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Abstract

We describe the notion of Gröbner bases and Buchberger’s algorithm
for Ore polynomials whose constant coefficients lie in a principal ideal
domain. The note is based on Section 10.1 in the book Gröbner Bases,
A Computational Approach to Commutative Algebra by T. Becker and
V. Weispfenning. As we are dealing with noncommutative polynomials of
certain type, tiny technical details are different from the usual commuta-
tive case in many places. So we proceed step by step and offer proofs for
most of the statements. We also present a way to compute a basis of the
saturation of a left ideal with respect to a constant in the last section.

1 Ore algebras

In this section, we define Ore algebras that we are concerned with.
Let R be a principal ideal domain and n ∈ N. Let R[x1, . . . , xn] be the

ring of usual commutative polynomials over R. For brevity, we denote this ring
by R[x]. For all i = 1, . . . , n, let σi be an R-automorphism of R[x] with the
following properties:

(i) σi(xi) = γixi + τi for some γi, τi ∈ R with γi being a unit in R,

(ii) σi(xj) = xj for j 6= i.

Let δi be a σi-derivation on R[x], i.e., an R-linear map satisfying the following
three properties:

(i) δi(fg) = σi(f)δi(g) + δi(f)g for f, g ∈ R[x],

(ii) δi(xi) is a linear polynomial in R[xi],

(iii) δi(xj) = 0 for all j 6= i.
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Then we have an Ore algebra

R[x][∂1;σ1, δ1] · · · [∂n;σn, δn]

of Ore polynomials [1], in which the addition is coefficient-wise and the multi-
plication is defined by associativity via the commutation rules

(i) ∂ip = σi(p)∂i + δi(p) for p ∈ R[x], 1 ≤ i ≤ n,

(ii) ∂i∂j = ∂j∂i for 1 ≤ i, j ≤ n.

The ring R[x][∂1;σ1, δ1] · · · [∂n;σn, δn] is abbreviated as R[x][∂] when σi
and δi are clear from the context.

2 Terms and monomials

By a term, we mean a product xα1
1 · · ·xαn

n ∂β1

1 · · · ∂βn
n with αi, βj ∈ N. For

brevity, we set α = (α1, . . . , αn) and β = (β1, . . . , βn). Then we may denote a
term as xα∂β. By a monomial, we mean a product at, where a is a nonzero
element of R, and t a term. Set T to be the set of all terms, and M the set
of all monomials. Let P ∈ R[x][∂] \ {0}. Since P is a sum of monomials, we
denote the set of monomials in P by M(P ). The set of corresponding terms is
denoted by T(P ).

Let α,β ∈ Nn, we write α ≤ β if αi ≤ βi for all 1 ≤ i ≤ n. Let as, bt ∈ M
with s = xα∂β, t = xu∂v ∈ T and a, b ∈ R. We say that as quasi-divides bt
if a | b in R, α ≤ u and β ≤ v. In this case, we write as |q bt. In other
words, s | t when we forget the commutation rules in R[x][∂].

Proposition 2.1. Let S be a set of monomials in R[x][∂]. Then S has a
Dickson basis, i.e., there exists a finite subset N of S such that, for each s ∈ S,
there exists t ∈ N with t |q s.

Proof. We define the following map:

φ : M −→ R× Nn × Nn

axα∂β 7→ (a,α,β).

Obviously, φ is a bijection. Moreover, the quasi-divisibility relation in M cor-
responds to the following quasi-order in R× Nn × Nn:

(a1,α1,β1) ≺′ (a2,α2,β2) if and only if a1 | a2, α1 ≤ α2 and β1 ≤ β2,

where (a1,α1,β1), (a2,α2,β2) ∈ R × Nn × Nn. By [2, Proposition 4.49], φ(S)
has a Dickson basis N ′ with respect to ≺′. Then φ−1(N ′) is a Dickson basis
of S.

3 Term order and monomial order

A term order ≺ is a linear order on T that satisfies the following conditions:

(i) 1 � t for each t ∈ T ;
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(ii) xα∂β ≺ xa∂b implies xα+u∂β+v ≺ xa+u∂b+v for each (u,v) ∈ Nn×Nn;

A term order induces a partial order on M as follows. For all as, bt ∈ M
with s = xα∂β, t = xu∂v ∈ T and a, b ∈ R,

as ≺ bt⇐⇒ s ≺ t.

