Apparent Singularites of D-finite Systems

Yi Zhang

Johann Radon Institute for Computational and Applied Mathematics (RICAM) Austrian Academy of Sciences, Austria

Joint work with Shaoshi Chen, Manuel Kauers and Ziming Li

Singularities (univariate case)

Let
$$\partial = \frac{d}{dx}$$
.

Consider

$$L = p_r \partial^r + p_{r-1} \partial^{r-1} + \dots + p_0 \in \mathbb{C}[x][\partial],$$

where $p_i \in \mathbb{C}[x]$ with $p_r \neq 0$ and $gcd(p_r, p_{r-1}, \dots, p_0) = 1$.

Call r the order of L, denoted by ord(L).

Singularities (univariate case)

Let
$$\partial = \frac{d}{dx}$$
.

Consider

$$L = p_r \partial^r + p_{r-1} \partial^{r-1} + \dots + p_0 \in \mathbb{C}[x][\partial],$$

where $p_i \in \mathbb{C}[x]$ with $p_r \neq 0$ and $gcd(p_r, p_{r-1}, \dots, p_0) = 1$.

Call r the order of L, denoted by ord(L).

Definition. $c \in \mathbb{C}$ is an ordinary point of L if $p_r(c) \neq 0$. Otherwise, c is a singularity of L. Formal power series (univariate case)

Definition. Let $f \in \mathbb{C}[[x]]$ be of the form

$$f = c_m x^m + c_{m+1} x^{m+1} + \cdots,$$

where $c_m \neq 0$. Call *m* the initial exponent of *f*.

Formal power series (univariate case)

Definition. Let $f \in \mathbb{C}[[x]]$ be of the form

$$f = c_m x^m + c_{m+1} x^{m+1} + \cdots,$$

where $c_m \neq 0$. Call *m* the initial exponent of *f*.

Theorem (Fuchs, 1866). Let $L \in \mathbb{C}[x][\partial] \setminus \{0\}$. Then

the origin is an ordinary point of L

$\$

L has ord(L) sols in $\mathbb{C}[[x]]$ with initial exponents $0, 1, \ldots, ord(L) - 1$.

Assume the origin is a singularity of *L*.

Definition. The origin is apparent if L has $ord(L) \mathbb{C}$ -linearly independent sols in $\mathbb{C}[[x]]$.

Assume the origin is a singularity of *L*.

Definition. The origin is apparent if L has $ord(L) \mathbb{C}$ -linearly independent sols in $\mathbb{C}[[x]]$.

Example. x^5 is a sol of xf'(x) - 5f(x) = 0.

Motivation

Assume the origin is an apparent singularity of L.

Goal. Find $M \in \mathbb{C}[x][\partial] \setminus \{0\}$ s.t.

•
$$\operatorname{sol}(L) \subset \operatorname{sol}(M);$$

• the origin is an ordinary point of *M*.

Motivation

Assume the origin is an apparent singularity of L.

Goal. Find $M \in \mathbb{C}[x][\partial] \setminus \{0\}$ s.t.

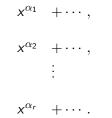
•
$$\operatorname{sol}(L) \subset \operatorname{sol}(M);$$

• the origin is an ordinary point of *M*.

Remark. If so, then sol(L) is spanned by formal power series.

Apparent singularites

L has sols of the form:



where $\alpha_1 < \alpha_2 < \cdots < \alpha_r \in \mathbb{N}$, $r = \operatorname{ord}(L)$.

Remark. Some exponents are missing!

Apparent singularites

L has sols of the form:

$$\begin{array}{ll} x^{\mathbf{e}_1} & +\cdots, & \mathbf{e}_1 = 0, \dots, \alpha_1 - 1, \\ x^{\alpha_1} & +\cdots, \\ x^{\mathbf{e}_2} & +\cdots, & \mathbf{e}_2 = \alpha_1 + 1, \dots, \alpha_2 - 1, \\ x^{\alpha_2} & +\cdots, & & \\ & \vdots \\ x^{\mathbf{e}_r} & +\cdots, & \mathbf{e}_r = \alpha_{r-1} + 1, \dots, \alpha_r - 1, \\ x^{\alpha_r} & +\cdots. \end{array}$$

where $\alpha_1 < \alpha_2 < \cdots < \alpha_r \in \mathbb{N}$, $r = \operatorname{ord}(L)$.

