Apparent Singularites of D-finite Systems

Yi Zhang
Department of Mathematical Sciences
The University of Texas at Dallas, USA

Joint work with Shaoshi Chen, Manuel Kauers and Ziming Li

Singularities (univariate case)

Let $\partial=\frac{d}{d x}$.
Consider

$$
L=p_{r} \partial^{r}+p_{r-1} \partial^{r-1}+\cdots+p_{0} \in \mathbb{C}[x][\partial]
$$

where $p_{i} \in \mathbb{C}[x]$ with $p_{r} \neq 0$ and $\operatorname{gcd}\left(p_{r}, p_{r-1}, \ldots, p_{0}\right)=1$.
Call r the order of L, denoted by $\operatorname{ord}(L)$.

Singularities (univariate case)

Let $\partial=\frac{d}{d x}$.
Consider

$$
L=p_{r} \partial^{r}+p_{r-1} \partial^{r-1}+\cdots+p_{0} \in \mathbb{C}[x][\partial]
$$

where $p_{i} \in \mathbb{C}[x]$ with $p_{r} \neq 0$ and $\operatorname{gcd}\left(p_{r}, p_{r-1}, \ldots, p_{0}\right)=1$.
Call r the order of L, denoted by $\operatorname{ord}(L)$.
Definition. $c \in \mathbb{C}$ is an ordinary point of L if $p_{r}(c) \neq 0$. Otherwise, c is a singularity of L.

Formal power series (univariate case)

Definition. Let $f \in \mathbb{C}[[x]]$ be of the form

$$
f=c_{m} x^{m}+c_{m+1} x^{m+1}+\cdots
$$

where $c_{m} \neq 0$. Call m the initial exponent of f.

Formal power series (univariate case)

Definition. Let $f \in \mathbb{C}[[x]]$ be of the form

$$
f=c_{m} x^{m}+c_{m+1} x^{m+1}+\cdots
$$

where $c_{m} \neq 0$. Call m the initial exponent of f.
Theorem (Fuchs, 1866). Let $L \in \mathbb{C}[x][\partial] \backslash\{0\}$. Then the origin is an ordinary point of L

$$
\Uparrow
$$

L has $\operatorname{ord}(L)$ sols in $\mathbb{C}[[x]]$ with initial exponents $0,1, \ldots, \operatorname{ord}(L)-1$.

Apparent singularities

Assume the origin is a singularity of L.
Definition. The origin is apparent if L has $\operatorname{ord}(L) \mathbb{C}$-linearly independent sols in $\mathbb{C}[[x]]$.

Apparent singularities

Assume the origin is a singularity of L.
Definition. The origin is apparent if L has $\operatorname{ord}(L) \mathbb{C}$-linearly independent sols in $\mathbb{C}[[x]]$.

Example. x^{5} is a sol of $x f^{\prime}(x)-5 f(x)=0$.

Motivation

Assume the origin is an apparent singularity of L.
Goal. Find $M \in \mathbb{C}[x][\partial] \backslash\{0\}$ s.t.

- $\operatorname{sol}(L) \subset \operatorname{sol}(M)$;
- the origin is an ordinary point of M.

Motivation

Assume the origin is an apparent singularity of L.
Goal. Find $M \in \mathbb{C}[x][\partial] \backslash\{0\}$ s.t.

- $\operatorname{sol}(L) \subset \operatorname{sol}(M)$;
- the origin is an ordinary point of M.

Remark. If so, then sol (L) is spanned by formal power series.

Apparent singularites

L has sols of the form:

$$
\begin{aligned}
x^{\alpha_{1}} & +\cdots, \\
x^{\alpha_{2}} & +\cdots, \\
& \vdots \\
x^{\alpha_{r}} & +\cdots,
\end{aligned}
$$

where $\alpha_{1}<\alpha_{2}<\cdots<\alpha_{r} \in \mathbb{N}, r=\operatorname{ord}(L)$.
Remark. Some exponents are missing!

Apparent singularites

L has sols of the form:

$$
\begin{array}{rll}
x^{e_{1}} & +\cdots, & e_{1}=0, \ldots, \alpha_{1}-1, \\
x^{\alpha_{1}} & +\cdots, \\
x^{e_{2}} & +\cdots, & e_{2}=\alpha_{1}+1, \ldots, \alpha_{2}-1, \\
x^{\alpha_{2}} & +\cdots, \\
& \vdots \\
& x^{e_{r}} & +\cdots, \\
x^{\alpha_{r}} & +\cdots, & \\
& &
\end{array}
$$

where $\alpha_{1}<\alpha_{2}<\cdots<\alpha_{r} \in \mathbb{N}, r=\operatorname{ord}(L)$.
Remark. Some exponents are missing!

Desingularization

Given $L \in \mathbb{C}[x][\partial]$, the origin being apparent, find $M \in \mathbb{C}[x][\partial]$ s.t.

- $M=P L$ for some $P \in \mathbb{C}(x)[\partial] ;$
- the origin is an ordinary point of M.