The induced order is called a monomial order on M .

Lemma 3.1. Let ≺ be a monomial order on M . Then there is no strictly
decreasing infinite sequence in M with respect to ≺.

Proof. Suppose that
m1,m2, . . .

is an infinite sequence in M with mi � mi+1 for all i ∈ Z+. By Proposition 2.1,
there exist a finite number of monomials mj1 , . . . ,mjk such that, for all i ∈ Z+,
there exists ` ∈ {1, . . . , k} with mj` |qmi. Choose i to be greater than all the
indices j1, . . . , jk. Then mj` cannot be higher than mi, a contradiction.

Let ≺ be a monomial order on M , and P ∈ R[x][∂] \ {0}. Then

P = c1t1 + · · ·+ c`t`,

where c1, . . . , c` ∈ R \ {0}, and t1, . . . , t` are mutually distinct terms.
Assume that t1 ≺ t2 ≺ · · · ≺ t`. Then t`, c` and c`t` are called the head

term, head coefficient, and head monomial of P , respectively. They are denoted
by HT(P ), HC(P ) and HM(P ), respectively.

Let P,Q ∈ R[x][∂]. We say that P,Q ∈ R[x][∂] are associated to each other
if there are unit elements a, b ∈ R such that aP = bQ.

Proposition 3.2. Let P and Q be two nonzero elements in R[x][∂]. Then

(i) HT(PQ) = HT(HT(P )HT(Q));

(ii) HC(PQ) and HC(P )HC(Q) are associated;

(iii) HM(PQ) and HM(HM(P )HM(Q)) are associated.

Proof. Given i ∈ {1, . . . , n}. By the definitions of σi, δi and the commutation
rules in Section 1, we have

∂ixi = γi(xi∂i) + τi∂i + aixi + bi,

where γi is a unit in R, and τi, ai, bi ∈ R. Therefore, HM(∂ixi) = γixi∂i. A
direct induction proves the proposition.

The following corollary is a step-stone for generalizing usual polynomial re-
ductions to the Ore case.

Corollary 3.3. Let m1,m2 ∈M . If m1 |q m2, then there exists m3 ∈M , such
that m2 = HM(m3m1).

Proof. Let m1 = axαββ,m2 = bxuβv with a, b ∈ R, and (α,β), (u,v) ∈
Nn × Nn. Since m1 |q m2, we have a | b, α ≤ u, β ≤ v. Let u′ = u − α,
v′ = v − β. By item (iii) of the above proposition, there exists a unit γ in R,

such that HM(xu′
∂v′

m1) = γaxuβv. Since γa | b, there exists c ∈ R, such

that cγa = b. Let m3 = cxu′
∂v′

, then m2 = HM(m3m1).
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4 Reduction for Ore polynomials

In the sequel, we assume that ≺ is a term order on T .

Definition 4.1. Let F,G, P ∈ R[x][∂] with FP 6= 0, and let P be a subset
of R[x][∂] \ {0}. Then we say

(i) F reduces to G modulo P by eliminating m (notation F −−−→
P,m

G), if there

exists m ∈ M(F ) with HM(P ) |q m, and G = F − m′P , where m′ is a
monomial such that HM(m′P ) = m;

(ii) F reduces to G modulo P (notation F −→
P

G), if F −−−→
P,m

G for some m

in M(F );

(iii) F reduces to G modulo P (notation F −→
P
G), if F −→

P
G for some P ∈ P;

(iv) F is reducible modulo P if there exists G ∈ R[x][∂] such that F −→
P
G;

(v) F is reducible modulo P if there exists G ∈ R[x][∂] such that F −→
P
G.

Remark 4.2. The existence of m′ in item (i) of the above definition is guar-
anteed by Corollary 3.3.

If F is not reducible modulo P (modulo P), then we say F is in normal form
modulo P (modulo P). A normal form of F modulo P is an element G ∈ R[x][∂]
that is in normal form modulo P and satisties

F
∗−→
P
G,

where
∗−→
P

is the reflexive-transitive closure [2, Definition 4.71] of −→
P

. We call

F −−−→
P,m

G

a top-reduction of F if m = HM(F ); whenever a top-reduction of F exists
(with P ∈ P), we say that F is top-reducible modulo P (modulo P).