Remark. Some exponents are missing!

Desingularization

Given $L \in \mathbb{C}[x][\partial]$, the origin being apparent, find $M \in \mathbb{C}[x][\partial]$ s.t.

•
$$M = PL$$
 for some $P \in \mathbb{C}(x)[\partial]$;

• the origin is an ordinary point of *M*.

Call M a desingluaried operator of L.

Desingularization

Given $L \in \mathbb{C}[x][\partial]$, the origin being apparent, find $M \in \mathbb{C}[x][\partial]$ s.t.

•
$$M = PL$$
 for some $P \in \mathbb{C}(x)[\partial]$;

• the origin is an ordinary point of *M*.

Call M a desingluaried operator of L.

A first idea (Fuchs). Assume missing exponents are $k_1, \ldots k_\ell$. Compute the least common left multiple of

$$L, x\partial - k_1, \ldots, x\partial - k_\ell$$

in $\mathbb{C}(x)[\partial]$.

Chen, Jaroschek, Kauers and Singer (2013, 2016), construct a desingularized operator M of L s.t.

- ▶ all apparent singularities of *L* are ordinary points of *M*;
- ▶ all singularities of *M* are non-apparent ones of *L*;
- the degree of leading coeff of *M* is minimal.

Contraction of Ore ideals (Z, 2016)

Theorem. A desingularized operator yields generators of $(\mathbb{C}(x)[\partial]L) \cap \mathbb{C}[x][\partial].$

Contraction of Ore ideals (Z, 2016)

Theorem. A desingularized operator yields generators of $(\mathbb{C}(x)[\partial]L) \cap \mathbb{C}[x][\partial].$

> Determine the contraction ideals of shift operators

The ring of constants can replaced by a PID

D-finite systems

Notation.

where $\partial_i = \partial/\partial x_i$.

Definition. A left ideal $I \subset R_n$ is D-finite if R_n/I is a finite-dimensional vector space over $\mathbb{C}(x_1, \ldots, x_n)$.

Assume that G_1, \ldots, G_m are generators of *I*. The system

$$G_i(f)=0, \quad i=1,\ldots,m.$$

is called a D-finite system.

D-finite Gröbner bases

Let \prec_{∂} be a graded term order on $\partial_1^{k_1} \cdots \partial_n^{k_n}$, a finite set $G \subset A_n$ is a Gröbner basis w.r.t. \prec_{∂} .

Definition. *G* is **D-finite** if $R_n \cdot G$ is **D-finite**. The set

$$\mathsf{PE}(G) = \left\{ (i_1, \dots, i_n) \mid \partial_1^{i_1} \cdots \partial_n^{i_n} \text{ is not reducible w.r.t. } G \right\}.$$

is called the set of parametric exponents of G.

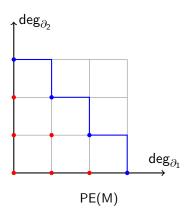
 $|\mathsf{PE}(G)|$ is called the rank of G.

Example 1

Consider

$$M = \{\partial_1^3, \partial_1^2 \partial_2, \partial_1 \partial_2^2, \partial_2^3\}.$$

Then $PE(M) = \{(0,0), (1,0), (0,1), (2,0), (1,1), (0,2)\}.$



Assume that $G \subset A_n$ is a Gröbner basis and its elements are all primitive.

Definition. $c \in \mathbb{C}^n$ is an ordinary point of G if c is not a zero of

$$\prod_{g\in G} \mathsf{lc}(g).$$

Otherwise, c is a singularity of G.

