. Set

$$
z=\sum_{i=1}^{m} \sum_{j=1}^{r_{i}} \frac{c_{i j}}{\left(x-x_{i}\right)^{j}}+\sum_{k=0}^{N} c_{i} x^{i}
$$

where $c_{i j}, c_{i}$ are unknown. Substitute z into $F(y)=0$ and solve the algebraic equations by Gröbner bases.

Rational function solutions

Example 7. Consider the AODE:

$$
\begin{aligned}
F(y) & =x^{2}(x-1)^{2} y^{\prime \prime 2}+4 x^{2}(x-1) y^{\prime} y^{\prime \prime}-4 x(x-1) y y^{\prime \prime}+ \\
& 4 x^{2} y^{\prime 2}-8 x y y^{\prime}+4 y^{2}-2(x-1) y^{\prime \prime} \\
= & 0 .
\end{aligned}
$$

1. The greatest element of $\mathcal{E}(F)$ w.r.t. \gg is $(0,0,2)$. By Theorem 3, the poles of rational sols of $F(y)=0$ might be 0,1 or infinity.
2. By Theorem 2, the order bounds of Laurent series sols of $F(y)=0$ at 0,1 and infinity are 0,1 and 1.
3. Set

$$
z=\frac{c_{1}}{x-1}+c_{2}+c_{3} x \quad \text { for some } \quad c_{1}, c_{2}, c_{3} \in \mathbb{K}
$$

Substitute z into $F(y)=0$ and we find $c_{3} x$ and $\frac{1}{x-1}+c_{3} x$ are rational sols of $F(y)=0$, where $c_{3} \in \mathbb{K}$.

Conclusion

Let $F(y)=0$ be an AODE of order n.

- Construct an order bound for Laurent series sols of $F(y)=0$ and use it to compute them.
- An algorithm for computing polynomial sols of noncritical AODEs.
- An algorithm for computing rational sols of maximally comparable AODEs.

Conclusion

Let $F(y)=0$ be an AODE of order n.

- Construct an order bound for Laurent series sols of $F(y)=0$ and use it to compute them.
- An algorithm for computing polynomial sols of noncritical AODEs.
- An algorithm for computing rational sols of maximally comparable AODEs.

Thanks!