Algorithm 4.1. Given F ∈ R[x][∂], P ⊂ R[x][∂] compute a normal form of F
modulo P.

G← 0
L← F
while L 6= 0 do

while L is top-reducible modulo P do
S ← L−m′P for some P ∈ P,m′ ∈ T with HM(m′P ) = HM(L)
L← S

end
G← G+ HM(L)
L← L−HM(L)

end

The correctness of the above algorithm is evident.
Proof of the termination of Algorithm 4.1: Suppose Algorithm 4.1

does not terminate. Let {Li}i∈N be the operators in the order that they are
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evaluated to L. Then, L0 = F . Moreover, the valuation of Li+1 has two cases
(i) Li+1 = Li − m′P , for some P ∈ P,m′ ∈ T with HM(m′P ) = HM(Li);
(ii) Li+1 = Li − HM(Li), here i ∈ N. Therefore, we have HT(Li+1) ≺ HT(Li),
for all i ∈ N, i.e., {HT(Li)}i∈N is a strictly decreasing sequence with respect
to ≺, a contradiction to Lemma 3.1.

5 Definition of Gröbner bases

As a matter of notation, let S be a subset of R[x][∂], we denote the left ideal
generated by S in R[x][∂] as R[x][∂] ·S. The set of head monomials of elements
in S is denoted by HM(S).

Definition 5.1. A finite set G ⊂ R[x][∂] is called a Gröbner basis if it has
the property that, for each u ∈ HM(R[x][∂] · G), there exists v ∈ HM(G), such
that v |q u. If I is a left ideal of R[x][∂], then a Gröbner basis of I is a Gröbner
basis that generates the left ideal I.

Remark 5.2. Note that G ⊂ R[x][∂] is a Gröbner basis if and only if, for
each F ∈ R[x][∂] · G \ {0}, F is top-reducible modulo G.

Proposition 5.1. Let I be a left ideal of R[x][∂]. Then I has a Gröbner basis.

Proof. By Proposition 2.1, there exists a finite set T of HM(I) such that, for
all s ∈ HM(I), there exists t ∈ T with t |q s.

By the definition of T , it corresponds to a finite set G ⊂ I such that, for
each t ∈ T , there exists P ∈ G with HM(P ) = t. Since R[x][∂] · G ⊂ I, we have
that G is a Gröbner basis by Definition 5.1.

Next, we prove that G generates I. For each P ∈ I, we have that P
∗−→
G
Q

by Algorithm 4.1 such that Q is a normal form of P modulo G. So

Q = P −
∑
G∈G

VGG

for some VG ∈ R[x][∂]. Thus, Q ∈ I. If Q is nonzero, then Q is top-reducible
modulo G, a contradiction. Consequently, Q = 0.

6 Standard representations of Ore polynomials

Let F ∈ R[x][∂] \ {0}. A standard representation of F with respect to a finite
set P of R[x][∂] is a representation

F =
∑
P∈P

VPP,

where VP ∈ R[x][∂], such that HT(VPP ) � HT(F ) or VP = 0 for each P ∈ P.

Lemma 6.1. Let P be a finite set of R[x][∂], F ∈ R[x][∂] \ {0}, and assume

that F
∗−→
P

0. Then F has a stardard representation with respect to P.
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Proof. Suppose that F ∈ R[x][∂]\{0} such that F
∗−→
P

0, but F does not have a

standard representation. We may assume that F is minimal with this property
in terms of the length [2, page 174] of the reduction chain. Since F

∗−→
P

0, there

exits H ∈ R[x][∂] with F −→
G
H for some G ∈ P, say H = F −mG, where m is

a monomial on R[x][∂]. If H = 0, then F = mG is a standard representation
of F , a contradiction. Otherwise, H has a stardard representation

H =

k∑
i=1

ViPi

w.r.t. P by the minimality of F . Using the fact that HT(mG) is a term in F ,
it follows that

F = mG+

k∑
i=1

ViPi

is a stardard representation of F with respect to P, a contradiction.

Assume that G is a Gröbner basis of a left ideal I of R[x][∂]. By the argument

in Proposition 5.1, for each element F ∈ I, we have that F
∗−→
G

0. Thus, F has

a standard representation with respect to G by the above lemma. However, the
converse is not true. The next lemma shows that if we add one more condition
then it can be a criterion for Gröbner bases.