Call M a desingluaried operator of L.

Desingularization

Given $L \in \mathbb{C}[x][\partial]$, the origin being apparent, find $M \in \mathbb{C}[x][\partial]$ s.t.

- $M=P L$ for some $P \in \mathbb{C}(x)[\partial] ;$
- the origin is an ordinary point of M.

Call M a desingluaried operator of L.
A first idea (Fuchs). Assume missing exponents are $k_{1}, \ldots k_{\ell}$.
Compute the least common left multiple of

$$
L, x \partial-k_{1}, \ldots, x \partial-k_{\ell}
$$

in $\mathbb{C}(x)[\partial]$.

Advanced method

Chen, Jaroschek, Kauers and Singer (2013, 2016), construct a desingularized operator M of L s.t.

- all apparent singularities of L are ordinary points of M;
- all singularities of M are non-apparent ones of L;
- the degree of leading coeff of M is minimal.

Contraction of Ore ideals (Z, 2016)

Theorem. A desingularized operator yields generators of

$$
(\mathbb{C}(x)[\partial] L) \cap \mathbb{C}[x][\partial] .
$$

Contraction of Ore ideals $(Z, 2016)$

Theorem. A desingularized operator yields generators of

$$
(\mathbb{C}(x)[\partial] L) \cap \mathbb{C}[x][\partial] .
$$

- Determine the contraction ideals of shift operators
- The ring of constants can replaced by a PID

D-finite systems

Notation.

$$
\begin{array}{cc}
A_{n}=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]\left[\partial_{1}, \ldots, \partial_{n}\right] & \subset \\
\Uparrow & R_{n}=\mathbb{C}\left(x_{1}, \ldots, x_{n}\right)\left[\partial_{1}, \ldots, \partial_{n}\right] \\
\Uparrow & \text { Weyl algebra }
\end{array}
$$

where $\partial_{i}=\partial / \partial x_{i}$.
Definition. A left ideal $I \subset R_{n}$ is D-finite if R_{n} / I is a finite-dimensional vector space over $\mathbb{C}\left(x_{1}, \ldots, x_{n}\right)$.

Assume that G_{1}, \ldots, G_{m} are generators of I. The system

$$
G_{i}(f)=0, \quad i=1, \ldots, m .
$$

is called a D-finite system.

D-finite Gröbner bases

Let \prec_{∂} be a graded term order on $\partial_{1}^{k_{1}} \cdots \partial_{n}^{k_{n}}$, a finite set $G \subset A_{n}$ is a Gröbner basis w.r.t. \prec_{∂}.

Definition. G is D-finite if $R_{n} \cdot G$ is D-finite. The set

$$
\operatorname{PE}(G)=\left\{\left(i_{1}, \ldots, i_{n}\right) \mid \partial_{1}^{i_{1}} \cdots \partial_{n}^{i_{n}} \text { is not reducible w.r.t. } G\right\} .
$$

is called the set of parametric exponents of G.
$|\operatorname{PE}(G)|$ is called the rank of G.

Example 1

Consider

$$
M=\left\{\partial_{1}^{3}, \partial_{1}^{2} \partial_{2}, \partial_{1} \partial_{2}^{2}, \partial_{2}^{3}\right\}
$$

Then $\operatorname{PE}(M)=\{(0,0),(1,0),(0,1),(2,0),(1,1),(0,2)\}$.

Ordinary points and singularities

Assume that $G \subset A_{n}$ is a Gröbner basis and its elements are all primitive.

Definition. $c \in \mathbb{C}^{n}$ is an ordinary point of G if c is not a zero of

$$
\prod_{g \in G} \mathrm{Ic}(g) .
$$

Otherwise, c is a singularity of G.

Ordinary points and singularities

Example 1 (cont.) Consider

$$
M=\left\{\partial_{1}^{3}, \partial_{1}^{2} \partial_{2}, \partial_{1} \partial_{2}^{2}, \partial_{2}^{3}\right\}
$$

where $\prod_{g \in M} \operatorname{lc}(g)=1$. The origin is an ordinary point of M.
Example 2. Consider

$$
G=\left\{x_{2}^{2} \partial_{2}-x_{1}^{2} \partial_{1}+x_{1}-x_{2}, \partial_{1}^{2}\right\}
$$

where $\prod_{g \in G} \operatorname{lc}(g)=x_{2}^{2}$. The origin is a singularity of G.

Formal power series

Let \prec_{x} be the order induced by \prec_{∂} on $x_{1}^{k_{1}} \cdots x_{n}^{k_{n}}$.
Let $f \in \mathbb{C}\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ be of form

$$
f=c_{i_{1}, \ldots, i_{n}} x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}+\text { higher terms w.r.t. } \prec_{x},
$$

where $c_{i_{1}, \ldots i_{n}} \in \mathbb{C}$ is nonzero.
Definition. Call $\left(i_{1}, \ldots, i_{n}\right)$ the initial exponent of f.