Ordinary points and singularities

Example 1 (cont.) Consider

$$M = \{\partial_1^3, \partial_1^2 \partial_2, \partial_1 \partial_2^2, \partial_2^3\}.$$

where $\prod_{g \in M} lc(g) = 1$. The origin is an ordinary point of M.

Example 2. Consider

$$\mathcal{G} = \{x_2^2\partial_2 - x_1^2\partial_1 + x_1 - x_2, \partial_1^2\},\$$

where $\prod_{g \in G} lc(g) = x_2^2$. The origin is a singularity of *G*.

Formal power series

Let \prec_x be the order induced by \prec_∂ on $x_1^{k_1} \cdots x_n^{k_n}$. Let $f \in \mathbb{C}[[x_1, \dots, x_n]]$ be of form

$$f = c_{i_1,...,i_n} x_1^{i_1} \cdots x_n^{i_n} + \text{higher terms w.r.t.} \prec_x,$$

where $c_{i_1,...,i_n} \in \mathbb{C}$ is nonzero. Definition. Call $(i_1,...,i_n)$ the initial exponent of f.

Main result

Let G be a D-finite Gröbner basis and its elements are all primitive.

Theorem. The origin of \mathbb{C}^n is an ordinary point of *G*

$(i_1, \ldots, i_n) \in \mathsf{PE}(G), \exists f \in \mathbb{C}[[x_1, \ldots, x_n]] \text{ with initial exponent } (i_1, \ldots, i_n) \text{ s.t. } f \text{ is a solution of } G.$

Main result

Let G be a D-finite Gröbner basis and its elements are all primitive.

Theorem. The origin of \mathbb{C}^n is an ordinary point of G

Remark. an algorithm for computing formal power series sols of D-finite systems at ordinary points.

Apparent singularities

Assume the origin is a singularity of G.

Definition. The origin is apparent if G has $|PE(G)| \mathbb{C}$ -linearly independent sols in $\mathbb{C}[[x_1, \ldots, x_n]]$.

Example 2 (cont.) Consider

$$G = \{x_2^2 \partial_2 - x_1^2 \partial_1 + x_1 - x_2, \partial_1^2\},\$$

 $\{x_1 + x_2, x_1x_2\}$ are sols of *G*. The origin is apparent.

We can decide whether a given point is apparent or not and remove it using "a first idea".

Example 2 (cont.)

Consider

$$G = \{x_2^2\partial_2 - x_1^2\partial_1 + x_1 - x_2, \partial_1^2\},\$$

Set

$$S = \{(0,0), (0,1), (2,0), (0,2)\}.$$

Let $M \subset A_n$ be a Gröbner basis with

$$R_n M = R_n G \cap \left(\bigcap_{(s,t) \in S} R_n \{ x_1 \partial_1 - s, x_2 \partial_2 - t \} \right)$$

We find

$$M = \{\partial_1^3, \partial_1^2 \partial_2, \partial_1 \partial_2^2, \partial_2^3\}.$$

The origin is an ordinary point of M.

- > Characterization of ordinary points of D-finite systems
- > Detect and remove apparent singularities of D-finite systems

- Characterization of ordinary points of D-finite systems
- Detect and remove apparent singularities of D-finite systems

Remark 1. an algorithm for computing formal power series sols of D-finite systems at apparent singularities.

- Characterization of ordinary points of D-finite systems
- Detect and remove apparent singularities of D-finite systems

Remark 1. an algorithm for computing formal power series sols of D-finite systems at apparent singularities.

Remark 2. for arbitrary singularities, Takayama (2003) gives an algorithm by using D-module theory. No elementary proof!

- Characterization of ordinary points of D-finite systems
- Detect and remove apparent singularities of D-finite systems

Remark 1. an algorithm for computing formal power series sols of D-finite systems at apparent singularities.

Remark 2. for arbitrary singularities, Takayama (2003) gives an algorithm by using D-module theory. No elementary proof!

Thanks!