To this end, we need one more notation. For s, t ∈ T with s = xα∂β

and t = xu∂v, we define the quasi least common multiple of s and t to
be xe∂f , where ei = max(αi, ui), fi = max(βi, vi) for 1 ≤ i ≤ n, and denote it
by qlcm(s, t). In other words, qlcm(s, t) is the least common multiple of s and t
when they are treated as commutative terms.

Lemma 6.2. Assume that G is a finite subset of R[x][∂] satisfying the following
two conditions.

(i) For all G1, G2 ∈ G there exists H ∈ G with

HT(H) |q qlcm(HT(G1),HT(G2)) and HC(H) | gcd(HC(G1),HC(G2)).

(ii) Every F ∈ R[x][∂] · G has a standard representation w.r.t. G.

Then G is a Gröbner basis.

Proof. It suffices to prove that for all F ∈ R[x][∂] · G \ {0}, F is top-reducible
modulo G. By (ii), we have

F =

k∑
i=1

ViGi

is a standard representation of F with respect to G. Let N ⊂ {1, . . . , k} be the
set of indices with the property that HT(F ) = HT(ViGi). Then

HM(F ) =
∑
i∈N

HM(ViGi),
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and thus

qlcm{HT(Gi) | i ∈ N} |q HT(F ) and gcd{HC(Gi) | i ∈ N} | HC(F ).

Note that the second divisibility relies on the fact that the two head coeffi-
cients HC(ViGi) and HC(Vi)HC(Gi) are associated, which is stated in Proposi-
tion 3.2. By (i) and a straightforward induction on the cardinality of N , there
exists H ∈ G such that HT(H) quasi-divides the above quasi lcm, and HC(H)
divides the gcd. We have

HM(H) |q HM(F ),

and thus F is top-reducible modulo G.

Remark 6.1. When R is a field, the first condition in the above lemma is
trivial, because the gcd of head coefficients is always one, and, therefore, H can
be chosen to be either G1 or G2.

7 Buchberger’s criterion

Definition 7.1. For i = 1, 2, we let Gi ∈ R[x][∂] \ {0} with HC(Gi) = ai
and HT(Gi) = ti. Moreover, let

biai = lcm(a1, a2) with bi ∈ R and HT(siti) = lcm(t1, t2) with si ∈ T .

By Proposition 3.2, there exists an invertible element ri ∈ R such that HC(siGi) =
riai. Then the S-polynomial of G1 and G2 is defined as

spol(G1, G2) = b1r
−1
1 s1G1 − b2r−12 s2G2

Now let c1, c2 ∈ R such that gcd(a1, a2) = c1a1 + c2a2. Then we define the
G-polynomial of G1 and G2 with respect to c1 and c2 as

gpol(c1,c2)(G1, G2) = c1r
−1
1 s1G1 + c2r

−1
2 s2G2.

Strictly speaking, S-polynomials are only defined up to unit factors. As
usual, there will be no harm in speaking of the S-polynomial. Nevertheless, the
G-polynomial ofG1, G2 ∈ R[x][∂] depends heavily on the choice of c1 and c2. We
will from now on assume that for each pair a1, a2 ∈ R\{0}, an arbitrary but fixed
choice of a pair c1, c2 ∈ R has been made such that c1a1 + c2a2 = gcd(a1, a2),
and that G-polynomials are formed using this choice. The subscript (c1, c2) may
then be suppressed.

Note that condition (i) of Lemma 6.2 is equivalent to the G-polynomial of G1

and G2 being top-reducible modulo G.

Theorem 7.1. Let G be a finite subset of R[x][∂]. Assume that for all ele-
ments G1, G2 ∈ G, spol(G1, G2) either equals zero or has a standard representa-
tion with respect to G, and gpol(G1, G2) is top-reducible modulo G. Then every
nonzero polynomial F ∈ R[x][∂] · G has a standard representation.