Main result

Let G be a D-finite Gröbner basis and its elements are all primitive.
Theorem 1. The origin of \mathbb{C}^{n} is an ordinary point of G

$$
\Uparrow
$$

$\forall\left(i_{1}, \ldots, i_{n}\right) \in \operatorname{PE}(G), \exists f \in \mathbb{C}\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ with initial exponent $\left(i_{1}, \ldots, i_{n}\right)$ s.t. f is a solution of G.

Main result

Let G be a D-finite Gröbner basis and its elements are all primitive.
Theorem 1. The origin of \mathbb{C}^{n} is an ordinary point of G

$\forall\left(i_{1}, \ldots, i_{n}\right) \in \operatorname{PE}(G), \exists f \in \mathbb{C}\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ with initial exponent $\left(i_{1}, \ldots, i_{n}\right)$ s.t. f is a solution of G.

Remark. an algorithm for computing formal power series sols of D-finite systems at ordinary points.

Apparent singularities

Assume the origin is a singularity of G.
Definition. The origin is apparent if G has $|\operatorname{PE}(G)| \mathbb{C}$-linearly independent sols in $\mathbb{C}\left[\left[x_{1}, \ldots, x_{n}\right]\right]$.

Example 2 (cont.) Consider

$$
G=\left\{x_{2}^{2} \partial_{2}-x_{1}^{2} \partial_{1}+x_{1}-x_{2}, \partial_{1}^{2}\right\},
$$

$\left\{x_{1}+x_{2}, x_{1} x_{2}\right\}$ are sols of G. The origin is apparent.
We can decide whether a given point is apparent or not and remove it using "a first idea".

Detecting and removing apparent singularities

Example 2 (cont.) Consider

$$
G=\left\{x_{2}^{2} \partial_{2}-x_{1}^{2} \partial_{1}+x_{1}-x_{2}, \partial_{1}^{2}\right\},
$$

Set

$$
S=\{(0,0),(0,1),(2,0),(0,2)\}
$$

Let $M \subset A_{2}$ be a Gröbner basis with

$$
R_{2} M=R_{2} G \cap\left(\bigcap_{(s, t) \in S} R_{2}\left\{x_{1} \partial_{1}-s, x_{2} \partial_{2}-t\right\}\right)
$$

We find

$$
M=\left\{\partial_{1}^{3}, \partial_{1}^{2} \partial_{2}, \partial_{1} \partial_{2}^{2}, \partial_{2}^{3}\right\}
$$

The origin is an ordinary point of M.

Formal power series solutions at apparent singularities

Example 3 Consider the D-finite Gröbner basis of rank 2:

$$
H=\left\{x_{2} \partial_{2}+\partial_{1}-x_{2}-1, \partial_{1}^{2}-\partial_{1}\right\} .
$$

- Let $M \subset A_{2}$ be a Gröbner basis of the left ideal

$$
R_{2} H \cap R_{2}\left\{x_{1} \partial_{1}-1, \partial_{2}\right\} .
$$

Then the origin is an ordinary point of M, which is of rank 3 .

- By Theorem 1, sol (M) at the origin is spanned by

$$
\begin{aligned}
& f_{1}=\exp \left(x_{1}+x_{2}\right)-x_{1}-x_{2} \exp \left(x_{2}\right), \quad f_{2}=x_{1}, \\
& f_{3}=x_{2} \exp \left(x_{2}\right)
\end{aligned}
$$

Formal power series solutions at apparent singularities

- Make an ansatz $f=\sum_{i=1}^{3} c_{i} f_{i}$, where c_{i} is unknown. Then one can show that f is a solution of

$$
H_{1}(f)=0, \quad H_{2}(f)=0,
$$

if and only if $\left(c_{1}, c_{2}, c_{3}\right)^{t}$ is a solution of $A \mathbf{x}=\mathbf{0}$, where

$$
A=\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

A basis of its right kernel is $\left\{(1,1,0)^{t},(0,0,1)^{t}\right\}$. It give rise to a basis of $\operatorname{sol}(H)$ at the origin:

$$
\left\{\exp \left(x_{1}+x_{2}\right)-x_{2} \exp \left(x_{2}\right), x_{2} \exp \left(x_{2}\right)\right\}
$$

Conclusion

- Characterization of ordinary points of D-finite systems
- Detect and remove apparent singularities of D-finite systems
- An algorithm for computing formal power series sols of D-finite systems at apparent singularities.

Conclusion

- Characterization of ordinary points of D-finite systems
- Detect and remove apparent singularities of D-finite systems
- An algorithm for computing formal power series sols of D-finite systems at apparent singularities.

Remark: for arbitrary singularities, Takayama (2003) gives an algorithm by using D-module theory. No elementary proof!

Conclusion

- Characterization of ordinary points of D-finite systems
- Detect and remove apparent singularities of D-finite systems
- An algorithm for computing formal power series sols of D-finite systems at apparent singularities.

Remark: for arbitrary singularities, Takayama (2003) gives an algorithm by using D-module theory. No elementary proof!

> Thanks!