Proof. Suppose that F ∈ R[x][∂]·G\{0} does not have a standard representation
with respect to G. Let

F =

k∑
i=1

ViGi (1)
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with Vi ∈ R[x][∂] and Gi ∈ G, i = 1, . . . , k. We may assume that

s = max{HT(ViGi) | 1 ≤ i ≤ k}

is minimal among all such representations of F . Then HT(F ) ≺ s. For a
contradiction, we will produce a representation

F =

k′∑
i=1

V ′iG
′
i

of the same kind such that s′ = max{HT(V ′iG
′
i) | 1 ≤ i ≤ k′} ≺ s. We proceed

by induction on the number ns of indices i with s = HT(ViGi).
First, ns = 1 is impossible because HT(F ) = s in this case. Let ns = 2,

without loss of generality, we may assume that HT(V1G1) = HT(V2G2) = s.
This means that

s = HT(t1 ·HT(G1)) = HT(t2 ·HT(G2))

for some t1, t2 ∈ T . So qlcm(HT(G1),HT(G2)) quasi-divides s, say

s = HT(u · qlcm(HT(G1),HT(G2)))

with u ∈ T . Since ns = 2, we have HM(V1G1) + HM(V2G2) = 0, and so

a1 ·HC(G1) = −a2 ·HC(G2)

for some a1, a2 ∈ R \ {0}. Moreover, ai and HC(Vi) are associated for i = 1, 2.
It follows that there exists a ∈ R \ {0} with

a · lcm(HC(G1),HC(G2)) = a1 ·HC(G1) = −a2 ·HC(G2)

and it is straightforward to see that

V1G1 + V2G2 = au · spol(G1, G2) +W,

where W ∈ R[x][∂] with HT(W ) ≺ s. By assumption, spol(G1, G2) = 0, or else
it has a standard representation

spol(G1, G2) =

k′′∑
i=1

V ′′i G
′′
i .

with respect to G. Substituting V1G1+V2G2 into (1), we obtain a representation

F =

k∑
i=3

ViGi + au

k′′∑
i=1

V ′′i G
′′
i +W, (2)

where the second sum is missing if the S-polynomial was zero. The maximum of
the head terms occuring in the first sum is less than s by our assumption ns = 2;
the maximum s′′ of the head terms in the second sum (if any) satisfies

s′′ ≺ HT(u · qlcm(HT(G1),HT(G2))) = s.
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Together, we see that the maximum s′ of the head terms in the representation (2)
satisfies s′ ≺ s, which means that (2) is the s′-representation that we were
looking for.

Now let ns > 2. Without loss of generality, we may again assume that

HT(V1G1) = HT(V2G2) = s.

Moreover, we have

HC(V1G1) = a1 ·HC(G1) and HC(V2G2) = a2 ·HC(G2) (3)

where, as before, a1 and a2 are associated to the head coefficients of V1 and V2,
respectively. Top-reducibility of gpol(G1, G2) modulo G means that there exists
an element H ∈ G with

HT(H) |q lcm(HT(G1),HT(G2)) and HC(H) | gcd(HC(G1),HC(G2)).

Since s quasi-divides both HT(G1) and HT(G2), we may conclude that HT(H)
divides s, and (3) shows that

HC(H) | HC(V1G1) and HC(H) | HC(V2G2).

We can thus find a term v ∈ T , and b1, b2 ∈ R such that

HM(V1G1) = HM(b1v ·HM(H)) and HM(V2G2) = HM(b2v ·HM(H)). (4)

We can now modify our representation (1) as follows:

F = (V1G1 − b1vH) + (V2G2 − b2vH) +

(
(b1 + b2)vH +

k∑
i=3

ViGi

)
.

Equation (4) tells us that the head terms of sums in the first bracket and second
one are less than s. The number of summands with head term s in the third
bracket is less or equal to 1 + (ns − 2) = ns − 1. By the induction hypothesis,
we have

F =

k′∑
i=1

V ′iG
′
i

with s′ = max{HT(V ′iG
′
i) | 1 ≤ i ≤ k′} ≺ s.

The next corollary is Buchberger’s criterion for Ore polynomials, which reads
exactly the same as that in commutative case.

Corollary 7.2. Let G be a finite subset of R[x][∂], and assume that for all
elements G1, G2 ∈ G,

spol(G1, G2)
∗−→
G

0

and gpol(G1, G2) is top-reducible modulo G. Then G is a Gröbner basis.

Proof. By Lemma 6.1, all nonzero S-polynomials have standard representations.
By the above theorem, it follows that every F ∈ R[x][∂] · G \ {0} has a standard
representation with respect to G. As we have mentioned before, top-reducibility
of gpol(G1, G2) modulo G means that condition (i) of Lemma 6.2 is satisfied.
Hence, the lemma applies, and thus G is a Gröbner basis.
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8 Buchberger’s algorithm

The following algorithm for the computation of Gröbner bases is a fairly obvious
imitation of the Buchberger algorithm. It enlarges the input set by non-zero
normal forms of S-polynomials and G-polynomials until all S-polynomials reduce
to zero and all G-polynomial are top-reducible.

Algorithm 8.1. Given a finite subset P ⊂ R[x][∂], compute a finite subset G ⊂
R[x][∂] such that G is a Gröbner basis in R[x][∂] and R[x][∂] · P = R[x][∂] · G.

G ← P
B ← {{P1, P2} | P1, P2 ∈ G, P1 6= P2}
D ← ∅
C ← B
while B 6= ∅ do

while C 6= ∅ do
select {P1, P2} from C
C ← C \ {{P1, P2}}
if there does not exist G ∈ G with HT(G) | lcm(HT(P1),HT(P2)),
HC(G) | HC(P1) and HC(G) | HC(P2) then

H ← gpol(P1, P2)
H0 ← a normal form of H modulo G
D ← D ∪ {{G,H0} | G ∈ G}
G← G ∪ {H0}

end

end
select {P1, P2} from B
B ← B \ {{P1, P2}}
H ← spol(P1, P2)
H0 ← a normal form of H modulo G
if H0 6= 0 then

D ← D ∪ {{G,H0} | G ∈ G}
G← G ∪ {H0}
B ← B ∪D; C ← D; D ← ∅

end

end

Theorem 8.2. Let R be a computable PID [2, Definition 10.13] and assume
that the term order ≺ is decidable [2, page 178]. Then the above algorithm
computes, for every finite subset P of R[x][∂], a Gröbner basis G in R[x][∂]
such that R[x][∂] · G = R[x][∂] · P.

Proof. We first prove the termination of the above algorithm. Suppose that
the algorithm does not terminate for input P. Then there are infinitely many
polynomials to be added to G. Assume that they are added sequently as H1,
H2, . . . ,. Then, we have an infinite sequence

HM(H1),HM(H2), . . . .

Since each Hi is in normal form modulo the G to which it will be added. It
follows that

HM(Hi) -q HM(Hj)
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for all j > i. By Proposition 2.1, there exists a finite set

D = {HM(Hi1), . . . ,HM(Hi`}

such that, for all j ∈ Z+, there exists m ∈ D with m |q HM(Hj). But this is
impossible when j is greater than i1, . . . , i`, a contradiction.

When the algorithm terminates, both B and C are empty. It follows that all
the S-polynomials formed by elements in G reduces to zero modulo G and all the
G-polynomials formed by elements in G are top-reducible. By Corollary 7.2, G
is a Gröbner basis. It is evident that R[x][∂] · P = R[x][∂] · G.

.

9 Elimination ideals

Let I be a left ideal in R[x][∂] and {U1, . . . , Ur} ⊂ {x1, . . . , xn, ∂1, . . . , ∂n}.
We denote {U1, . . . , Ur} and {x1, . . . , xn, ∂1, . . . , ∂n} as {U} and {x,∂}, respec-
tively. It is evident to see that I ∩ R[U] is a left ideal of the ring R[U]. This
ideal is called the elimination ideal of I with respect to {U}, or U for short,
and we will denote it by IU. As a matter of notation, we write T({U}) or T(U)
as the set of terms with respect to U. Assume that a term order ≺ on T is
given and {U} ⊂ {x,∂}. We write {U} ≺ {x,∂} \ {U} if for each s ∈ T(U)
and 1 6= t ∈ T({x,∂} \ {U}), s ≺ t. We can always find a decidable term
order ≺ on T satisfying {U} ≺ {x,∂} \ {U}: just take for ≺ a lexicographical
order where every variable in {U} is less than every one in {x,∂} \ {U}.

Lemma 9.1. Assume that {U} ⊂ {x,∂} and ≺ is a term order that satisfies
{U} ≺ {x,∂} \ {U}. Then the following claims hold:

(i) If s ∈ T and t ∈ T(U) with s ≺ t, then s ∈ T(U).

(ii) If F ∈ R[U] and P,G ∈ R[x][∂] with F −→
P
G, then P,G ∈ R[U].

(iii) If F ∈ R[U] and G ⊂ R[x][∂], then every normal form of F modulo G lies
in R[U].

Proof. (i) Assume for a contradiction that s 6∈ T(U). Then s can be divided by
some 1 6= v ∈ T({x,∂} \ {U}). We obtain s ≺ t ≺ v, a contradiction.

(ii) Since HT(P ) divides some t ∈ T(F ), we must have HT(P ) ∈ T(U) and
thus T(P ) ⊂ T(U) by (i), i.e., P ∈ R[U]. It follows from the definition of
reduction that G ∈ R[U]. Claim (iii) can be derived from (ii) by induction on
the length of reduction chains.

The next proposition provides a way to compute elimination ideals.

Proposition 9.2. Let I be a left ideal of R[x][∂] and {U} ⊂ {x,∂}. Assume
that ≺ is a term order that satisfies {U} ≺ {x,∂} \ {U}, and G is Gröbner
basis of I with respect to ≺. Then G∩R[U] is a Gröbner basis of the elimination
ideal IU.

Proof. Set G′ = G ∩ R[U]. We show that every 0 6= F ∈ IU is reducible
modulo G′. Let 0 6= F ∈ IU. Then F ∈ I, and thus F is reducible modulo G,
say F −→

G
H with G ∈ G. By Lemma 9.1 (ii), G ∈ G′, and thus F is reducible

modulo G′.
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10 Saturation with respect to a constant

Let I be a left ideal in R[x][∂], and c ∈ R. The saturation of I with respect
to c is defined to be

I : c∞ =
{
P ∈ R[x][∂] | ciP ∈ I for some i ∈ N

}
.

Since c is a constant with respect to σi and δi, c is in the center of R[x][∂]. It
follows that the saturation I : c∞ is a left ideal A basis of the saturation ideal
can be computed in the same way as in the commutative case.

To this end, we need to introduce some new indeterminates. Let σy be
the identity map of R[x, y], where y is a new indeterminate. Let δy be the
σy-derivation that maps everything in R[x, y] to zero. Then one can extend
the ring R[x][∂] to R[x, y][∂, ∂y]. Moreover, R[y][∂y] lies in the center of the
extended ring. For r ∈ R, one can define an evaluation map

φr : R[x, y][∂, ∂y] −→ R[x][∂]∑`
i=0

∑m
j=0 fijy

i∂jy 7→
∑`
i=0 fi0r

i,

where fij ∈ R[x][∂]. Since R[y][∂y] is contained in the center of R[x, y][∂, ∂y],
the map φr is a ring homomorphism.

Proposition 10.1. Let I be a left ideal of R[x][∂] and c be a non-zero element
in R. Assume that J is a left ideal

R[x, y][∂, ∂y] · (I ∪ {1− cy}) ,

Then I : c∞ = J ∩R[x][∂].

Proof. Let Jx,∂ = J ∩R[x][∂]. If G ∈ Jx,∂ , then

G = Q1P +Q2(1− cy) (5)

with Q1, Q2 ∈ R[x, y][∂, ∂y] and P ∈ I. Temporarily passing to the extended
ring QR[x, y][∂, ∂y] of R[x, y][∂, ∂y], we may apply the evaluation homomor-
phism φ1/c to (5) and then multiply the resulted equation by cd, where d =

degy(Q1). We thus obtain cdG = QP withQ being inR[x][∂]. Consequently, Jx,∂ ⊂
I : c∞.

Conversely, let G ∈ I : c∞, say cdG ∈ I. Then G ∈ R[x][∂] and cdG ∈ J .
Since 1− cy belongs to J ,

1− (cy)d = (1 + cy + (cy)2 + · · ·+ (cy)d−1)(1− cy) ∈ J

Since y and c commute with every element of R[x, y][∂, ∂y],(
1− (cy)d

)
G = G

(
1− (cy)d

)
∈ J.

Again, (cy)dG = yd(cdG) ∈ J because cdG ∈ J . It follows that

G =
(
1− (cy)d

)
G+ (cy)dG ∈ J.

Thus, G ∈ Jx,∂ .

By the above proposition, a Gröbner basis of I : c∞ with c ∈ R can be
computed by elimination given in the previous section.
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